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Abstract

In this note, we prove that the ascending subgraph decomposition conjecture is true for com-
plete multipartite graphs. c© 2001 Elsevier Science B.V. All rights reserved.
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The following conjecture about decomposing a graph G of size
( n+1
2

)
6|E(G)|¡

( n+2
2

)
into n ascending subgraphs has been one of the most fascinating problems

regularly mentioned by P. Erd�os in his talks on ‘Unsolved Problems’.

Ascending subgraph decomposition conjecture (ASD conjecture). Let G be a graph of
size

( n+1
2

)
6|E(G)|¡ ( n+2

2

)
. Then, E(G) can be partitioned into n sets E1; E2; : : : ; En

which induce subgraphs G1; G2; : : : ; Gn such that |E(Gi)|¡ |E(Gi+1)| and Gi is isomor-
phic to a subgraph of Gi+1 for i = 1; 2; : : : ; n− 1.
A graph G is said to have an ascending subgraph decomposition G1; G2; : : : ; Gn

provided that the ASD conjecture holds for G. G1; G2; : : : ; Gn are called members of
the decomposition.
In order to verify this conjecture, the following revised conjecture attracts more

attention than the original one.
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Revised ASD conjecture. Let G be a graph of size
( n+1
2

)
6q¡

( n+2
2

)
. Then E(G) can

be partitioned into n sets E1; E2; : : : ; En which induce subgraphs G1; G2; : : : ; Gn such
that |E(Gi)| = i and Gi is isomorphic to a subgraph of Gi+1 for i = 1; 2; : : : ; n − 1,
and E(Gn) = q −

( n
2

)
. So far, quite a few classes have been veri�ed to satisfy this

revised ASD conjecture, such as star forests [1,6], forests [4,10], graphs with bounded
maximum degrees [5,7], split graphs [9], complete bipartite graphs [8], regular bipartite
graphs [3], etc., but it is believed that to prove the conjecture in general is going to
be very di�cult.
In this note, we shall prove that every complete multipartite graph does have an

ascending subgraph decomposition. In order to prove the main result, we need two
de�nitions and several lemmas.
A graph G is said to have an n-star decomposition if |E(G)|6( n+1

2

)
and G can

be decomposed into n stars G1; G2; : : : ; Gn such that (i) all stars have di�erent centers,
(ii) |E(Gi)|6i for all i, and (iii) |E(Gi)|6|E(Gj)| for i¡ j. And a graph G with
size

( n+1
2

)
+ t; 0¡t, is said to have an (n; t)-star decomposition if G can be decom-

posed into G1; G2; : : : ; Gn; T such that (i) all Gi’s are stars with di�erent centers and
(ii) |E(Gi)|= i for i = 1; 2; : : : ; n and |T |= t.

Lemma 1. Let G be a graph with |E(G)|6( n+1
2

)
. If V (G)=X ∪Y and the subgraph

of G induced by Y; G[Y ]; has an n′-star decomposition where n′¡n;G[X ] is an empty
graph; |X |= n− n′; |Y |= n and G \G[Y ] is a complete bipartite graph. Then G has
an n-star decomposition.

Proof. Clearly, G \ G[Y ] can be decomposed into n − n′ stars of size n and all the
centers are in X . Let those n−n′ stars be G′

n′+1; G
′
n′+2; : : : ; G

′
n. Since G[Y ] has an n

′-star
decomposition, let it be G′

1; G
′
2; : : : ; G

′
n′ . Now |E(G′

j)|−j=n−j for j=n′+1; n′+2; : : : ; n.
Thus, there are at least n− j G′

i ’s for i=1; 2; : : : ; n
′ such that i− |E(G′

i)|¿ 0. Starting
from j=n′+1, we delete n−n′−1 edges from G′

n′+1 in which these edges are incident
to the centers of G′

i ’s where i−|E(G′
i)|¿ 0. Then, add these edges to G′

i , respectively.
Note that if there are more than n− n′ − 1 G′

i ’s with i− |E(G′
i)|¿ 0, we shall add the

edge to G′
i which has larger i − |E(G′

i)|. By repeating this process, delete n − n′ − 2
edges from G′

n′+2; n− n′ − 3 edges from G′
n′+3; etc., we conclude the proof.

Lemma 2. Let G be a graph with |E(G)|6( n+1
2

)
. If V (G) = X ∪ Y; G[Y ] has an

n′-star decomposition where n′¡n; G[X ] is an empty graph; |X | = n − n′ and all
the vertices in X have degree not greater than n′; then G has an n-star decomposi-
tion.

Proof. Since the bipartite graph obtained from (X; Y ) can be decomposed into n− n′
stars with centers in X and all of these stars are of size not greater than n′, an
n-star decomposition of G can be obtained by rearranging the members in the n′-star
decomposition of G[Y ] and those new stars from (X; Y ).
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Fig. 1. Pregnant stars.

Lemma 3. Let G be a graph with |E(G)|= ( n+1
2

)
+ t; 0¡t. If V (G) = X ∪ Y; G[Y ]

has an n′-star decomposition where n′¡n; G[X ] is an empty graph; |X |=n−n′; |Y |
= n and G \ G[Y ] is a complete bipartite graph. Then G has an (n; t)-star decom-
position.

Proof. Let G′
1; G

′
2; : : : ; G

′
n′ be the n

′ stars obtained by the n′-star decomposition of G[Y ]
and G′

n′+1; G
′
n′+2; : : : ; G

′
n be the stars of size n obtained from the decomposition of the

complete bipartite graph (X; Y ). Consider i6n′, where m = i − |E(G′
i)| is maximum.

Then there are at least m of G′
n′+1; G

′
n′+2; : : : ; G

′
n satisfying |E(G′

j)|¿j for j ∈ {n′ +
1; n′+2; : : : ; n}. (Choose the ones with larger |E(G′

j)|−j.) Therefore, we can delete one
edge from each of the above members and add them to G′

i . (Note that the center of G
′
i

is adjacent to all the centers of G′
j where j=n

′+1; n′+2; : : : ; n.) By repeating the above
process, we have the members G1; G2; : : : ; Gn′ where |E(Gi)|= i for i= 1; 2; : : : ; n′. As
the larger members, Gn′+1; : : : ; Gn, we can delete t edges from them suitably and the
set of t edges gives the T we need.

Since the proof of the main result is quite complicated, we believe that an explanation
of how we do it will be helpful in going through the details of the proof.
Our goal of decomposition is to obtain G1; G2; : : : ; Gn−1; Gn ∪ T where |E(Gi)| = i

and |T |= t. For the smaller members, we shall use stars. Although, it is quite possible
that we have a decomposition in which every member is a star, but if this is not so,
we shall mainly use pregnant stars (small star hiding in a large star) for the larger
Gi’s, see Fig. 1, and the smaller members remain as stars.
In order to obtain the decomposition, we shall �rst decompose the complete mul-

tipartite graph Km1 ;m2 ;:::;mk ; m1¿m2¿ · · ·¿mk , into k − 1 complete bipartite graphs
Hi = Kmi;mi−1+mi−2+···+m1 ; i= 2; 3; : : : ; k. Therefore |E(Hi)|=mi(m1 +m2 + · · ·+mi−1);
i = 2; 3; : : : ; k. Then, Km1 ;m2 ;:::;mk can be depicted as Fig. 2.
Fig. 2 will give us a rough idea of the decomposition we are looking for. First,

we claim that
∑k

i=1 mi ¿n¿
∑k

i=2 mi = �(G). The left-hand inequality is easy to see.
Assume that n¡

∑k
i=2 mi. Then �(G)¿n + 1. This implies that |V (G)|¿n + 2 and

therefore |E(G)|¿ 1
2 (n+1)(n+2). This is a contradiction. Hence, in Fig. 2, there exists

an R in (P0; P1] such that RQ = n. Now, we can draw a dashed line RR′ such that
“R′RQ = 45◦ and this dashed line provides some information for the decomposition.
For example, 4B2 tells us how many edges can be removed from H2 in order to have
members which are stars, and 4A1 shows the de�ciency we have in order to construct
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Fig. 2. Km1 ;m2 ;:::;mk .

stars as small members. Also, by Fig. 2 and geometric arguments, since

(the height of Hi+1)− (the height of Hi)

= (m1 + m2 + · · ·+ mi)− (m1 + m2 + · · ·+ mi−1)

=mi

= the width of Hi; and “R′RQ = 45
◦
;

the height (vertical) of 4B2;4B3; : : : are equal and the height (vertical) of 4A1;4A2;
4A3; : : : are not increasing.
Now, the decomposition will be obtained recursively, starting from the small

members.

Theorem 4. Let G = Km1 ;m2 ;:::;mk with m1¿m2¿ · · ·¿mk¿1 and |E(G)| = ( n+1
2

)
+ t;

06t6n. Then G has an ASD.

Proof. Let V (G)=
⋃k
i=1 Vi where |Vi|=mi. Clearly, G can be decomposed into n stars

S ′1; S
′
2; S

′
3; : : : ; S

′
n such that the �rst n− (

∑k
i=2 mi) stars have zero edges, then there are

m2 stars with m1 edges, m3 stars with m1 +m2 edges, etc., and mk stars with
∑k−1

i=1 mi
edges.
For i=1; 2; : : : ; k, let Ai denote the sum of j−|S ′j | for all j where the center of S ′j is

in Vi and j− |S ′j |¿ 0, and let Bi denote the sum of |S ′j | − j for all j where the center
of S ′j is in Vi and |S ′j | − j¿ 0. Now, we consider three cases.
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Case 1: 4(G) = m = ∑k−1
i=1 mi6n. By the argument following Fig. 2, we con-

clude that B1 = 0; B2 = B3 = · · ·= Bk and A1¿A2¿ · · ·¿Ak . Since
∑k−1

i=1 mi + mk =∑k
i=1 mi ¿n, hence m2¿mk ¿n − m. Delete n − m stars Xn−m; Xn−m−1; : : : ; X1 with

n−m; n−m−1; : : : ; 1 edges, respectively, starting from the left-hand side of P1P2, and
then add these n − m stars to S ′n; S

′
n−1; : : : ; S

′
m+1 to obtain Gn; Gn−1; : : : ; Gm+1. By the

reason that S ′j ; j = m + 1; : : : ; n, has center in Vk and S
′
j is incident to each vertex of⋃k−1

i=1 Vi; Gm+1; Gm+2; : : : ; Gn are pregnant stars. Now, we construct the small members
recursively. First, it is clear that H2 \

⋃n−m
i=1 Xi has an (n−

∑k
i=3 mi)-star decomposition.

By Lemma 1, H=(H2\
⋃n−m
i=1 Xi)∪H ′

3 (see Fig. 2) has an n
′=(n−∑k

i=4 mi−P′
2P3)-star

decomposition in case that the above graph has at most
( n′+1

2

)
edges. On the other

hand, if the above graph has more than
( n′+1

2

)
edges, then by Lemma 3, we have an

(n′; t′)-star decomposition for some t′. Here H ′
3 is a part of H3 with height n3=m1+m2

and base =|{j | |Sj|¿j and the center of Sj is in V3}|. By Lemma 2, the n′-star (or
(n′; t′)-star) decomposition of H can be extended to H ∪ (H3 \ H ′

3). Continuing the
above processes, we have an (n; t)-star decomposition for G \ (⋃n

i=m+1Gi). Then the
proof follows by adding T to Gn.
Case 2: 4(G)¿n and A2 = A3 = · · ·= Ak =0. First, if m1¿n then each star S ′i of

positive size has at least n edges. By Theorem in [11], we have the desired ASD with
each member a star. On the other hand, let m16n. Let i be the largest integer such that

G[
⋃i
j=1 Vj] contains edges not greater than

( n′+1
2

)
edges where n′ = n − ∑k

j=i+1 mj.

By Lemma 1, we are able to obtain an n′-star decomposition of G[
⋃i
j=1 Vj] following

a way similar to what we have in Case 1. Since Aj = 0 for each j¿i, for each

l¿ i; G[
⋃l
j=1 Vj] contains more than

( n′+
∑l

j=i+1
mj

2

)
edges. By Lemma 3, G[

∑l
j=1 Vj]

has an (nl; tl)-star decomposition where nl = n′ +
∑l

j=i+1mj and some tl ¿ 0. This
implies that G(l= k) has an ASD by adding T to the largest member Gn where T is
obtained in an (n; t)-star decomposition of G. This concludes the proof of Case 2.
Case 3: 4(G)¿n and A2¿ 0. Let s be the integer such that As−1¿ 0 and As =0.

(Ak = 0 since 4(G)¿n and A2¿ 0.) There are two situations to consider:
(i) Bs−16As−1. Since A1¿A2¿ · · ·¿As−1¿Bs−1 = Bs−2 = · · · = B2 and B1 = 0,∑j−1
i=1 Ai¿

∑j
i=2 Bi for j6s. Hence G[

⋃s
i=1 Vi] contains at most

( n′+1
2

)
edges for some

n′=n−∑k
j=s+1mj. Then by Lemmas 1 and 2, G[

⋃s
i=1 Vi] has an n

′-star decomposition.
Thus, for k¿x¿ s; G[

⋃x
i=1 Vi] has an nx-star decomposition or (nx; tx)-star decompo-

sition. By the time x = k, we have the ASD.
(ii) Bs−1¿As−1. First, if s−1¿3, then rearrange V1; V2; : : : ; Vk to the order V1; V2; : : : ;

Vs−2, Vs; Vs+1; : : : ; Vk ; Vs−1. Now, the proof can be obtained by a similar idea as that of
Case 1. Therefore, it is left to consider s−1=2. It is easy to see that there are some S ′j’s
with centers in V2 and are of size less than their index. Let the number of such stars be
u and clearly |V2|¿2u+1. Let G′ be the graph obtained by deleting 2u+1 vertices from
V2 such that the number of edges deleted is

( 2u+1
2

)
+(n−2u)(2u+1)=(2u+1)(n−u).

Let n′ = n − (2u + 1), then G′ has n′(n′ + 1)=2 + t edges. As in Case 2, G′ has an
(n′; t)-star decomposition G1; G2; : : : ; Gn′ ; T . Observe that the deleted 2u + 1 vertices
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and their neighbors form a complete bipartite graph (X; Y; E′) where |X |= 2u+ 1 and
|Y |=n−u. Therefore, (X; Y; E′) can be decomposed into Gn′+1; Gn′+2; : : : ; Gn such that
Gi is a star if i6n− u and if i¿n− u then Gi is a union of two stars with size n− u
and i− (n− u) such that it is a double star with common leaves (of small star). Now,
combining the two decompositions and adding T to Gn we have the desired ASD.

For further reading

The following reference is also of interest to the reader: [2].
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