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Subarray-Synthesized Low-Side-Lobe Sum and 
Difference Patterns with Partial Common Weights 

Ta-Sung Lee, Member, IEEE, and Te-Kung Tseng 

Abstract-New methods of synthesizing low-side-lobe sum and 
difference patterns for linear arrays are described. By subarray 
beam forming, the sum and difference patterns exhibit a common 
factor, leading to a simple monopulse estimator. A procedure 
is proposed for the synthesis of the subarray-based sum and 
difference patterns which approximate a set of reference patterns 
in least-squares sense. Supervised nulling is incorporated as a 
means of suppression of strong interference. To further reduce 
system complexity, we impose the constraint that parts of the 
beam-forming weights are shamd by the sum and difference 
channels. The relationship between the maximum number of 
common weights allowable and the number of subarrays used 
is discussed. Numerical results are presented to demonstrate the 
efficacy of the proposed methods. 

I. INTRODUCTION 
HE design of sum and difference beam formers for T amplitude-comparison monopulse arrays has received 

considerable attention [ 11-[7]. Much work has been focused on 
the synthesis of patterns with side-lobe cancellation capability. 
Interference cancellation can be accomplished either by using 
uniformly low side lobes or by placing a deep null in the 
direction of each interferer. The latter approach requires a 
knowledge of the interfering directions or some kind of 
adaptive processing on the array data. The former approach, 
on the other hand, does not require any prior knowledge about 
the noise field and is thus simpler to implement. The price 
paid for low-side-lobe implementation is that the sensitivity 
and performance of the monopulse estimator degrade because 
of a wider effective main lobe. 

Conventional monopulse target localization requires a 
knowledge of the sum and difference pattems. Typically, 
a look-up table is set up beforehand, from which a target 
bearing can be read out corresponding to a set of sum and 
difference data [ 8 ] ,  [9]. With the advent of modem phased 
array techniques, monopulse estimators can be implemented 
more flexibly in that the sum and difference pattems are 
synthesized with two sets of properly chosen complex weights 
[ 2 ] - [ 5 ] .  A major drawback of employing a table look-up 
scheme in a monopulse array is that when the beam former is 
operated to perform adaptive nulling against strong interferers, 
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the resulting sum and difference pattems vary with time such 
that the table must be updated every several acquisitions. 
As an alternative, monopulse estimators may be implemented 
according to some statistical parameter estimation techniques, 
such as maximum likelihood (ML) [lo], [ l l ] .  In these 
methods, the target bearing is determined via a search for the 
maximum of the corresponding likelihood function. Although 
the ML approach yields statistically efficient bearing estimates, 
it is usually not practical owing to the high computational 
complexity. 

In this paper, we present a new method of monopulse 
localization using a linear, equally-spaced (LES) array. The 
method is derived based on the relationship between the 
difference-to-sum ratio (DSR) and the target bearing under no 
noise/error condition. By invoking the equivalence between 
array patterns and polynomials for an LES array, we can con- 
vert the problem of bearing estimation into one of polynomial 
rooting. To alleviate the high numerical complexity incurred 
with large order polynomial rooting, we propose a subarray 
beam-forming scheme which can reduce the polynomial into 
a small order one. The simplified scheme exploits the fact 
that with subarray beam forming the sum and difference 
pattems share a common factor, corresponding to a common 
polynomial factor which can be factored out. In order to retain 
good estimation performance, the sum and difference pattems 
are so synthesized as to best approximate a set of reference 
patterns in least-squares (LS) sense. For the case considered 
herein, we choose the Chebyshev [6] and the Bayliss [7] 
pattems as the reference for the sum and difference channels, 
respectively. In the case where strong directional jammers 
exisit, it is necessary to perform adaptive nulling to avoid 
track breaking. Invoking the concept of simultaneous nulling 
[ 2 ] ,  [3], we impose the constraint that a null be placed in 
each of the jamming directions in both the sum and difference 
patterns. Since these nulls are common to both patterns, they 
can be associated with the aforementioned common pattern 
factor. 

To further reduce system complexity, we incorporate the 
concept of partial common weights; i.e., some of the weights 
associated with the difference beams are directly copied from 
the weights associated with the sum beam, with the sign 
reversed for each half. It is shown that under subarray pro- 
cessing, the number of common weights allowable is bounded 
above by approximately twice the number of subarrays used. 
For practical sum and difference excitation distributions, the 
appropriate number of common weights equals one half the 
number of the full array elements. In this case, the number of 
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independent weights can be reduced by a factor of 413, and 
the order of polynomial rooting in bearing estimation can be 
reduced by at most a factor of 4. 

11. NOTATION AND DERIVATION OF 
MONOPULSE ESTIMATOR 

We first define some of the notation frequently used in this 

1) MT (uT): transpose of matrix M (vector U )  

2) M~ (uH):  conjugate transpose of matrix M (vector U )  

3) In: n x n identity matrix 
4) I,: n x 1 all ones vector 
5 )  0,: (Omxn) n x n (m x n) zero matrix 
6) 0, : n x 1 zero vector 
7) IIuII: 2-norm of vector U 

8) M(n1 : nz, :): submatrix consisting of the nlth to nzth 
row of matrix M 

9) M(: ,n l  : n 2 ) :  submatrix consisting of the nlth to nzth 
column of matrix M 

10) u(nl : n2): subvector consisting of the nlth to nzth 

We here consider the scenario of a single target illuminated 
by a linear array with M identical elements uniformly spaced 
by a half wavelength. The target is assumed to be in the far 
field of the array such that the echoes received can be modeled 
as plane waves. In this case, the array data (in complex 
envelops) received at the M elements at a certain sampling 
instant can be put in the following M x 1 vector form: 

paper: 

component of vector U .  

z = @ M ( U t )  + n, (1) 

where ut = sin(&), with Ot representing the bearing of the 
target with respect to the broad side of the array as shown in 
Fig. 1. The complex scalar E represents the echo received at 
some reference point of the array. The M x 1 vector a M ( u t )  
is the array direction vector evaluated at U = ut, accounting 
for the phase variation across the array caused by the echoes. 
Finally, the M x 1 vector n is composed of the complex noise 
envelopes present at the M elements. Setting the reference 
point of the array to be at its geometric center, we have 

We observe that the array direction vector exhibits the conju- 
gate symmetric (CS) and Vandermonde structures. Amplitude 
comparison operation dictates that the appropriate sum and 
difference beams be formed in the vicinity of the target 
bearing. Mathematically speaking, the beam-forming operation 
converts z into the sum and difference data: 

c = s H z  = < s H a M ( u t )  + sHn 

A = d H z  = E d H a M ( u t )  + dHn,  (3) 

where s and d denote the M x 1 sum and difference beam- 
forming weight vectors, respectively. 

Broadside Target 

N=MK+l 

1 2 3  K K+1 N-1 N N+l M1 M 

A. Bearing Estimation with Subarray-Formed 
Sum and Difference Beams 

In conventional monopulse estimation, the target bearing 
estimate it is determined by equating the DSR and the ratio 
of the difference pattern to the sum pattern: 

(4) 
where d - ps represents a beam-forming weight vector pro- 
ducing a null in the direction of &. Defining 

we may rewrite (4) as a polynomial equation of order M - 1: 

with z = ejTU. An obvious way to obtain fit is to determine 
it = ( i t le jT"  as a root of (6) close to the unit circle such that 
it is in the vicinity of the boresight of the array. If s and d 
do not vary over the period of estimation, then a table relating 
iit and p can be constructed and stored for use. 

The above described scheme is inefficient in that it requires 
rooting an (M - 1)th-order polynomial in order to determine a 
single parameter, Ot. This is more significant as the number of 
elements, M, increases. The table look-up method is simple, 
but is of limited use for arrays performing adaptive nulling 
such that the sum and difference weight vectors vary with time. 
As a remedy, we propose a subarray beam-forming scheme 
that leads to substantial simplification in bearing estimation. 
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B. Simpl$cations Arising from Subarray Beam Forming 

Consider grouping K successive elements of an M-element 
LES array into an LES subarray of size K, as shown in 
Fig. 1. There are total of N = M - K + 1 such subarrays, 
and any two adjacent subarrays have K - 1 elements in 
common. Suppose that a beam former is attached to each 
of the subarrays with the same K x 1 weight vector c = 
[cl,. . . , C K ] ~ .  These tapered subarrays may be viewed as 
“superelements” with patterns determined by c. The sum and 
difference beams are then formed, with N x 1 weight vectors 
g = [g l , .  . . , g ~ ] ~  and h = [hl , .  . . , h ~ ] * ,  respectively, 
treating these superelements as the elements of an N-element 
LES array. Invoking the principle of phased arrays [12], the 
resulting sum and difference patterns can be expressed as 

s ( u )  = S%M(U)  = g ( u ) c ( u )  

d(u )  = dHaM(u) = h ( u ) c ( u ) ,  (7) 

where a and p are nonzero scalars. Substituting (10) into (8) 
and solving for iit yields 

Despite its simplicity, the sum and difference beams formed 
with K = M - 1 exhibit undesired side-lobe behavior. To 
see this, we check from (10) that g(u)  is essentially a half 
cycle cosine wave with the maximum at U,, whereas h(u) is 
essentially a half cycle sine wave with the maximum at U ,  2~ 1. 
We then see from (7) that the side-lobe level of the sum pattern 
tends to decrease as the off-boresight angle 1u - U ,  I increases, 
whereas the opposite is true for the difference pattern. It is 
thus not possible for both the sum and difference patterns to 
exhibit uniformly low side lobes as desired. This represents a 
trade-off between system complexity and pattern quality. 

111. SYNTHESIS OF SUBARRAY-BASEDLS-FIT 
LOW-SIDE-LOBE PATTERNS 

Where = f l a K ( u )  represents the superelement Pattern, 
and g ( u )  = S H a N ( u )  and h(u) = h aN(u) represent the 
“array factors” associated with the sum and difference beams. 
aK(u) and a N ( u )  are given by (2), with = N ,  
respectively. Note from (7) that the sum and difference patterns 
share a common factor .(U). Substituting (7) into (4) and 

For convenience, we will work with U ,  = 0. For a nonzero 
boresight angle, the results can be easily modified via suitable 
progressive phase shifting. The pattern factorizations in (7) 
translate into the following polynomial factorizations: 

H 

= K and 

s ( z )  = S H Z M  = g ( z ) c ( z )  

factoring c(u)  out yields d(z )  = d H Z M  = ~ ( z ) c ( z ) ,  (12) 
( h  - P g ) H w ” u = B t  = 0. (8) 

The feasibility of using (8) in place of (4) lies in the fact that 
c(Gt) # 0. This is usually true since iit should be close to the 
boresight angle at which the sum beam has the maximum gain. 
As a practical problem, the array elements may suffer from 
gaidphase uncertainties owing to the impairment of electronic 
circuitry, errors in element locations, or mutual coupling. If the 
errors within a subarray are different for the sum and difference 
beam formers, or if different subarrays have different random 
errors, then the factorizations in (7) no longer hold. In this case, 
the superelement pattern will not cancel in the DSR, and using 
(8) results in an error in GLt. A remedy would be to employ 
array calibration [ 131 to remove the gaidphase uncertainties. 

Equation (8) is in fact associated with an N-element LES 
array so that it can be solved with a much lower complexity 
than (4) for N << M. We may similarly convert (8) into an 
(N - 1)th-order polynomial equation: 

(9) 

where Z N  is given by (5) with M = N .  In this case, we need 
only root an (N - 1)th-order polynomial to determine iit. As 
a demonstration, consider the simplest case of K = M - 1, 
or N = 2. According to the general characteristics of the sum 
and difference patterns, we impose that h(u) has a single null 
at uo, the boresight angle of the array, and g(u )  has a single 
null at U ,  f 1. Note that U ,  + 1 and U ,  - 1 correspond to the 
same angle since the angle spectrum is periodic with period 
2 for the case considered herein. Incorporation of these facts 
leads to the following expressions: 

(h  - P g ) H Z N I * = i *  = 0, 

where C ( Z )  = c H z ~ ,  g ( z )  = g H z N ,  and h ( z )  = h H z N .  ZK is 
given by (5) with M = K. Invoking the equivalence between 
polynomial multiplication and linear convolution, (12) can in 
turn be converted into the following matrix forms: 

s = Cg = GC 

d = C h = H c  

where 

is an M x N banded Toeplitz matrix and 
r 

r -  

are M x K banded Toeplitz matrices. Note that in (13) we 
have invoked the commutativity of linear convolution. 

g ( u )  = (y(e jTu + ejTuo 1 
h(u) = ~ ( e j ~ u  - ejnuo ) 1  (10) 
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A. Synthesis of Quiescent Pattems 
The problem of determining a set of “optimum” subarray- 

synthesized sum and difference patterns can be formulated as 
that of finding a “best” combination of c, g ,  and h, in terms 
of a prescribed criterion. For example, the practical desired 
property of uniformly low side lobes can be achieved with 
the Chebyshev weighting [6] (for the sum pattern), and the 
Bayliss weighting [7] (for the difference pattern). A natural 
way to retain low side lobes with the proposed beam former 
is then to make s and d as close to the Chebyshev and Bayliss 
weight vectors, respectively, as possible. Suppose that a set of 
“reference” weight vectors so (Chebyshev) and do (Bayliss) 
are chosen. A convenient measure of the “distance” between 
the reference and the synthesized patterns is the L2 norm 
defined by 

We may then substitute (22), along with (14), into (17) to 
obtain new g and h. The procedure is alternately executed 
between (18) and (22) until the solutions converge. Simula- 
tions indicate that the algorithm converges within five to seven 
iterations for a suitably chosen initial guess of c. 

It is often desirable to work with CS weight vectors, i.e., 

I M S  = S* 

I M d  = &, (23) 

where 
yo o . . .  11 

DZ = 1’ { [(s - s , , ) ~ o M ( u ) ] ~  + [(d - d , ) H a ~ ( ~ ) ] z } d u  is the M x M reverse permutation matrix. There are two advan- 
tages to working with CS weight vectors. First, CS property 
is a necessary condition for the roots of the corresponding 

-1 

= 11s - % 1 1 2  + - do112 (16) 

where we have invoked Parseval’s relationship for LES arrays. 
Our problem of interest is then to determine c, g, and h so as 
to minimize D2. The problem has no closed-form solution in 
general. Instead of solving it with brute force, we propose that 
the problem be decomposed into two individual stages where 
in one stage we solve for the common factor c and in the other 
we solve for the uncommon factors g and h. 

Assume that we first obtain an initial guess of c (or C) 
and rewrite D2 to form the following problem with the two 
unknowns g and h: 

min llCg - s o ( ( 2  + llCh - doll2 

subject to: hHaN(0) = hHIN = 0 (17) 

where the constraint ensures that the difference pattern has a 
null at the boresight angle U, = 0. Equation (17) is separable 
for g and h such that the solutions are given by 

g = (CHC)-’CHs, 

With the g and h (or G and H )  thus obtained, we may 
proceed to find the new c by solving 

where 

F =  [:I 
and 

The solution is given by 

c = (F*F)-iFHw,. (22) 

polynomials s ( z )  and d ( z )  to lie on the unit circle. This is 
essential since a root of s (z )  or d ( z )  corresponds to a null in 
.(U) or d(u).  Second, i f s  and d are CS, then .(U) or d(u) are 
real functions of U. This implies that C and A have the same 
phase angle such that p is a real number under no noise/error 
condition. The Appendix shows that if so, do and the initial 
guess of c are all CS, then the solutions for g ,  h, and c in 
each stage of the procedure outlined in (17)-(22) are all CS 
as well. We then conclude that the final solutions for s and 
d constructed in accordance with (1 3) are both CS since the 
convolution of two CS vectors is another CS vector. 

B. Synthesis of Pattems in the Presence of Strong Interference 

If strong out-of-band active interference exists, the side 
lobes of the sum and difference beams may not be low enough 
to provide effective suppression of these undesired sources. It 
is then necessary to perform adaptive cancellation by putting 
a deep null in the direction of each of the interferers for the 
sum and difference beams. Since these nulls are common to 
S(U) and d(u), they should be associated with .(U). Taking 
the supervised nulling approach [3], [14], we assume that 
the interfering directions are first estimated during the passive 
period of the radar via some kind of off-line direction-finding 
algorithm. The sum and difference beams are then formed 
accordingly to put “hard nulls” in these directions. 

Let ui, i = 1, . . . , I, be the I estimated interfering di- 
rections. The execution of interference cancellation requires 
that 

H H 
8 a M ( ( U i )  = d OM(’&) = cHaK(Ui) = 0 2 = 1 , .  ’ .  , I .  

(25) 
This says that ui, i = 1, . . . , I, are I “common nulls” asso- 
ciated with s and d. Incorporation of this a priori knowledge 
in the aforementioned LS-fit procedure leads to the two-stage 
problem described by (17) and 

min I ( F ~  - 
C 

subject to: cHAr = 0 (26) 
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with 

The solution to (26) is similar in form to (18): 

c = ( F H F ) - l { 1 ~  - A I [ A ~ ( F ~ F ) - ~ A I ] - ~  

.A;(FHF)-'}FHs. (28) 

The procedure is alternately executed between (18) and (28) 
until the solutions converge. Similar to what is shown in the 
Appendix, we observe that the final sum and difference weight 
vectors are CS, provided that so, do,  and the initial guess of 
c are all CS. 

To ensure that the superelement pattern has the desired side- 
lobe property in the region of no jammers, it is necessary 
to provide a sufficient degree of freedom for c in the LS-fit 
problem of (26). This means that the subarray size K should be 
large enough compared with I. On the other hand, K should 
be kept small in order to retain the proximity between the 
synthesized and reference patterns. This represents a trade-off 
in choosing K or N .  

C. Numerical Examples 

Numerical simulations were conducted to demonstrate the 
efficacy of the proposed beam-forming techniques. The array 
employed was linear, consisting of M = 20 identical elements 
uniformly spaced by half a wavelength. For all cases, the 
Chebyshev and the Bayliss patterns, both with -30 dB side- 
lobe level, were used as the reference sum and difference 
patterns, respectively. The boresight angle was set to be U, = 0 
as assumed. 

The first set of examples investigate the sum and differ- 
ence patterns synthesized in accordance with the previously 
developed LS-fit procedure. As a complete demonstration, 
Fig. 2 shows the superposition of the patterns synthesized in 
accordance with (17)-(22) for N = 2, 4, and 6. It is evident 
that the proximity between the synthesized and the reference 
patterns improves as N increases. The disparity between the 
side lobes of the sum and difference patterns for N = 2 
confirms our earlier statement that uniform side lobes cannot 
be achieved for both patterns in such a case. We observe that 
the sum and difference patterns exhibit K - 1 = M - N 
"common nulls" corresponding to the common factor .(U). 

To examine the effect of adaptive nulling of the proposed 
beam-forming scheme, three hard nulls were formed at -40", 
30" and 50", corresponding to three jamming directions, in ac- 
cordance with (26) and (27). Fig. 3 shows the resulting patterns 
for N = 4. We find that the three nulls are present in both the 
sum and difference patterns, indicating that they are associated 
with c. We also note that low sidelobes were retained by 
these modified patterns. This ascertains the effectiveness of 
the LS-fit approach. 

For all of the above examples, the initial guess of c 
was chosen as c = i ~ .  The algorithm was terminated if 

obtained at the lcth iteration. We found that, on an average, 
the algorithm converged within seven iterations. 

( ICk+l  - c k ( 1  < O.Olllckll, where ck denotes the c vector 

Spatial An@ in Degrees 

(a) 

I 

Spatial hgk in Degrees 

(b) 

I I 

O! 

-80 -60 -40 -20 0 U) 40 60 80 -lw ' 

Spatial Angle in Degrees 

(c) 

Fig. 2. Superposition of the subarray-based/LS-fit pattems synthesized with 
a 20-element LES array. (a) N = 2. (b) N = 4. (c) N = 6. Solid line: sum. 
Dashed line: difference. 

IV. COMMON WEIGHTS IMPLEMENTATION 

A simple way to implement the sum and difference beam 
formers is to determine the weights for the sum channel first, 
and then reverse the sign of half of the weights for the differ- 
ence channel. The simplification in system complexity is due 
to the fact that only a single set of weights is needed. However, 
working with full common weights in the proposed subarray 
beam-forming scheme will lead to a poor approximation 
between the synthesized patterns and the reference patterns. 
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O t  

Spatial Angle in Degrees 

Fig. 3. Superposition of the subarray-basedLS-fit interference cancellation 
patterns synthesized with a 20-element LES array. S = 4. Solid line: sum. 
Dashed line: difference. 

This is because there are too many constraints imposed upon 
the beam formers. As a remedy, we propose the use of partial 
common weights. 

A. Synthesis of Pattems with Partial Common Weights 

To determine which of the M weights should be the 
common ones, we consider first that the excitation distribution 
associated with the Chebyshev beam resembles a half cycle 
cosine wave; i.e., it is even symmetric with the maximum at 
the center and the minimum at both ends [6]. On the other 
hand, the excitation distribution associated with the Bayliss 
beam resembles a full cycle sine wave; i.e., it is odd symmetric 
with the minimum at both ends [7 ] .  It is thus conceivable that 
commonality should be imposed upon the weights near both 
ends of the aperture. Now suppose that the first J weights 
from either end of the aperture are common. Also, assume for 
convenience that M = 2L is even. Construction of the sum 
and difference beams in this fashion and incorporating the CS 
structure lead to the following forms for s and d: 

where t is a J x  1 vector, and I J  is given by (24) with M = J .  
Expressions in (29) lead to the following relationship: 

r , S  = r d d  (30) 

where 

We first investigate the structures of the beam formers with 
common weights under the factorizations in (13). Substitution 

of (13) into (30) leads to 

r ,Gc  = TdHC. (32) 
Owing to the uniqueness of pattern factorization, we must have 
r , G  = rdH, or 

] (33) 
H(l : J , : )  

H ( M  - J + 1 : M ,  :) I = [  jG( l  : J ,  :) [ - j G ( M  - J + 1 : M ,  :) 
Note that (33) indicates that the imposition of “common 
weights” does not affect the “common pattern factor” .(U). 

Letting J < L, as assumed, we now expand on the conditions 
which g and h must satisfy according to (33). 

Case I )  J 2 N :  Substitution of (15) into (33) leads to 

\ \ \ .  
\ -391 
\ 

(34) 

Comparing both sides of (34) leads to g = h = ON. We 
thus conclude that the maximum number of common weights 
equals 2 5  = 2(N - 1). 

Case 2 )  N + 1 5 2J 5 2(N - 1): In this case, we have 

‘ 0  j g 1  
: \  

\ 
\ 
‘: 

- jgN-J+ l  
\ 
\ ‘ 0 ‘- j i N  

(35) 

Comparing both sides of (35) leads to 

9; = hi = 0 

jgi = hi 

i = N - J +  1 , . . . , J  
i = 1, ’ . . , N - J 

- j g i  =hi i = J +  1 , . . . , N  . (36) 

In order to satisfy weights sharing, some of the components 
of g and h must be zero. This represents a reduction in degree 
of freedom for synthesizing the patterns. 

Now substituting (36) into (15) yields the following expres- 
sions for s and d 

s = C,h = Gc 

d = C d h =  HC (37) 

where 

c, = [ - jC(: ,  1 : N - J ) I j C ( : ,  J + 1 : N ) ]  

Cd=[C(:,I : N - J ) I C ( : , J + l : N ) ]  (38) 
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and where in this case 

(39) c, = [-jC(:, 1 : J ) I j C ( : , N  - J +  1 : N ) ]  

It is interesting to see that s and d are now related through 

with (37) leads to the two-stage problem described by 
c and )5 only. Application of LS-fit procedure in accordance C d = [ C ( : , l : J ) I C ( : , N -  J + l : N ) ]  (45) 

mj-n llBh - wO1l2 
h 

- H  subject to: hHaN(0) = h I ~ ( N - - J )  = 0, (40) 

where 

B =  [ g i ]  

C =  C ( : , J +  1 : N - J )  (46) 

1 h(l : J )  
h(N - J +  1 : N )  h =  [ 

g = g ( J +  1 : N - J )  

(47) 

h = h ( J + l : N - J ) .  (48) and (19), with G and H related according to (36). Note that 
the subproblem (40) is significantly different in form from 
that described in (17). The procedure is alternately executed 
between problem described by 

Application of LS-fit procedure now leads to the two-stage 

h = ( ~ 9 - l  min llCsh + Cg - + IlCdh + Ch - doJ12 
h,g,h 

subject to: 
} B H W o  - H  - H  

l Z ( N - - J )  l ; ( N - J )  ( B H  B)-l 

1 2 ( N - J ) ( B H B ) - 1 1 2 ( N - J )  
IZ(N--J) - 

hHaN(o) = h 1 2 ~  + h I N - ~ J  = 0 (49) 
(42) 

and (19), with G and H related according to (43). Note that in 
and (22) until the solutions converge. Following a derivation the first of (49), h and are separable such 
similar to that in the Appendix, we can show that if so, do, that we may 
and the initial guess c are all CS, then the final solutions for 
s and d will be CS as well. 

. {  

the Ls solutions for g: 

(50) 
- H -  - H  

g = g L s  = (C c)-'c (so - C,h) 
Case 3) 2J 5 N :  Observing again (35) leads to 

to get 
j g ,  = h, 2 = 1, . . . , J  

min llP:Csh - P $ S , ~ \ ~  + [IC&+ Ch - doll2 
- j g ,  = h, i = N - J +  1 , . . . , N  (43) h,h 

min llAh - ~ ~ 1 1 ~  
In this case g; and hi, i = J + 1 ,  . . .  , N  - J ,  are allowed 

obtained for synthesizing the pattems by reducing the number 
of common weights. Application of the LS-fit procedure in 
accordance with (43) is more involved than case 2. We first 

h 
subject to: to vary freely. This indicates that some degree of freedom is hHaN(o) = hHiN = 0 (51) 

where p:, A, and WO are defined at the bottom of the Page. 
with h determined by 

check that s and d have the following structures: 

s = C,h+Cg = Gc 

d = Cdh+ Ch = He (44) g can be constructed by h and g via (43), (47), and (48). The 

v,  = [ 5 : 0 ]  

I--- 
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Spatial Angle in Degrees 

(a) 
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I '  I I '  '1 

-loo -80 60 -40 -20 0 U) 40 60 80 -80 60 -40 -20 0 20 40 60 80 

Spatial Angle in Degrees Spatial h u e  in Degrees 

(C) (d) 

Fig. 4. Superposition of the subaray-baseas-fit patterns with common weights synthesized with a 20-element LES array. 
(a) N = 11. .I = 10. (b) N = 6,  J = 3. (c) N = 6. .I = 4. (d) N = 6,  J = 5. Solid line: sum. Dashed line, difference. 

procedure is altemately executed between (55) and (22) until 
the solutions converge. 

That the number of common weights is bounded above 
by 2(N - 1) represents a design trade-off between system 
complexity and computational requirement. Observing again 
the excitation distributions associated with the sum and differ- 
ence beams, we see that a criterion for choosing J would be 
J M T. With this selection of J ,  we can reduce the number of 
independent weights by a factor of $, and reduce the order of 
polynomial rooting in bearing estimation by at most a factor 
of 4. 

B. Synthesis of Patterns in the Presence of Strong Interference 

Incorporation of interference cancellation in accordance (26) 
still applies since the imposition of common weights does not 
affect the factor c, as stated previously. Hence if adaptive 
nulling is performed, we simply replace ( 2 2 )  by (28)  in the 
solutions for cases 2 and 3. 

C. Numerical Examples 

The second set of examples investigate the sum and differ- 
ence patterns synthesized in accordance with the previously 
developed procedures involving common weights. The array 
configuration was the same as that used in subsection 1114. 

Fig. 4(a) shows the patterns synthesized with N = 11 and 
J = 10 (full common weights). Note that N = 11 is 
the minimum value allowable for this case. We see that 
the approximation between the synthesized and the reference 
patterns is poor compared with Fig. 2, confirming our earlier 
comment regarding full common weights implementation. 
To demonstrate the improvement by using partial common 
weights, we show in parts (b) through (d) of Fig. 4 the pattems 
synthesized with N = 6 and J = 3, 4, 5, respectively. 
Note that J = 3 corresponds to case 3, whereas J = 4, 
5 corresponds to case 2. Comparing the results with those 
shown in Fig. 4(a), we see that a significant reduction in 
side-lobe level was achieved with partial common weights 
implementation. The patterns obtained with J = 5 exhibit 
a large deviation from the reference patterns due to the small 
degree of freedom for g and h. Recall that for N - J = 1, 
there is only one independent component for g and h. For the 
above four cases, the corresponding weight vectors are listed in 
Table I to illustrate how the sum and difference beams share 
the common weights. 

To examine the effect of using common weights on adaptive 
nulling, we repeated the above simulations, with three common 
nulls placed at -40°, 30°, and 50". Parts (a) and (b) of Fig. 5 
show the resulting patterns synthesized with full common 
weights and partial common weights with J = 4, respectively. 
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Array 

element 

index 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

799 

Corresponding Figure 

Fig. 5(a) ( J  = 10) Fig. 5(b) (J = 4) 

I: A c A 

1.3235 + jO.1800 -0.1800 + 11.3235 0.9055 + j0.0396 -0.0396 + j0.9055 

1.7943 - j0.0851 0.0851 + j1.7943 1.2826 - j0.0437 0.0437 + j1.2826 

2.5370 - jO.l822 0.1822 + j2.5370 2.0980 -~0.0003 0.0003 + 32.0980 

2.7089 + j0.1396 -0.1396 + j2.7089 2.4932 - j0.0238 0.0238 + 32.4932 

2.8618 + 10.1468 -0.1468 + j2.8618 2.2471 + j0.0273 -0.0822 + j3.5021 

2.8618 - j0.1468 0.1468 + j2.8618 2.6803 +j0.0906 0.0112 + j3.5169 

2.7089 - j0.1396 0.1396 + j2.7089 2.6258 - 10.1593 0.1428 + 13.5483 

2.5370 + j0.1822 -0.1822 + j2.5370 2.9059 + j0.0852 -0.0643 + j2.8050 

1.7943 +jO.O851 -0.0851 + j1.7943 2.8366 + 10.0533 -0.1624 + 11.7646 

1.3235 - jO.l800 0.1800 +11.3235 2.8193 - j0.1476 0.1266 + jO.6220 

TABLE I 
SUM AND DIFFERENCE WEIGHT VECTORS CORRESPONDING TO THE 

PATTERNS SYNTHESIZED WITH COMMON WEIGHTS (BECAUSE 
OF SYMMETRY, ONLY HALF OF THE WEIGHTS ARE LISTED) 

Fig. 4(a) (J = 10) 

E A E A  

1.5229 jl.5229 

1.8671 j1.8671 

2.3580 12.3580 

2.7184 j2.7184 

2.9134 12.9134 

2.9134 j2.9134 

2.7184 12.7184 

2.3580 j2.3580 

1.8671 jl.8671 

1.5229 j1.5229 

TABLE I1 

INTERFERENCE CANCELLATION PATERNS SYNTHESIZED WITH COMMON 
WEIGHTS (BECAUSE OF SYMMETRY, ONLY HALF OF THE WEIGHTS ARE LISTED) 

SUM AND DIFFERENCE WEIGHT VECTORS CORRESPONDING TO THE 

Fig. 4(b) (J = 3) 

1.0111 jl .Olll  

1.3472 11.3472 

1.9505 j1.9505 

1.7115 j3.2339 

2.2749 j3.5294 

2.5068 j3.7054 

2.6754 j3.5350 

2.7797 j2.8833 

2.8356 j1.9242 

2.8585 j0.6502 

Array 

lement 

index 
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3 

4 
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7 
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10 

Corresponding Figure . .  

Fig.4(c) (J = 4) 

E A  

1.0185 j1.0185 

1.3874 j1.3874 

1.9903 j 1.9903 

2.5192 j2.5192 

2.2088 13.6303 

2.6657 j3.5573 

2.7616 j3.3869 

2.8105 j2.7824 

2.8198 j1.8367 

2.8187 j0.6364 

r 

Fig. 4(d) ( J  = 5) 

E A  

0.1821 j0.1821 

0.3511 j0.3511 

0.8552 j0.8552 

1.4160 11.4160 

1.9850 j1.9850 

2.6461 j2.2819 

3.1432 j2.4409 

3.7591 j2.0487 

4.2080 j1.3761 

4.4490 j0.4790 

Spatial An@ in Degrees 

(a) 

I '  --7 

Spatial Angk in Degrees 

(b) 

Fig. 5.  Superposition of the subway-based/LS-fit interference cancellation 
patterns with common weights synthesized with a 20-element LES array. (a) 
N = 11, J = 10. (b) N = 6,  J = 4. Solid line: sum. Dashed line, 
difference. 

The corresponding weights are listed in Table 11. The three 
nulls were successfully formed as dictated, without affecting 
the synthesized pattems much. We note from Table I1 that 
the weight vectors exhibit nonzero real and imaginary parts, 
as opposed to the case without interference cancellation. This 
is due to the loss of symmetry of the null distributions in 

the sum and difference patterns. Amplitude-only technique [3] 
may be employed to recover the symmetry. However, the price 
paid is that the maximum number of jammers which can be 
eliminated is halved. 

Again, for all of the above examples, the initial guess 
of c was chosen as c = i ~ .  The algorithm was termi- 
nated if - c 1 1  < 0 . 0 1 1 1 ~ ~ ~ ~ .  For this set of exam- 
ples, the algorithm converged, on an average, within five 
iterations. 

V. CONCLUSION 

A class of design criteria has been proposed for the synthesis 
of low-side-lobe sum and difference patterns for monopulse 
LES arrays. The idea of subarray beam forming was proposed 
as a means of reducing the computational complexity in target 
bearing estimation. A LS-fit procedure was developed for 
constructing the optimum sum and difference pattems possess- 
ing a common factor which are closest to a set of reference 
pattems in the LS sense. Adaptive nulling was incorporated 
to enhance the estimation performance under strong out-of- 
band interference. To further ease the system complexity, we 
imposed the constraint that the sum and difference channels 
share a subset of the beam-forming weights. The relationship 
between the maximum number of common weights allowable 
and the number of subarrays used is discussed in detail. It is 
found that the appropriate configuration is that one fourth the 
weights from both ends of the array aperture are common. In 
this case, the number of independent weights can be reduced 
by a factor of 4/3, and the order of polynomial rooting 
required for bearing estimation can be reduced by at most a 
factor of 4. 

APPENDIX 

DIFFERENCE WEIGHT VECTORS 
CS PROPERTY OF LS-FIT SUM AND 

We first consider the followi_ng lemma. 
Lemma: If c is CS,- i.e., IK_C = c*, then C satisfies 

~ M C I N  = C*, where I K  and I N  are given by (24), with 
M = K and N, respectively. 

-- I 
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Proofi 

4, 0 . \  
‘4 

If so is also CS, i.e., ~ M S ,  = s:, then we have 

= iN(CHC)-lCHso 

= I N ( C ~ C ) - ~ I N I N C ~ Z M I M ~ .  

= (ZNcH CIN - ‘ I N C ~ I M ~ M S ,  
= ( ~ ~ c ~ ~ ~ I ~ c ~ ~ ) - ’ ~ ~ c ~ I ~ I M ~ ,  

= (CTC*)-lCTs; 

= [(CHC)-1CHs0] * 
= g* 

where we have used ~ M I M  = I M  and T N ~ N  = IN. Hence 
g is also CS. 

The proof for the CS property of h and c is similar. 
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