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Abstract

For a fixed integer » > 2, the K,-packing problem is to find the maximum number of pairwise vertex-
disjoint K,’s (complete graphs on r vertices) in a given graph. The K,-factor problem asks for the
existence of a partition of the vertex set of a graph into K,’s. The K,-packing problem is a natural
generalization of the classical matching problem, but turns out to be much harder for » >3 — it is
known that for » > 3 the K,-factor problem is NP-complete for graphs with clique number » [16]. This
paper considers the complexity of the K,-packing problem on restricted classes of graphs.

We first prove that for » > 3 the K,-packing problem is NP-complete even when restrict to chordal
graphs, planar graphs (for » = 3, 4 only), line graphs and total graphs. The hardness result for Ks-
packing on chordal graphs answers an open question raised in [6]. We also give (simple) polynomial
algorithms for the K3-packing and the K,-factor problems on split graphs (this is interesting in light of
the fact that K,-packing becomes NP-complete on split graphs for » > 4), and for the K,-packing
problem on cographs.

AMS Subject Classifications: 05C70, 05C85, 68Q20.

Key Words: Matching, K,-packing, K,-factor, NP-completeness, chordal graph, split graph, cograph,
line graph.

1. Introduction

A matching of a graph G is a subset M of E(G) such that any two distinct edges in
M are not adjacent. A matching M is perfect (also called a 1-factor) if every vertex
in G is incident to exactly one edge in M. The notion of matching not only has a
beautiful mathematical theory associated with it, but also has many applications
in such diverse fields as transversal theory, assignment problems, network flows,
multiprocessor scheduling, and the Chinese postman and traveling salesman
problems.

* A preliminary version of this paper, under the title “The vertex-disjoint triangles problem” [11], was
presented at the 25th Workshop on Graph-Theoretic Concepts in Computer Science, WG’98.

T Work done while at the Department of Computer Science & Engineering, Indian Institute of
Technology, Madras.

¥ Supported in part by the National Science Council under grant NSC88-2115-M009-009 and the Lee
and MTI Center for Networking at NCTU.

8 On leave from IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York,
USA.
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Generalization of the classical matching problem is motivated by both theoretical
and practical constraints and has also motivated a lot of research though most of
them have only negative NP-completeness results [13, 15, 16]. For a fixed family ¢
of graphs, a (strict) ¥-packing of a graph H is a set {G,G,...,G,} of vertex-
disjoint (induced) subgraphs of H such that each G; is isomorphic to some G in %.
A (strictly) perfect G-packing or (strict) G-factor of a graph H is a (strict)
9-packing such that the sets V(G;) (1 <i<d) partition V(H). We write G-
packing for {G}-packing and G-factor for {G}-factor. Clearly, a K,-packing is
just a matching and a K,-factor is a perfect matching. The G-packing problem is
to find the maximum size pg(H) of a G-packing of a given graph H. The G-factor
problem asks if a graph has a G-packing. The well-known results by Kirkpatrick
and Hell [16] are that

(1) if G is not of the form o - K; U f§ - K>, then the G-factor problem is NP-com-
plete (and consequently, the G-packing problem is NP-complete);

(2) if G has at least three vertices, then the strict G-factor problem is NP-complete
(and consequently, the strict G-packing problem is NP-complete).

The focus of this paper is for the case when G = K. In this case a K,-packing (K-
factor) is the same as a strict K,-packing (strict K,-factor). We use p,(H) for
pk,(H). Our goal is to determine the complexity of K,-packing (and K,-factoring)
on some interesting classes of graphs. The only prior work in this direction seems
to be [6], where a polynomial time algorithm is presented for the K,-factor
problem on chordal graphs for all » > 3. The complexity of the Kj-packing
problem on chordal graphs is left open in [6] (for r > 4, the K,-packing is easily
seen to be NP-complete even on split graphs which form a subclass of chordal
graphs). We answer the question raised in [6] and prove that the K,-packing
problem is NP-complete for chordal graphs for all » > 3. We also prove that the
K,-packing problem is NP-complete on planar graphs (for » = 3 only), line graphs
and total graphs. We also provide a polynomial-time algorithm for the Kj-
packing and the K,-factor problems on split graphs; and for the K,.-packing
problem on cographs.

In the rest of this section, we review some terminology. A graph is chordal if it
contains no induced cycle of length greater than three. It is well-known [10] that a
graph is chordal if and only if it has a perfect elimination ordering, i.e. an ordering
vy, 02, ...,0, of V(G) such that N;[v;] is a clique, where

Nilt] = {o} U{oe  k > jand (1, 5) € E(G)}

for j > i. We use N[v;] for Ni[v;]. A cograph is a graph that has no induced Ps. A
graph is split if its vertex set can be partitioned into an independent set and a
clique. For a comprehensive treatment of these classes of graphs, see [10].

The line graph of a graph G is the graph L(G) whose vertex set equals to the edge
set of G and two vertices in L(G) are adjacent if their corresponding edges in G are
adjacent. The total graph of a graph G is the graph T(G) whose vertex set is
V(G) U E(G) and two vertices of T(G) are adjacent if the corresponding vertices
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or edges of G are adjacent. Note that both G and its line graph L(G) are induced
subgraphs of T(G). For all graph-theoretic terms not defined explicitly here, see
[12].

For a graph G, we use o(G) and o(G) to denote for the size of a largest inde-
pendent set in G and the clique number of G, respectively.

2. NP-Completeness Results

In this section we prove that for any fixed » > 3, the K,-packing problem is NP-
complete for chordal graphs, planar graphs (for » = 3, 4 only), line graphs and
total graphs.!

2.1. Chordal Graphs

In this subsection, we prove that for any fixed » > 3, the K,-packing problem is
NP-complete on chordal graphs by reducing the satisfiability problem to it.>

Problem. The satisfiability problem (SAT).

Instance. A collection C ={cj,cz,...,cn} of clauses over a set
U = {uy,us,...,u,} of variables.

Question. Is there a truth assignment for U that satisfies all the clauses in C?

Theorem 2.1. For any fixed r > 3, the K,-packing problem is NP-complete in
chordal graphs.

Proof: The (decision version of the) problem is clearly in NP, we only establish
NP-hardness by reducing SAT to the K,-packing problem on chordal graphs.
Given an instance of SAT, consider the following graph G with vertex set
V(G) = U,_, X, UY and edge set £(G) = KK UXC UXC' UXY, where the vertices
and edges are described below.

e For each 1<k<r, we -construct X;={x[i,j k],x[i,j,k]:1<i<n,
1 <j<m}.

e For each clause ¢;, we construct a vertex y[j]. Let ¥ = {y[j] : | <j < m}.

e K=XUY form a clique, i.e., we have the edges KK = {(u,v):u
veK,u#uv}.

o XC=A{(x[i,j, k], x[i,j,kT]), (x[i,j,k],X[i,j,K]):  1<i<n 1<j<m,
1 <k <k <rwith (k,k') # (1,r)}.

! Throughout the paper, whenever we say a problem is NP-complete, we will implicitly mean the
decision version of the problem, but for convenience sake the optimization versions of the problems are
considered in the reductions.

2 For r > 4 an easier proof can be given as the problem is easily seen to be NP-complete even on the
subclass of split graphs.
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o XC' = {(x[i,j,k], Xx[i,j+1,7), (X[i,j,k],x[i,j,r]): 1<i<m 1<j<m,
2 <k <r—1}, where m+ 1 is considered as 1.

o XY ={(x[i,/,kl,y[j]): wi€c;, 1<k<r—I1}U{E[}/k,y}j]): @ e€c,
1 <k<r-—1}.

It is straightforward to verify that G is a chordal graph with 2rmn 4+ m vertices.
We claim that the SAT instance C is satisfiable if and only if G has mn + m vertex-
disjoint K,’s, and this will clearly complete the proof.

First, suppose that C is satisfiable. Then we have the following set 2 of mn + m
vertex-disjoint K,’s. If u; is assigned a false value, then we have the following m K, ’s:

Al'j = {x[i7ja 2]7X[i,j, 3}5 e ,X[i,j,l’],)?[i,j + 177”]},
where 1 < j < m. If u; is assigned a true value, then we have the following m K,’s:
A_l] = {x[h]a 2})*[%}7 3]a KR 7X[i7j7 r]rx[iaja r]}a

where 1 < j < m. These give mn K,’s for 2. Next, for each clause ¢;, 1 < j < m,
there exists a variable to satisfy it. Suppose u; € ¢; and u; is assigned a true value.
Then B; = {x[i,j,1],x[i,},2],...,x[i,j,r —1],y[j]} is a K, for 2. Similarly,
B; = {x[i,j, 1],x[i,},2],...,%[i,j,r — 1],y[j]} is a K, for 2 if &; € ¢; and u; is as-
signed a false value. These give further m K,’s for 2. Therefore, there are mn + m
vertex-disjoint K,’s in G if C is satisfiable.

On the other hand, suppose G has a set 2 of mn + m vertex-disjoint K,’s. Since
X1,X3,..., X, are independent, every K, in G has at least one vertex from K.
Suppose Z has p K,’s containing exactly one vertex in K which we call a Type-1
K., and ¢ K,’s containing at least two vertices in K which we call a Type-2 K.
Then p + ¢ = mn 4+ m. Since no vertex in X] is adjacent to a vertex in X,, the vertex
of K in a Type-1 K, must be in ¥ and so p < m. Consequently,

2mm+m=2(mm~+m)—m<2(p+q)—p=p+2q <|K| =2mm+ m.

Therefore, p = m, ¢ = mm and each Type-2 K, contains exactly two vertices in X;..
By the definition of G, Type-1 K,’s are B; or B;, and Type-2 K,’s are 4;; or 4;; as
above. Furthermore, for each variable u;, if some 4;; (respectively, 4;;) is in 2,
then all 4;1,4p, ..., Ay, (respectively, all A;1,Ap, ..., A;y) are in 2, for which case
we assign u; false (respectively, true). Then, for each clause ¢;, if B; (respectively,
B)) in 2 is caused by u; € c; (respectively, i; € c¢;), then 4;; (respectively, 4;;) is in
2 and so, u; is assigned true (respectively, false) which implies that c; is true. Thus,
C is satisfiable.

2.2. Planar Graphs, Line Graphs and Total Graphs

We now consider the K,-packing problem for planar graphs (for » = 3,4 only),
line graphs and total graphs. The reductions are similar for these three classes of
graphs.
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Theorem 2.2. The Ks-packing problem is NP-complete for planar graphs.

Proof: The reduction is from the independent set problem which is NP-complete
on planar cubic graphs [9]. Suppose H is an arbitrary cubic planar graph with
V(H)={1,2,...,n} and E(H)={e,es...,en}, where e; = (f(i),g(i)) for
1 <i < m. We will construct a planar graph G such that p;(G) = a(H) 4+ m, and
this will complete the proof of the theorem. To construct G, first construct a graph
H' from H by subdividing each edge into 3 edges. More formally,

V(H) =V (H)U{ui,wi: 1 <i<m}and E(H') = UL {(/ (D), w), (i, wi), (i, 9()) }-

It is clear that H' is a K3-free planar graph in which all vertices in V' (H) are of
degree 3 and others are of degree 2. Next, construct H” from H’' by attaching a
new pendant vertex to each vertex of degree 2.

The final graph G will now be the line graph L(H") of H". Tt is easy to see that
L(H") is planar. Since H” is Kj-free with maximum degree 3, a K3 in L(H")
comprises of the 3 edges incident to a same vertex of H”, which is in fact in V(H’).
Also, two K3’s in L(H") are vertex-disjoint if and only if the corresponding ver-
tices are not adjacent in H” (and hence in H'). It therefore follows that
p3(L(H")) = p3(G) = a(H").

Next, we show that o(H') = «(H) + m. Suppose S is a maximum independent set
of H. Then for each edge e;, either f(i)¢ S or g(i)¢S. So,

SU{u: f(D)ES, 1 <i<m}U{w;:f(i) €S, g9(i)¢S,1<i<m}

is an independent set of H' of size |S| + m. Therefore, a(H') > «(H) + m. On the
other hand, suppose S’ is a maximum independent set of H'. For each ¢;, at most
one of u; and w; is in §’. In the case of neither u; nor w; is in S, both f(i) and g(i)
are in §’ for otherwise S’ is not maximum. We can then replace /(i) by u; to get a
new maximum independent set. So, without loss of generality, we may assume
that exactly one of u; and w; is in 8’ for 1 < i < m, so that at most one of F (i), g(i)
belongs to S’ for each i, 1 < i < m. Hence, S’ N V is an independent set of H of size
|S’| —m. This proves that «(H) > a(H') —m. Therefore, p3(G)=a(H') =
aH)+m. O

A similar NP-completeness holds for the K4-packing problem on planar graphs as
well (note that K,.-packing for » > 5 is trivial on planar graphs). The reduction is
very similar to that of Theorem 2.2, the only change is that we construct H” from
H by adding two pendant vertices to each vertex in H’ of degree 2 and one
pendant to each vertex in H' of degree 3. Once again G = L(H") will be planar and
will satisfy ps(G) = a(H') = a(H) + m. Hence we get

Theorem 2.3. The Ky-packing problem is NP-complete on planar graphs.

Theorem 2.4. For any fixed r > 3, the K,-packing problem is NP-complete on line
graphs.
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Proof: The proof is essentially the same as the proof of Theorem 2.2 except when
constructing H” from H' we add r — deg;; (x) new pendant vertices to each vertex
x in H'. Note that this makes H” a K3-free graph in which all vertices of V' (H') are
of degree r and the new pendant vertices are of degree one. []

Theorem 2.5. For any fixed r > 3, the K,-packing problem is NP-complete on total
graphs.

Proof: The proof is again a modification of the proof of Theorem 2.2 according
to the following two cases.

For the case of r > 4, when constructing H” from H' we add r — 1 — deg,; (x) new
pendant vertices to each vertex x in H’. This makes H” a K3-free graph in which all
vertices of V(H') are of degree r — 1 and the new pendant vertices are of degree
one. In this case, a K, in T(H") comprises of a vertex of V(H’) together with the
r — 1 edges adjacent to it in H”. Then again p,(T(H")) = a(H') = a(H) + m.

For the case of » = 3, when constructing H” from H' we add 4 — deg;, (x) new
pendant vertices (with a special one called x') to each vertex x in H’. This makes
H" a K;3-free graph in which all vertices of V(H’) are of degree 4 and the new
pendant vertices are of degree one. In this case, there are three possibilities for a
Ksin T(H"):

1. An edge of H” together with its two end vertices.
2. A vertex of V(H") together with two edges adjacent to it in H”.
3. Three edges in H” that are adjacent to a vertex of V(H').

Let 2 be a maximum Kj-packing of T(H"). For each x € V(H’), at least one
element in C, = {x, (x,x'),x'} is in some K3 in 2. It is easy to see that 2 may be
modified without reducing its cardinality to include C, for all x € V(H'). Then,
these C,’s are the only Type (1) K3’s in 2, and there is no Type (2) K3 in #.
Therefore, p3(T(H")) =n+ p3(L(H")) =n+ a(H') = n+ «(H) + m, where H" is
the graph obtained from H” by deleting x’ and (x,x") for each x € V(H') from H".
(Recall that a(H') = a(H) + m was shown in the proof of Theorem 2.2.) [J

3. K,-Packings and K, -Factors for Split Graphs

We now show that the K3-packing and the K,-factor problems can be solved in
polynomial time for split graphs.? For » > 4, a simple reduction from K3-packing
on general graphs proves that K,-packing is NP-complete on split graphs [6]. So
this completely characterizes the complexity of the K,-packing and K,-factoring
problems on the class of split graphs.

3 The result for K,-factors follows from the more general algorithm in [6] that works for chordal
graphs. We present our algorithm as it follows from the same approach we use for K3-packing.
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Suppose G is a split graph where V(G) is the disjoint union of an independent set
S and a clique K. First note that to solve the K,-packing problem, it is clearly
enough to solve the K5-packing problem which is to find the maximum number
P (G) of vertex-disjoint K,’s in G such that each K, has one vertex in S and r — 1
vertices in K. The following lemma is obvious as K is a clique.

Lemma 3.1. If G is a split graph in which V(G) is the disjoint union of an inde-
pendent set S and a clique K, then p,(G) = |(p5(G) + |K|)/r].

We now proceed to transform the K3-packing problem in a split graph G with
V(G) = SUK as above, to the maximum matching problem in a suitably de-
fined graph Hj. The construction of the graph H, for a general » > 3 is described
below.

For each u € S C V, split it into r — 1 copies of u each adjacent to all neighbours
of u in G. Also, make these » — 1 vertices a clique. And make K an independent set
in H,. Let H, be the resulting graph. More precisely, H, = (V',E") where

Vi=KU{u:ueS,1<i<r-—1}

E' ={(upu;):ueS,1<i<j<r-—1}
U{(u;,v) : (w,v) e E;ue S, 1 <i<r—1,veK}.

Lemma 3.2. If m(H;) denotes the matching number of Hi, then
P3(G) = m(Hs) — |S].

Proof: Suppose M is a maximum matching of Hz. A vertex x is said to M-match
another vertex y if (x,y) € M. For every u € S C V, exactly one of the following
three cases occurs.

(1) Both u; and u, M-match vertices in K.
(2) Exactly one of u; and u, M-matches a vertex in K.
(3) uy M-matches u,.

Note that Case (1) contributes two edges to M, and Case (2) or (3) one edge. It is
clear that {{u,vi,v2} : (u,v1) € M,v; € K, (u2,02) € M,v2 € K} is a K;-packing
of G whose size is m(H;) — |S|. Then p3(G) > m(Hs) — |S|. On the other hand,
suppose 2 is a K3-packing of G of size p§(G). Then

M ={(ur,v1), (u2,v2) : {u, 01,02} € Z,u € S,v1 € K,v5 € K}U
{{u1,us} : there is no K3 in # containing u}

is a matching of Hs of size pj(G)+|S|. Thus, m(Hs) > p3(G)+ |S|. Both
inequalities together imply that p§(G) = m(H;) — |S|. O
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Theorem 3.3. The Ks-packing problem can be solved in O(m\/n) time for a split
graph with n vertices and m edges.

Proof: According to Lemmas 3.1 and 3.2, it is enough to find a maximum
matching of Hi;. Note that [V(H;)|=|K|+2|S|<2n and |E(H;)|<
|E(G)| + |S| < m+ n. Hence a maximum matching of H; can be determined in
O(m+/n) time [17]. This completes the proof of the theorem. []

The method above can be adapted to one for the K,-factor problem. First modify
the construction of H, into the bipartite graph H/ by deleting the edges
{(uij,uj) :ueS,1<i<j<r} Now itis easy to see that G has a K,-factor if and
only if r is a divisor of |V(G)| and H, has a matching of size (r — 1)|S].

Theorem 3.4. Suppose G is a split graph in which V(G) is the disjoint union of an
independent set S and a clique K. Then G has a K,-factor if and only if r is a divisor
of |V(G)| and H] has a matching of size (r — 1)S].

4. K,-Packings of Cographs

In this section, we devise a polynomial-time algorithm for the K,-packing problem
in cographs. The algorithm is based on dynamic programming.

Recall that cographs are graphs with no induced P;. The class of cographs may
also be defined recursively as follows [4]:

e K is a cograph.
e If G’ and G” are cographs, then so is G’ U G” and G’ x G"(= (G U G")°).

For technical reasons, we consider a more general problem as follows. For a
graph G and nonnegative integers n3,...,n,, let f(G,ns,...,n,) be the maximum
integer n, such that G has a {Kj,...,K,}-packing in which there are exactly n;
copies of K;’s for 2 <i <r; f(G,n3,...,n) = —oco if G has no such {K3,...,K,}-
packing. It is then easy to see that p,(G) is the maximum nonnegative integer n,
such that f(G,0,...,0,n,) > 0.

Lemma 4.1. If G = G UG", then

f(G,n3,...,n,) =max{f (G, n,...,n.)
+f(G" ny —nly,...,n,—nl) 0 < <n; for3<i<r}

Proof: The lemma follows from the fact that a {K>,...,K,}-packing of G is the
union of a {K;,...,K,}-packing of G’ and a {Kj,...,K,}-packing of G'. [

Lemma 4.2. If 2 is a {K»,...,K,}-packing of G =G x G", then there exists a
{Ka,...,K,}-packing ' covering precisely the same vertices as 2 does and 2’ does
not contain C' and C" such that C' C V(G') and G" C V(G").
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Proof: Suppose 2 has C' = {uy,ua,...,us} CV(G) and C" = {vy,v2,...,0:} C
V(G"), where s,t > 2. Set D' = {vi,uz,...,us} and D" = {uy,vs,...,v,}. Then
D'uD"=C'uC”. Replace C' and C” by D' and D" respectively in # and con-
tinue the process until the resulting 2’ has the required property. []

Lemma 4.3. If G = G' x G with n' = |V(G')| and n" = |V(G")|, then
f(G, ni,... ,n,.) =maxn, = max{n;o +ny1 + 1’12,2},

where the maximum runs over all parameters satisfying the following conditions.

(1) For 1 <i<r,m= Zj':o n;j where n;; > 0 for 0 < j <i.

Q) =37 and n] =37 in;y for 1 <j<r.

(3) (G ny,...,0) > nb and £(G",ny,...,nl) > nf.

) n' =37 and n" =37, jnf.

(5) Xoimamis =0 or 3 ;i = 0.

Proof: Suppose 2 is a {Ky,...,K,}-packing of G. Adding those K,’s which are
not covered by 2, we have a {K|,...,K,}-factor # of G which has n; copies of

K;s for 1 <i <r. Let n;; be the number of K;’s of # whose intersection with
V(G') are K;’s and with V' (G") are K;_;’s.

Condition (1) follows from the definition of », ;.

In (2), 1 (respectively, n7) is just the number of elements of O whose intersection
with V(G') (respectively, V(G")) are K;’s.

Condition (3) guarantees that there are enough K,’s in ¥ (G') and V(G").
Condition (4) counts the total numbers of vertices in ¥V (G') and V(G").

Condition (5) reflects the property in Lemma 4.2. []

Theorem 4.4. For any fixed r > 3, the K,-Packing problem can be solved in poly-
nomial time for cographs.

Proof: For any G’ and G” and n3, ..., n, determining (G’ U G",n3,...,n,) needs
O(n=2) time by Lemma 4.1 and determining f(G' x G",n3,...,n,) needs
O(n'*2+"%7) time by Lemma 4.3. In fact, the later can be reduced to
O(n'*2++0=1)) ‘according to Condition (5). More careful analysis also leads to
less time, e.g. O(n) for r = 3.

The parse tree associated with a cograph G can be computed in linear time (see
[3]). Once this has been done, the computation of f(G,n3,...,n,) is done at O(n)
internal nodes of the parse tree. The total time complexity is then a polynomial of
n according to the arguments in the first paragraph. In particular O(n*) for r = 3
with a careful analysis. [
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5. Conclusions

The main effort of this paper is to investigate the complexity of the K,-packing
and the K,-factor problems on some well-known classes of graphs.

We prove that, for » > 3, the K,-packing problem remains NP-complete on
chordal graphs, planar graphs (for » = 3,4 only), line graphs and total graphs. In
contrast the K,-factor problem can be solved in polynomial time on chordal
graphs for all » [6]. This shows that the complexity of the factoring and packing
problem can differ widely for specific classes of graphs.

On the algorithmic side, we gave polynomial algorithms for the K3-packing and
the K,-factor problems on split graphs, and this completely settles the complexity
of K,-packing on split graphs since, for » > 4, the K,-packing problem becomes
NP-complete on split graphs. We also gave a polynomial time algorithm for the
K,-packing problem on cographs.
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