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SUMMARY

In this paper we present some theory for a non-equivalence transformation of matrix eigenvalues for
�-matrix polynomials. Application of this transformation to eigenvalue embedding for model tuning on
a realistic industry problem is illustrated. The new approach has several advantages such as 
exibility,
e�ciency, and structure-preservation. A numerical experiment on a pseudosimulation data set from The
Boeing Company is reported. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of mathematical models for simulation is common in industry. However, as the
demand for greater performance and cost reductions increase, the demand for increased �delity
in mathematical models also increases. More accurate models allow for a reduction in time
consuming and expensive physical tests. (Testing is still done, but more insightful tests can be
performed and less tests on trying to determine what the real model is have to be performed.)
The process of obtaining an accurate model is not a simple one-step process. It is built over
time and experience, both with previous models as well as the current model and its ability
to predict performance.
Given an initial model and some collected data, the process of comparing the data to the

model and modifying the model is called model updating. A recurring, and key, component
to model updating is the identi�cation of parameters in the model that could be in error. We
refer to this problem as model tuning. This process is often currently done by an analyst’s
intuition. It is a slow, tedious process which has few tools for the analyst and often results in
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a modi�ed model that has been improved, although it may no longer make physical sense. It
is also a process that few analysts enjoy repeating. As a result the insight they gain is often
di�cult to recover or left for the next analyst to rediscover.
In this paper we present a means for the model analyst to identify potential parameters to

modify in the updating process, (i.e. model tuning). One means for identifying such param-
eters that has been advanced is to compute the sensitivity of all of the model parameters to
the particular objective function of interest. Although this makes much intuitive sense, the
sensitivity that we are really interested in is the sensitivities at the actual solution and of
course we do not know the actual solution. Thus the sensitivities computed in this manner
are only reasonable guesses. Moreover, choosing those parameters with large sensitivities is
only choosing parameters that will need to be changed the least in order to obtain an updated
model. These parameters may in fact not be in error and only being modi�ed to account
for incorrect modelling of other parameters. Although the approach we put forward in this
paper cannot declare that the identi�ed parameters are in error, it does provide an alternative
way to look at model tuning. The approach presented in this paper quickly produces a set of
parameters to modify and does so using a solution to the problem. Of course, it may not be
the solution desired by the engineer. This leads to one shortfall of the method namely that of
being able to easily add constraints on the solution computed.
In the method presented in this paper we are trying to identify what elements in the model

matrices appear to be the most in error. The goal is for the �nal model to match some
characteristics of the observed model. This approach has the additional advantage of being
applicable for models in generalized co-ordinates. The method proceeds by �rst forming a
small model (realized model) that has been built from the observed data via, e.g. system
identi�cation [1], and embedded into the analytic model so that some characteristic of the
model matches the actual behaviour of the system. This procedure has been done in Reference
[2] but at the expense of destroying the structure of the mathematical model and rendering
it di�cult to interpret physically. This paper presents a means by which the structure of the
model is preserved.
Throughout this paper we consider our model to be the state-space model of the form

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) =Cx(t) +Du(t) (2)

where A; B; C;D are matrices of orders n× n, n×p, q× n, and q×p, respectively, and x(t)
is the state vector, u(t) the input vector, and y(t) the output vector. The components of u(t)
satisfy ∫ ∞

0
|ui(t)|e−�t dt¡∞; i=1; : : : ; p

for some �¡∞.
From the observed data we construct a model of much lower order of a similar form as

above, i.e.

ẋr(t)=Arxr(t) + Brur(t) (3)

yr(t)=Crxr(t) +Drur(t) (4)
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We denote the model with a subscript r to indicate that it is a model realized from the ob-
served data. The accuracy of the models is assessed by comparing the observed and predicted
frequency responses.
One of the commonly used techniques is to transform the time-domain model into frequency-

domain model. Considerable information can be deduced by examining frequency response
functions. Taking the Laplace transforms of the �rst-order matrix di�erential equation (1) and
output measurement equation (2) with zero initial condition x(0)=0 yields

sx̂(s) = Ax̂(s) + Bû(s)

ŷ(s) =Cx̂(s) +Dû(s)

Hence

ŷ(s) = [C(sI − A)−1B+D]û(s)=
(
C adj(sI − A)B
det(sI − A) +D

)
û(s)

≡ p(s)
q(s)

û(s) ≡ G(s)û(s) (5)

The matrix [C(sI − A)−1B + D] is called the transfer function between the input û(s) and
output ŷ(s). The roots of the determinant det(sI − A) are called the poles of the system and
are the eigenvalues of A. The eigenvalues and eigenvectors of A provide important information
to the prediction of system behavior.
In this paper we investigate a three-stage embedding process for model tuning. The �rst is a

matching of eigenvalues in the analytic system matrix A of (1) and the realized system matrix
Ar of (3) from observed data. The second step is simply pole assignment. The third is back-
transforming so that a modi�ed system matrix Ã of order n× n is obtained and the model is
again stated in terms of the same states, inputs, and outputs. (Matrices B;C;D are also modi�ed
accordingly.) The resulting back-transformed system is then compared with the original system
to identify those parameters most likely to be modi�ed to achieve a more accurate model. A
non-equivalence transformation [3] technique is developed for the eigenvalue embedding in
the second step so that the modi�ed matrix Ã has all the desired eigenvalues of Ar and has
exactly the same structure as the original matrix A. With this approach it becomes possible
to select and preserve some desired eigenmodes and remove those unwanted.
We organize this paper as follows. The general theory of non-equivalence transformation

for analytic matrix polynomials is developed in the next section, then we demonstrate the
model embedding procedure in Section 3 by applying the theory to a practical application
arising in the aerospace industry. Numerical results on a pseudosimulation data set, provided
by The Boeing Company, is shown in Section 4. Concluding remarks are in Section 5.

2. NON-EQUIVALENCE TRANSFORMATION OF �-MATRIX EIGENPROBLEMS

The purpose of this paper is to develop an eigenvalue embedding approach method for the
model tuning problem. To achieve this goal, we reduce the problem to the following basic
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question: “How can a �-matrix polynomial be transformed to another �-matrix polynomial
such that most of eigenvalues are preserved except for a �nite number of eigenvalues which
are replaced by some prescribed values?” Precisely speaking, let us consider an n× n matrix
polynomial in �,

P(�)= �mAm + · · ·+ �A1 + A0 (6)

where A0; A1; : : : ; Am are n× n matrices. If there exist a scalar � and a non-zero n-vector y
such that P(�)y=0, then � is an eigenvalue of P(�) and y is the associated eigenvector.
Let us denote �(P(�)) the set of eigenvalues related to P(�). Now, suppose that � is the
eigenvalue to be replaced by a new value, say �, then the basic question is to �nd a �-matrix
polynomial

P̃(�)= �mÃm + · · ·+ �Ã1 + Ã0
such that �(P̃(�))= (�(P(�))\{�})∪{�}. Before presenting our method, we �rst brie
y review
some related works. Instead of looking at �-matrix polynomial, we consider a more general
case, �-matrix Q(�) [4–6]. With the help of a special factorization of Q(�) developed by
Dewilde and Vandewalle [7], one can show that for any isolated eigenvalue � of Q(�),
i.e. det(Q(�))=0 and the multiplicity of � is equal to one, there exists a rational transfer
function c(�) of degree 1 such that � is no longer an eigenvalue of Q̃(�)=Q(�) · c(�), i.e.
det(Q̃(�)) 6=0. Obviously, this result can be used to solve the zero assignment problem and
therefore provide an answer to our aforementioned basic question. However, in [7], to obtain
the elementary factor c(�), not only we have to know the Laurent expansion of Q(�) at �
but also we need to check certain additional vector conditions for some enlarged matrices. To
avoid dealing with those tedious matters, Van Dooren [8] proposed a rather elegant method to
recursively remove unwanted poles and zeros of the transfer function given by (5). The main
idea of this method is based on a QR-like algorithm where the relative transfer function is
reduced to a block upper triangular matrix. But, if we want to take into account of the special
structure of matrices associated with the transfer function, then the QR-like method would not
be able to give us the right structure. In fact, Fritchman and Pierce [2] have implemented a
QR-like method to solve the similar problem. However, the new matrix derived in Reference
[2] failed to �t in any physical model.
All methods described above are designed to handle the �-matrix Q(�). In this paper, we are

only interested in the �-matrix polynomial P(�). Since we have the better knowledge about the
�-matrix polynomial, it is anticipated that we can design a more e�cient method to solve the
basic question than the method used in Reference [7]. For a �-matrix polynomial P(�), Guo et
al. [3] developed a so-called non-equivalence transformation method to de
ate the unwanted
eigenvalues of P(�). The non-equivalence transformation method can be regarded as a special
case of Dewilde and Vandewalle’s results [7]. By the non-equivalence transformations, we can
�nd the elementary factor c(�) explicitly without checking any additional vector conditions
nor computing the Laurent expansion or Taylor expansion of P(�). Furthermore, the non-
equivalence transformation can be exploited to de
ate a non-simple multiple eigenvalue �,
namely, the multiplicity of � is greater than the dimension of the null space of P(�), denoted
by N(P(�)), as well as to preserve the special structures of the matrices associated with the
transfer function. We shall address these points at the end of this section and the next section.
We now generalize the results in Reference [3] and develop non-equivalence transformations

to solve the basic question.
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Let P(�) be a real �-matrix polynomial as in (6). For an isolated real eigenpair (�1; y1),
we have P(�1)y1 = 0. Now, we consider the transformed matrix function P̃(�) de�ned as

P̃(�)=P(�)
[
In − �1

�− �1y1z
T
1

]
(7)

with �1 ∈R and z1 ∈Rn such that zT1 y1 = 1. Here In denotes the n × n identity matrix. Since
the Taylor expansion of P(�) gives

P̃(�) = P(�)− �1
(

m∑
k=0

P(k)(�1)
k!

(�− �1)k−1
)
y1zT1

= P(�)− �1
(
P′(�1) +

�− �1
2!

P′′(�1) + · · ·+ (�− �1)
m−1

m!
P(m)(�1)

)
y1zT1

it follows that P̃(�) is a matrix polynomial in �. With some algebraic manipulations, P̃(�)
can be written as

P̃(�)= �mÃm + �m−1Ãm−1 + · · ·+ �Ã1 + Ã0 (8)

where

Ãm = Am

Ãm−1 = Am−1 − �1Amy1zT1
... (9)

Ã1 = A1 − �1(�m−21 Am + �m−31 Am−1 + · · ·+ A2)y1zT1
Ã0 = A0 − �1(�m−11 Am + �m−21 Am−1 + · · ·+ �1A2 + A1)y1zT1

The following theorem shows that when �1 = �1 − �1 for some desired scalar �1 ∈R, the
non-equivalence transformation (7) preserves all the eigenvalues of P(�) except �1, which is
replaced by �1, and (�1; y1) is an isolated eigenpair of P̃(�).

Theorem 2.1. Let (�1; y1) be an isolated eigenpair of a matrix polynomial P(�) as in
(6). Then the transformed matrix polynomial P̃(�) de�ned by (7) with �1 = �1 − �1 for
some �1 ∈R has the same eigenvalues as those of P(�) except �1 which is replaced by �1.
Moreover; (�1; y1) is an eigenpair of P̃(�).

Proof
By using the identity

det(In +RS)=det(Im + SR) (10)
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from fundamental matrix theory, one can show that

det P̃(�) = det P(�) det
[
In − �1

�− �1y1z
T
1

]

=det P(�) det
(
1− �1

�− �1 z
T
1 y1

)

=det P(�)
(
�− �1
�− �1

)

Hence each eigenvalue of P(�) is an eigenvalue of P̃(�) except �1 which is replaced by �1.
By substituting (�1; y1) into (7), one can verify that

P̃(�1)y1 =P(�1)
(
In − �1 − �1

�1 − �1y1z
T
1

)
y1 =P(�1)y1 − P(�1)y1zT1 y1 = 0

Hence (�1; y1) is an eigenpair of P̃(�).

The theorem shows that when the eigenvalue �1 is replaced by �1, the corresponding eigen-
vector y1 is preserved. For any unchanged eigenvalue �2, the corresponding eigenvector is,
however, modi�ed by a rank-one updating. This fact is concluded in the following corollary.

Corollary 2.1. Suppose �2 6=�1 and (�2; y2) is an eigenpair of P(�). Let

ỹ2 =y2 − y1
�1 − �1
�1 − �2 (z

T
1 y2) (11)

Then (�2; ỹ2) is an eigenpair of P̃(�).

One can rewrite (11) and relate ỹ2 to y2 by ỹ2 =Ty2 with

T ≡ In − y1 �1 − �1�1 − �2 z
T
1

Then T is non-singular since by applying (10) one can show that

det(T )=det
(
In − y1 �1 − �1�1 − �2 z

T
1

)
=det

(
1− �1 − �1

�1 − �2 z
T
1 y1

)
=
�1 − �2
�1 − �2 6= 0

Analogous theory can be developed for complex conjugate eigenvalues. Suppose that �1
and ��1 are non-zero complex conjugate eigenvalues of P(�), and are to be replaced by �1
and ��1, respectively. Write �1 = �1 + i�1 and �1 = �̃1 + i�̃1. Let

E1 =
1 − �1 (12)

where

�1 =
[
�1 �1
−�1 �1

]
; 
1 =

[
�̃1 �̃1
−�̃1 �̃1

]
(13)

The complex eigenpair of a matrix polynomial P(�) can be de�ned as follows.
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De�nition 2.1. Suppose y1 =Re(y1) + iIm(y1)∈Cn and y1 6= 0. Let
Y1 = [Re(y1); Im(y1)] (14)

Then (�1; Y1) is called an eigenpair of P(�) if

AmY1�m1 + Am−1Y1�
m−1
1 + · · ·+ A1Y1�1 + A0Y1 = 0 (15)

The non-equivalence transformation for the complex case is a generalization of (9). The
transformed �-matrix polynomial P̃(�) (8) has coe�cients as follows:

Ãm = Am
Ãm−1 = Am−1 − AmY1E1ZT1

... (16)
Ã1 = A1 − (AmY1�m−21 + Am−1Y1�m−31 + · · ·+ A2Y1)E1ZT1
Ã0 = A0 − (AmY1�m−11 + Am−1Y1�m−21 + · · ·+ A2Y1�1 + A1Y1)E1ZT1

where Z1 ∈Rn×2 and ZT1 Y1 = I2.
The following two theorems are generalizations of Theorem 2.1 and Corollary 2.1, respec-

tively, to the complex eigenpair case.

Theorem 2.2. Let (�1; Y1) be an eigenpair of P(�). Then (
1; Y1) is an eigenpair of P̃(�)
after the non-equivalence transformation (16).

Proof
With (12), (15), (16), and ZT1 Y1 = I2, one can verify that

ÃmY1
m1 + Ãm−1Y1

m−1
1 + · · ·+ Ã1Y1
1 + Ã0Y1

= AmY1
m1 + Am−1Y1

m−1
1 − AmY1(
1 − �1)
m−11

+Am−2Y1
m−21 − (AmY1�1 + Am−1Y1)(
1 − �1)
m−21 + · · ·
+A1Y1
1 − (AmY1�m−21 + Am−1Y1�m−31 + · · ·+ A2Y1)(
1 − �1)
1
+A0Y1 − (AmY1�m−11 + Am−1Y1�m−21 + · · ·+ A2Y1�1 + A1Y1)(
1 − �1)

= AmY1�m1 + Am−1Y1�
m−1
1 + · · ·+ A1Y1�1 + A0Y1

= 0:

Hence (
1; Y1) is an eigenpair of P̃(�).

Theorem 2.3. Suppose that (�2; Y2); �2 6=�1 and �2 6= 
1; is any eigenpair of P(�). Let
Ỹ2 =Y2 + Y1L (17)

where L is the unique solution of the Sylvester equation


1L− L�2 =−E1(ZT1 Y2) (18)

Then (�2; Ỹ2) is an eigenpair of the transformed matrix polynomial P̃(�).
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Proof
The proof is straightforward. Using (16) and (17) one has

ÃmỸ2�m2 + Ãm−1Ỹ2�
m−1
2 + · · ·+ Ã1Ỹ2�2 + Ã0Ỹ2

= AmY2�m2 + Am−1Y2�
m−1
2 + · · ·+ A1Y2�2 + A0Y2

− [AmY1(E1ZT1 Y2�m−12 + �1E1ZT1 Y2�
m−2
2 + · · ·+�m−21 E1ZT1 Y2�2 + �

m−1
1 E1ZT1 Y2)

+Am−1Y1(E1ZT1 Y2�
m−2
2 + �1E1ZT1 Y2�

m−3
2 + · · ·+�m−31 E1ZT1 Y2�2 + �

m−2
1 E1ZT1 Y2)

+ · · ·+ A2Y1(E1ZT1 Y2�2 + �1E1ZT1 Y2) + A1Y1E1ZT1 Y2
]

+AmY1L�m2 + Am−1Y1L�
m−1
2 + · · ·+ A1Y1L�2 + A0Y1L

− [AmY1(E1L�m−12 + �1E1L�m−22 + · · ·+�m−21 E1L�2 + �m−11 E1L)

+Am−1Y1(E1L�m−22 + �1E1L�m−32 + · · ·+�m−31 E1L�2 + �m−21 E1L)

+ · · ·+ A2Y1(E1L�2 + �1E1L) + A1Y1E1L
]

Since (�2; Y2) is an eigenpair of P(�); AmY2�m2 + Am−1Y2�
m−1
2 + · · ·+ A1Y2�2 + A0Y2 = 0. If

L solves the Sylvester equation (18), then, with substitution of (12), the above identity can
be simpli�ed to

(AmY1�m1 + Am−1Y1�
m−1
1 + · · ·+ A1Y1�1 + A0Y1)L

Therefore ÃmỸ2�m2 + Ãm−1Ỹ2�
m−1
2 + · · ·+ Ã1Ỹ2�2 + Ã0Ỹ2 = 0, and the theorem is proved.

We have shown that transformation (7) can be used to replace an isolated unwanted eigen-
value �1 by a eigenvalue �1. Next, we consider replacing an unwanted eigenvalue with mul-
tiplicity greater than one.
Let �1 ∈R be an unwanted simple eigenvalue of P(�) with multiplicity p1¿1 which will be

replaced by �1. A multiple eigenvalue is simple, if the multiplicity of �1 is equal to the dimen-
sion of N(P(�1)). We can easily generalize Theorems 2.2 and 2.3 to obtain a new �-matrix
polynomial P̃(�) such that �1 is a simple multiple eigenvalue of P̃(�) with multiplicity p1
which replaces the unwanted eigenvalue �1. Let Y1 ∈Rn×p1 be a basis for N(P(�1)) and
Z1 ∈Rn×p1 satisfy ZT1 Y1 = Ip1 . Similar to (7) P̃(�) can be written as

P̃(�)=P(�) ·
(
I − �1

�− �1Y1Z
T
1

)
with �1 = �1−�1. If we set �1 =�1Ip1 ; 
1 = �1Ip1 and E1 =
1−�1 as in (12), then we can also
obtain a �-matrix polynomial P̃(�) in explicit matrix forms of (16) such that the unwanted
simple eigenvalue �1 is completely de
ated and is replaced by �1.
Note that we can also use the same argument as above to extend the results in Theorems

2.2 and 2.3 into the case of simple multiple eigenvalues with complex conjugate. We omit
the proofs here in detail.
For the general case when the unwanted eigenvalue �1 of P(�) is multiple but non-simple,

we shall develop a non-linear non-equivalence transformation for replacing �1 by �1. For
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simplicity, let �1 be a multiple eigenvalue with partial multiplicities p1¿1 and q1¿1, that
is, the characteristic polynomial of P(�) has non-linear elementary divisors (� − �1)p1 and
(�−�1)q1 , respectively corresponding to �1, and let y1; ŷ1 be the associated linearly independent
eigenvectors. Suppose that the matrix Z1 satis�es ZT1 Y1 = I2, where Y1 = [y1; ŷ1]. Then one can
apply the non-linear non-equivalence transformation

P̃(�)=P(�)

(
In − Y1

[
�1

(�−�1)p1 0

0 �1
(�−�1)q1

]
ZT1

)
(19)

to replace the non-simple multiple eigenvalue �1 by �1, where

�1 = (�1 − �1)[(�− �1)p1−1 + (�− �1)p1−2(�− �1)1 + (�− �1)p1−3(�− �1)2

+ · · ·+ (�− �1)1(�− �1)p1−2 + (�− �1)p1−1]

and

�1 = (�1 − �1)[(�− �1)q1−1 + (�− �1)q1−2(�− �1)1 + (�− �1)q1−3(�− �1)2

+ · · ·+ (�− �1)1(�− �1)q1−2 + (�− �1)q1−1]

Clearly P̃(�) is still a �-matrix polynomial of degree m. By taking determinant on the both
sides of Equation (19) one can easily check that P̃(�) has the same eigenvalues as those of
P(�) except that �1 is replaced by �1 with multiplicity p1 + q1.
To determine the partial multiplicities p1 and q1 of �1, and the associated eigenvectors

y1; ŷ1, Van Dooren=Dewilde [9] and Lin [10] proposed some e�cient numerical algorithms
to �nd the eigenstructure (Jordan canonical form) of a �-matrix polynomial P(�). The partial
multiplicities p1 and q1 are exactly the size of elementary Jordan blocks corresponding to the
eigenvalue �1 of the augment eigensystem (see, e.g. Section 3.4 in Reference [11]):



0 I
0 I

. . . . . .
0 I

A1 A2 : : : Am−1







y
�y
...
...

�m−1y



= �




I
I
. . .

I
−Am







y
�y
...
...

�m−1y




Similarly, we can also use formula (19) to replace ��1 by ��1 provided that �1 is a non-simple
complex conjugate eigenvalue. Unfortunately, to construct a formula as in (16) preserving the
real arithmetic for the case of non-simple complex eigenvalues is still lacking.

3. EIGENVALUE EMBEDDING AND MODEL TUNING

In the aerospace industry, DYLOFLEX [12] is a common tool for constructing aircraft struc-
tures models for dynamic loads analysis. These models come in the form

M �q+ (D1 + �(s)D2)q̇+ (K1 + �(s)K2)q=H (t; s) (20)
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where M is the inertia matrix, D1 and K1 are the structural damping and sti�ness matrices
respectively, D2 and K2 are the aerodynamic damping and sti�ness matrices, respectively, �(s)
is the Wagner lift-growth buildup function [13], H (t; s) is the generalized forces and gust
inputs, q is an n-vector of generalized coordinates, and s is the Laplace operator. For this
study we have chosen �(s) to be of the form

�(s)=
�(s−!) + �

s−!
with constants � 6=0 and ! 6=0. For this Wagner lift-growth buildup function, (20) can be
rewritten as a �rst-order realization

ẋ=Ax + Bu(t; s)

where

A=



M1 M2 M3 M4
I 0 0 0
0 �I !I 0
�I 0 0 !I


 ∈R4n×4n (21)

M1 =−M−1(D1 + �D2)
M2 =−M−1(K1 + �K2) (22)
M3 =−M−1K2
M4 =−M−1D2

x=



x1
q
x3
x4




and Bu(t; s) represents H (t; s).
The problem is then to replace some eigenvalues of A with the desired eigenvalues, that

is, embed some desired eigenvalues (maybe eigenvectors also) into A, and reconstruct a new
matrix Ã of the form (21).
A possible approach [2] is to �rst reduce the full-order model to real Schur form so that the

eigenvalues to be replaced occur in its leading principal minor. More precisely, one computes

QTAQ=
[
R11 R12
0 R22

]

so that the eigenvalues of R11 have been matched with those of the realized system matrix
Ar . Then one performs the diagonalization reduction by a similarity transformation[

I K
0 I

] [
R11 R12
0 R22

] [
I −K
0 I

]
=
[
R11 0
0 R22

]

where K solves the Sylvester equation

R11K − KR22 =R12:
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In order to make the embedding consistent one must also transform the R11 block into a
form R̃11, e.g., block diagonal, that in some sense matches the form of the realized sys-
tem matrix. Next the eigenvalues from observed data are embedded into (replace those
of) R̃11. Then all transformations are applied in reverse order to the block diagonal
matrix [

R̃11 0
0 R22

]

to obtain the modi�ed system matrix Ã.
This approach is straightforward, however, the major disadvantage is that the special sparsity

structure of the system matrix as in (21) is usually destroyed through the back-transformation
and cannot be recovered. Also rather large growth in the magnitude of the elements in Ã has
been experienced.
Another possible approach [14] is to �rstly transform (20) to a quadratic eigenvalue system

[�2M + �(D1 + �(s)D2) + (K1 + �(s)K2)]v=0

Then let

Â=
[

0 I
−M−1(K1 + �(s)K2) −M−1(D1 + �(s)D2)

]
(23)

and the method proposed in Reference [2] can be used to �nd f̂ such that

Ã= Â− b̂f̂T (24)

has the desired spectrum, where b̂ is some suitable vector. However, from DYLOFLEX [12],
realization (21) rather than (23) can better reveal the characteristics of physical model. Fur-
thermore, if the transformation (24) is applied to (21), then it can not guarantee to preserve
the structure of (21) in the �nal back-transforming stage.
In this section we show that the problem can be solved by applying the non-equivalence

transformation technique developed in the previous section and the matrix structure of the
realization (21) can be preserved.
First we give the following theorem which relates the eigenvalues of the 4n× 4n matrix A

of (21) to a 3n× 3n companion matrix, and consequently a cubic �-matrix polynomial.
Theorem 3.1. Let A be the 4n× 4n matrix A of (21) and Ac the following 3n× 3n companion
matrix

Ac =


 A2 A1 A0
I 0 0
0 I 0


 (25)

where

A0 =−!M2 + �M3
A1 =−!M1 +M2 + �M4 (26)

A2 =M1 +!I
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Then there exists an invertible matrix Q such that

Q−1AQ=




M4
Ac 0

0
0 !I


 (27)

Proof
Let

Q=



I −!I 0 0
0 I −!I 0
0 0 �I 0
0 �I 0 I


 : (28)

Then Q is invertible and

Q−1 =




I !I !2

� I 0

0 I !
� I 0

0 0 1
� I 0

0 −�I −!I I


 (29)

It is easy to verify that

Q−1AQ=



!I +M1 M2 + �M4 −!M1 �M3 −!M2 M4

I 0 0 0
0 I 0 0
0 0 0 !I


 =




M4
Ac 0

0
0 !I




Corollary 3.1. Let

P(�)≡ �3A3 + �2A2 + �A1 + A0 (30)

where A3 =−I . Then P(�) and A have the same eigenvalues except for n occurrences of the
eigenvalue !.

One can further analyse the eigenpairs of A and give explicit formulations for the eigen-
vectors. Suppose that (�; x), where x is a 4n-vector, is an eigenpair of A. Then Ax= �x can
be written as 


M1 M2 M3 M4
I 0 0 0
0 �I !I 0
�I 0 0 !I





x1
x2
x3
x4


 = �



x1
x2
x3
x4




where xi; i=1; : : : ; 4, are n-vectors, or equivalently,

x1 = �x2
�x2 +!x3 = �x3
�x1 +!x4 = �x4 (31)
M1x1 +M2x2 +M3x3 +M4x4 = �x1
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If �=0, then (31) implies x1 = x4 = 0, and

�x2 +!x3 = 0
M2x2 +M3x3 = 0

That is, x3 = − (�=!)x2 and (M2 − (�=!)M3)x2 = 0. Note that x2 6=0 in this case. Therefore
�=0 is an eigenvalue of A if and only if M2 − (�=!)M3 is singular and


0
x2

− �
!x2

0




where x2 ∈N(M2 − (�=!)M3); is the corresponding eigenvector.
If �=! 6=0, (31) is reduced to x1 = x2 = 0, and M3x3 +M4x4 = 0. Hence[

x3
x4

]
∈N([M3 M4])

Since the nullity of [M3; M4] is greater than or equal to n; ! must be an eigenvalue of A with
multiplicity greater than or equal to n.
Now assume that � 6=0 and !. From (3.12) one has

x2 =
1
�
x1; x3 =

�
�(�−!)x1; x4 =

�
�−!x1

and (
M1 +

1
�
M2 +

�
�(�−!)M3 +

�
�−!M4

)
x1 = �x1

Consequently,

[−�3I + �2(M1 +!I) + �(−!M1 +M2 + �M4) + (−!M2 + �M3)]x1 = 0
which is P(�)x1 = 0 with P(�) de�ned in (30). Therefore if (�; x1) is an eigenpair of P(�),
then 


x1
1
� x1
�

�(�−!)x1
�

�−!x1




is the eigenvector of A corresponding to the eigenvalue �.
To summarize the discussion above, it is evident that instead of dealing with the 4n× 4n

matrix A it is preferable to work on the 3n× 3n matrix Ac or equivalently the cubic ma-
trix polynomial P(�). Hence to replace some eigenvalues of A, we embed the eigenvalues
of Ar into Ac by using the non-equivalence transformation technique. The modi�ed but
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structure-preserved matrix Ã can be obtained with the back-transformation (29). The detailed
procedure is described as follows:
Let P̃(�)= �3Ã3 + �2Ã2 + �Ã1 + Ã0 be the transformed matrix polynomial. If (�1; y1) is a

real eigenpair of A and �1 is replaced by �1, then by (23) the coe�cient matrices become

Ã3 = A3 = − I
Ã2 = A2 − �1A3y1zT1
Ã1 = A1 − �1(�1A3 + A2)y1zT1
Ã0 = A0 − �1(�21A3 + �1A2 + A1)y1zT1

where �1 = �1 − �1 and z1 is chosen such that zT1y1 = 1. If a complex conjugate pair �1 + i�1
and �1 − i�1 are replaced by �̃1 + i�̃1 and �̃1 − i�̃1, then, followed from (16),

Ã3 = A3 = − I
Ã2 = A2 − A3Y1E1ZT1
Ã1 = A1 − (A3Y1�1 + A2Y1)E1ZT1
Ã0 = A0 − (A3Y1�21 + A2Y1�1 + A1Y1)E1ZT1

where E1;�1;
1, and Y1 are as in (12)–(14), and Z1 is chosen such that ZT1 Y1 = I2.
With the modi�ed matrices Ãi; i=0; 1; 2, which result in a new companion matrix Ãc, the

new system matrix A can be constructed by applying the similarity transformation (27) in
reverse order, that is,

Ã=Q




M4
Ãc 0

0
0 !I


Q−1 =



M̃1 M̃2 M̃3 M̃4
I 0 0 0
0 �I !I 0
�I 0 0 !I


 (32)

where
M̃1 = Ã2 −!I
M̃2 = Ã1 +!M̃1 − �M̃4
M̃3 =

1
�
(Ã0 +!M̃2)

M̃4 = M4

(33)

Therefore the structure of the system matrix is successfully preserved and furthermore the
computational cost of this back-transformation is negligible.
In practice it will be more useful and meaningful to provide the update formulations to the

damping and sti�ness matrices for model tuning on the di�erential equation (21). With the
modi�ed M̃i; i=1; : : : ; 4, and (23), the explicit formulations are given as

D̃2 = −MM̃4 = −MM4
D̃1 = −MM̃1 − �D̃2
K̃2 = −MM̃3
K̃1 = −MM̃2 − �K̃2

(34)

Note that M4 and consequently D2 are not modi�ed by the embedding process.
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With this non-equivalence transformation, the eigenvectors will be modi�ed when some
eigenvalues are replaced (Theorem 2.3). It may be required to preserve some desired eigen-
modes because of physical constraints. This can be achieved by choosing an appropriate Z1
in the non-equivalence transformation formulation (16). Let (�1; Y1) be an eigenpair of P(�)
and �1 be replaced by 
1. Suppose that the columns of V are eigenvectors of P(�) to be
preserved. It may not be possible to keep all, but we can select as many vectors from V ,
and denoted by V1, such that columns of [Y1; V1] are linearly independent. Then Z1 can be
obtained from the QR factorization of [Y1; V1] such that

ZT1 [Y1; V1]= [I; 0]

Let �1 be the block diagonal matrix with 1× 1 or 2× 2 blocks consisting of eigenvalues
corresponding to the eigenvectors in V1. Then one can verify that (�1; V1) is an eigenpair of
P̃(�) by showing

Ã3V1�31 + Ã2V1�
2
1 + Ã1V1�1 + Ã0V1 =A3V1�

3
1 + A2V1�

2
1 + A1V1�1 + A0V1 = 0

Therefore the desired eigenmodes are kept.
Sometimes one may want to embed not only the eigenvalues but also eigenvectors. Let

(�1; Y1) and (�2; Y2) be eigenpairs of P(�). Suppose �1 is to be replaced by 
1 and �2 by

2, and Ŷ2 ∈ Rn× 2 is a pre-determined eigenmode to be embedded into the system such that
(
2; Ŷ2) is an eigenpair of the transformed matrix polynomial. This may not be completely
possible. Here we propose a strategy to choose a corresponding eigenmode Ỹ2 = Ŷ2|〈Y1 ;Y2〉, the
projection of Ŷ2 on to the subspace 〈Y1; Y2〉 spanned by Y1 and Y2, which in some sense is
close to Ŷ2.
When �1 is �rst replaced by 
1, Y2 is updated to Ỹ2 using (17). In the next step, �2 is

replaced by 
2, but Ỹ2 remains unchanged. Since Z1 can be chosen freely, we determine

Ỹ2 =Y2 + Y1L= Ŷ2|〈Y1 ;Y2〉 (35)

Then

(Y T2 Y2)
−1(Y T2 Ŷ2)= I + (Y

T
2 Y2)

−1(Y T2 Y1)L

thus

L=(Y T2 Y2)
−1(Y T2 Ŷ2 − Y T2 Y2)

Substituting L into (18) results

ZT1 Y2=− E−1
1 (
1L− L�2) ≡ K

Therefore Z1 has to be chosen to satisfy

ZT1 [Y1 Y2 V1]= [I K 0] (36)

where V1 consists of those eigenmodes one wants to keep. By computing the SVD

[Y1 Y2 V1]=U�V T

one obtains

ZT1 = [I K 0]V�+U T (37)

where �+ is the pseudoinverse of �.
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Figure 1. The absolute error |D1 − D̃1|.

4. NUMERICAL EXPERIMENT AND RESULTS

A set of pseudosimulation data was provided by The Boeing Company for testing purposes.
The dimension of matrices M;D1; D2; K1; K2 are 42× 42, that is, the system matrix A is of
dimension 168× 168. The numerical results are plotted in Figures 1–3 which show each entry
in the absolute di�erence |D1 − D̃1|, |K1 − K̃1|, and |K2 − K̃2|, respectively. The �gures show
that relatively large errors occur in columns 35–39 as well as columns 4 and 9. These errors
appear in the same locations in all three matrices. This suggests that those variables and
equations corresponding to the �nite approximation of the di�erential equation (20) are most
likely in error and should be treated as optimization variables in the model updating process.
The numerical experiment illustrates the motivation of model tuning. After the eigenvalue

embedding and back-transforming are completed, a system engineer can analyse the di�erence
between the original and the modi�ed models to identify the problem variables and equations
that were most a�ected by the embedding processing in order to ‘tune’ the model.

5. CONCLUSION

We have demonstrated an algebraic approach for model tuning that preserves matrix structure
while allowing for the assigning of poles and limiting the changes to the eigenvectors. This
approach can serve as a fast means for identifying parameters to be modi�ed in a problem
and is applicable for models in generalized co-ordinates since it identi�es elements in the
model matrices. It was shown to be insightful in a sample pseudotest suite provided by The
Boeing Company.
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Figure 2. The absolute error |K1 − K̃1|.

Figure 3. The absolute error |K2 − K̃2|.
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Finally, we mention that although the non-equivalence transformation method is suitable
for the model tuning problem we considered in this paper, to �nd an e�ective symmetric
structure preserving method and to examine the impact of loss of symmetry on the physical
model are still under investigation.
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