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Abstract A generalized maximum entropy method coupled with Gerchberg–Saxton

algorithm has been developed to extend the resolution from high-resolu-

tion TEM image(s) for weak objects. The Gerchberg–Saxton algorithm

restores spatial resolution by operating real space and reciprocal space

projections cyclically. In our methodology, a generalized maximum entropy

method (Kullback–Leibler cross entropy) dealing with weak objects is used

as a real space (P1) projection. After P1 projection, not only are the phases

within the input spatial frequencies improved, but also the phases in the

next higher frequencies are extrapolated. An example of semi-blind decon-

volution (P1 project only) to improve the resolution in SiC twin boundary

is shown. The nature of the bonding in this twin boundary is Si-C but it was

rotated 180° along the boundary normal. The optimum solution from P1

projection can be further improved by a P2 projection. The square roots of

diffraction intensities from a diffraction pattern are then substituted to

complete a cycle operation of the Gerchberg–Saxton algorithm. Application

examples of Gerchberg–Saxton algorithm to solve the atomic structure of

defects (2 × 1 interfacial reconstruction and dislocation) in NiSi
2 
/ Si inter-

faces will be shown also.
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Introduction

The trend in development of materials technology, including

microelectronics, magnetic recording heads and opto-elec-

tronics, is the reduction of device size to near nanometre scale.

The interface in materials becomes a crucial factor for control-

ling the properties and performance of the devices at this level.

An example of transmission electron microscope (TEM) study

in the interfacial structure and reaction in sub-half micron

devices is given in reference [1]. In the past, the high-resolu-

tion TEM (HRTEM) has provided useful information of atomic

structure in a nanometre area of samples. However, the

phases in the low spatial frequency region (less than informa-

tion limit) were modified and the information in the higher

spatial frequency region were cut off by the lens contrast

transfer function (CTF), so that direct correlation of the

HRTEM image of crystal structure is not trivial. Furthermore,

a resolution of 0.2 nm is not enough to determine the inter-

facial structure quantitatively without ambiguity. For exam-

ple, dumb-bell distances in the most popular materials, Si,

SiC, and GaN, for application in microelectronics and opto-

electronics are 0.136, 0.106, and 0.112 nm, respectively, which

cannot be revealed directly with a 0.2 nm resolution micro-

scope. The current development of hardware in Cs corrector

and mono-chromator may provide a solution in the near

future [2,3]. Numerical reconstruction methods in real space,

such as focal variation holography [4–8], and tilt-beam holo-

graphy methods [9] that use a series of HRTEM images, have

been proposed to recover the information in the exit surface of

the specimen level, which contains the structural information
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of non-aberration. Unlike real space reconstruction methods,

the ‘direct method’ of electron crystallography that utilizes a

HRTEM image and electron diffraction intensities has been

applied [10–15] to extend the structural information beyond

the Scherzer resolution of a TEM. The direct method is a set of

mathematical techniques, e.g. the Sayre equation [16], for

extending the phases of diffracted beams to higher spatial

frequency, and has given only amplitude information that is

equal to the square of the measured intensity [17–20]. In the

direct method, the HRTEM image was used to provide the

initial phase information in the low spatial frequency region.

The electron diffraction intensities in this approach were

obtained from sufficiently thin specimen regions to avoid

dynamical effects and the results were interpreted within the

kinematical approximation.

In our previous publication [21], the Gerchberg–Saxton

algorithm [22,23] was used to extend the structural informa-

tion, which also utilizes HRTEM image(s) and electron dif-

fraction intensities. The HRTEM images contain distorted

phase information in low frequency, while the diffraction pat-

tern provides no phase information but the diffraction ampli-

tudes are preserved up to nearly 20 nm–1. The Gerchberg–

Saxton algorithm consists of two operations, namely real

space (P1) and reciprocal space (P2) projections. These two

projections operate cyclically. In the real space projection, a

constrained maximum entropy method (MEM) was used to

extrapolate the phases to the higher spatial frequency region

based on HRTEM images. This process is denoted as P1 projec-

tion and is a real space operation. The constrained MEM used

in our previous paper is different from that in previous work

by Huang et al. [13], in which case the maximum entropy is

used to determine the optimum value of underfocus. The

maximum entropy formula we used is also different from that

for X-ray crystallography [24], and that proposed by Sinkler et

al. [15] and Marks et al. [25,26] for surface crystallography,

due to the weak phase object constraint term we coupled with

the entropy term in the Lagrangian equation. In this paper, we

present an improved version of our previous method [21]

based on the Gerchberg–Saxton algorithm [22,23] to extend

the resolution of HRTEM images. The improvement of our

method is two-fold. (1) A generalized maximum entropy

method (Kullback–Leibler cross entropy [27]) to deal with

complex signal for weak scattering, in which case the ampli-

tude and the phase part of the exit wave are included in the

Lagrangian function. This allows this method to work better

in the thicker sample regime than the weak phase version

does. (2) The maximum entropy deconvolution method relies

on the knowledge of the CTF of the objective lens. Usually, the

CTF is determined from a power spectrum of amorphous

region in the edge of the sample. We present here a method for

determining the CTF from the crystalline experimental image

itself. Therefore, we can extrapolate the phase information to

higher frequency with the real space operator–maximum

entropy deconvolution method simply only from a given

experimental HRTEM image, since the information of contrast

transfer function CTF (or point spread function) can be

implictly extracted from the image itself. This process is called

semi-blind deconvolution. An application case of semi-blind

deconvolution with Gerchberg–Saxton algorithm to solve the

atomic structure for SiC twin boundary and NiSi2 / Si inter-

faces will be shown. Details of the process in semi-blind

deconvolution and Gerchberg–Saxton algorithm will be given

in a later section.

Generalized maximum entropy method 
for weak object

The resolution of a blurring image (or signal) Iexp can be

Fig. 1 (a) A blurred image of a woman. This image is blurred with a point spread function of 10 × 10 pixels. (b) A deconvoluted image resulting

from minimization of eq. (1).
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improved by minimization of the following Lagrangian func-

tion L with providing a known function B(r), which is a point

spread function of objective lens.

L = –�iV(r)ln(V(r)/D(r)) – �o(V(r)-f)–�j�1�i(V(r)*B(r) 

– Ij
exp – ej) – �j�j{(ej/�j)

2 – ��} (1)

Where V(r) is an optimum solution we wish to find and r is a

position vector in the image space. The summation operates

on the pixel with index i. V(r) contains phase information of

higher spatial frequency domain than that in Iexp. The first

term in the Lagrangian function is the cross entropy, while the

rest of three terms are the constraints for the optimum solu-

tion. The D(r) in the entropy term is a default guess, which can

be obtained using a Wiener filter [28]. The �o, �1 and �j are

three Lagrangian multipliers for three constraints. The first

constraint sets the constant flux in the optimum solution V(r),

and the second constraint sets the condition that the optimum

V(r) convolutes with B(r) to be as close to the Iexp as possible.

The ej and �j are the noise and variance in the jth experimental

defocused image, respectively. The last constraint sets the limi-

tation for the target ��. This maximum entropy deconvolution

method has been extensively used in the area of astronomy for

image deconvolution to improve the resolution of images

[29,30]. An example of maximum entropy deconvolution is

given in Fig. 1. Figure 1a is a blurring image of a woman,

which is Iexp in eq. (1). This image is blurred with a point

spread function B(r) of 10 × 10 pixels. The D(r) is initially set

to be identical to Iexp. The final optimum solution V(r) (or

MEM solution) after 1000 iterations in minimization of eq. (1)

is given in Fig. 1b. We can see that the fine detail in the image

has been restored. In the Fourier space, the phases in the

higher frequency region have been extrapolated back cor-

rectly. Another example is given in Fig. 2. A one-dimensional

blurring signal is shown in Fig. 2a. The blurring function is a

5-pixel flat hat function. Figure 2b shows the restoration of

the signal as the iteration step of minimization of eq. (1)

increases.

In the weak phase object case, the second constraint in eq.

(1) is replaced with 1 + 2*�V(r)*F–1(imag(T(H))) – Ij
exp – ej,

where �� is an interaction constant and V(r) is the projected

potential as well as the phase of the exit wave, * means convo-

lution operation. H is a reciprocal lattice vector and F–1

(imag(T(H))) is an inverse Fourier transform of imaginary

part of T(H), the lens CTF, including coherency of imaging

system for weak phase object, and is equivalent to B(r) in eq.

(1). T(H) is given below

T(H) = exp(i�1(H))exp(–�2(H)) (2)

�1(H) = ���fH2 + ½�Cs�
3H4

�2(H) = ½�2�2	fH4 + �2(
2 / �2)q

Cs is the spherical aberration coefficient; � is the wavelength;

	f is the focal spread of objective lens; and 
�is the convergence

angle of electron beam.

q = (��fH + Cs�
3H3)2

The detailed explanation of the algorithm in weak phase

approximation can be found in our previous paper [21]. To

extend the applicability of the maximum entropy deconvolu-

tion method to the thicker sample, the weak object approxi-

mation is considered within the Lagrangian function. In the

weak object case, a small variation in amplitude �(r) and

phase V(r) of exit wave �e are allowed. The exit wave �e and

intensity distribution I in the image plane can be written as

follows [31]:

Fig. 2 (a) A one-dimensional blurring signal. The blurring function is

a 5-pixel flat hat function. (b) The restoration of the signal as the

iteration step increases in minimiztion of eq. (1).
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�e =1 + �(r) + i�V(r), where �(r) ~ 1 – V(r)2 / 2 (3)

I = 1 + 2�(r)*F–1(real(T(H))) + 2�V(r)*F–1(imag(T(H))) (4)

The Kullback–Leibler cross entropy is defined to improve the

resolution for the complex image (complex signal) problem

using maximum entropy method [27]. The entropy term in eq.

(1) is modified to be

–�i�(r)ln(�(r) / D�(r)) – �iV(r)ln(V(r) / Dv(r))

where D�(r) and Dv(r) are the initial guesses. Dv(r) is roughly

close to the default image obtained from a Wiener filter, as in

the weak phase object approximation. Although �(r) and V(r)

are independent variables, D�(r) is set to be 1 – Dv(r)
2 / 2 in the

beginning. The Lagrangian function in eq. (1) is therefore

modified to be

L = –�i�(r)ln(�(r) / D�(r)) – �iV(r)ln(V(r)/Dv(r)) 

– �o�(�(r) – f�) – �ov(V(r) – fv) – �j�1j�i(1 + 2�(r)*F–1

(real(T(H))) + 2�V(r)*F–1(imag(T(H))) – Ij
exp – ej) 

– ��j�j{(ej / �j)
2 – ��} (5)

The constraints in the constant flux now are set for both �(r)

and V(r), and the second constraint is modified to be

1 + 2�(r)*F–1(real(T(H))) + 2�V(r)*F–1(imag(T(H))) – Ij
exp – ej

Following the same procedure given in the previous paper, the

optimum solution of �(r) and V(r) can be found by setting

partial derivation of L with respect to �(r), V(r) and ej zero,

�L / ��(r) = 0, �L / �V(r) = 0 and �L / �ej = 0,

�(r) = f�D�(r)exp(–2�j�1j*F
–1(real(T(H)))) / 

�iD�(r)exp(–2�j�1j*F
–1(real(T(H)))) (6)

V(r) = fvDv(r)exp(–2��j�1j*F
–1(imag(T(H)))) / 

�iDv(r)exp(–2��j�1j*F
–1(imag(T(H)))) (7)

�1j and �j in last two equations can be found from derivation of

a potential function Z with respect to �1j and �j, �Z / ��1j = 0

and �Z / ��j = 0, where

Z = �j�1j – log{�iexp(–2�j�1j*F
–1(real(T(H))))} 

– log{�iexp(–2���j�1j*F
–1(imag(T(H))))} 

– (¼�j)�
2
1j�j

2 – Ij
exp – �j�

� (8)

A flow chart of minimization iteration process is given in Fig.

3. When V(r) << 1, �(r) is much less than V(r). The maximum

entropy algorithm for the weak scattering object case degener-

ates to that in the weak phase case. The program is written in

the script language in Gatan Digital Micrograph.

Semi-blind deconvolution

For minimization of the Lagrangian function in usual decon-

volution process, we need to know the point spread function

(or CTF) of the objective lens and an experimental image. In

the case of a high-resolution image, the lens CTF usually can

be determined from a power spectrum from amorphous region

in the edge of sample [32]. However, quite often, amorphous

materials in the edge of sample may be not available or far

from where the HRTEM image is recorded. In such cases CTF

cannot be determined well. Deconvolution without sufficient

or even no information of CTF (or point spread function) is

called blind deconvolution [33,34]. In some special case, the

point spread function can be identified from the cepstrum of

experimental image Ij
exp [33,34] such that the deconvolution

process can be carried out only with given experimental

image(s). The cepstrum is defined as Fourier integral trans-

form of log(F(Ij
exp)) [33]. We called this deconvolution process

semi-blind deconvolution, where the information of CTF can

Fig. 3 A flow chart of the minimization process of constrained maximum entropy method.
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Fig. 4 (a) HRTEM image of SiC twin boundaries recorded using ultra-high voltage TEM [36]. (b) Power spectrum of (a). (c) Power spectrum

after stripping the peaks contributing from crystal periodicity. (d) A simulated |sin(�
1
(H))exp(–�

2
(H))|2 pasted with (c). The parameters of the

simulated CTF are voltage = 1250 kV, C
s
 = 1.4 mm, C

c
 = 2.5 mm, divergent angle ��=1 mrad, �f = –42.4 nm, and magnitude and direction of

the astigmatism, A = 1 nm and �
a
 = 82.5°. (e) The phase part of optimum solution V(r). (f) Profile of integrated intensity parallel to the twin

boundary.
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be extracted from the experimental image itself. Estimation of

the CTF from HRTEM crystal image using cepstrum or power

spectrum usually is not applicable, since the peaks associated

with crystal periodicities dominate in the power spectrum or

cepstrum. Here, we present a method to estimate the CTF

from the HRTEM crystal image(s), which is recorded from a

slightly surface-contaminated sample. The idea is based on a

speckle technique to improve the signal-to-noise ratio in the

reciprocal space [35]. We demonstrate this idea here with a

working example. Figure 4a shows a HRTEM image of SiC

twin boundaries recorded using ultra-high voltage TEM [36].

The image size is 1024 × 1024 pixels. The dumb-bell distance

in SiC is near 0.106 nm, which was not directly revealed from

this HRTEM image. A power spectrum of Fig. 4a is shown in

Fig. 4b, and shows clear signal of the peaks associated with

the periodicities of the twin in SiC. There is weak information

about the CTF in the background of power spectrum, which is

contributed from the surface contanmination. This weak

information in the background can be further reduced by

averaging of many power spectra from a sub-area (256 × 256

pixels) of the experimental image. The averaging power spec-

trum can be expressed as �|F(Ik
exp)|2 / N. Ik

exp is a sub-image

from the whole image denoted as Iexp, N is the total number of

the sub-image, and k is a dummy index of the sub-image. F is

Fig. 5 (a) A graphic presentation of the Gerchberg–Saxton algorithm. (b) A flow chart version of Gerchberg–Saxton algorithm and the cyclic

procedures of P1 and P2 operations.
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a Fourier transformation operator and � is the summation

operation. The power spectrum of the whole image is

expressed as |F(Iexp)|2. Intensities of peaks in the average

power spectrum are normalized with respect to those in the

power spectrum of the whole image |F(Iexp)|2. The peaks

associated with the crystal periodicities can then be removed

by subtracting the |F(Iexp)|2 from the normalized average

�|F(Ik
exp)|2 / N. The resultant power spectrum is shown in Fig.

4c. The power spectrum from the surface contamination can

then be enhanced and the CTF is revealed. If we provide the

data of accelerating voltage of TEM (1250 kV), Cs (1.4 mm), Cc

(2.5 mm), and divergent angle 
 (1 mrad), the underfocus

and astigamatism can be estimated by fitting the maximum

intensity of Fig. 4c with the |sin(�1(H))exp(–�2(H))|
2 in eq.

(2). The underfocus �f in eq. (2) is replaced with an effective

underfocus �f eff, if the astigmatism is included in the lens

aberration function [37]. �f eff = �f + Acos2(
 – 
a), where A

and 
a are the magnitude and direction of the astigmatism,

respectively. The development of the quantitatively fitted

algorithm is in progress, but the qualitatively estimated data

for underfocus value and astigmatism are �f = –42.4 nm,

A = 1 nm and 
a = 82.5°. Figure 4d shows a simulated

|sin(�1(H))exp(–�2(H))|
2 that is pasted with Fig. 4c for

comparison. The experimental image in Fig. 4a can then be

deconvoluted either using a weak phase object or weak

object approximation. The phase part V(r) is shown in Fig.

4e. Although the dumb-bell structure in SiC can be revealed

after 1500 iterations in the maximum entropy deconvolution

process, the bonding nature of either Si-Si, C-C or Si-C bond

across the twin boundary still cannot be revealed directly

from the deconvoluted solution V(r). The profile of integrated

intensity parallel to the twin boundary is obtained and shows

modulation of stong and weak peaks (Fig. 4f). The stronger

peaks correspond to Si and the weaker peaks correspond

to C, suggesting that the bonding nature of Si-C does not

change across the twin boundary, but that it was rotated 180°

along the normal of twin boundary.

Gerchberg–Saxton algorithm and results

Although the resolution of the HRTEM can be improved from

the constrained MEM deconvolution process alone (the real

space P1 projection), as we can see from the example of SiC

twin boundary given in the previous section, Gerchberg–

Saxton algorithm suggested that the information could be

refined and further improved by cyclically operating real space

(P1) and reciprocal space (P2) projections. This is the central

idea of the Gerchberg–Saxton algorithm, which recovers the

information from partially known phase and magnitude [23].

A graphic presentation of the Gerchberg–Saxton algorithm is

given in Fig. 5a. In the P1 projection, a constrained MEM is

used not only to modify the phase in the input frequency

domain but also to extrapolate the phases to higher spatial

frequency region based on the HRTEM images. In the P2 pro-

jection, the square root of the integrated intensities from

Fig. 6 (a) and (b) The power spectra of Figs 4a and 4e, respectively. (c)

The optimum solution of V(r) after 1000 iterations in Gerchberg–

Saxton cyclic operations. The red circles represent Si atoms and the

blue circles represent C atoms.
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the diffraction pattern is substituted but the phases are saved.

To review the dumb-bell for SiC, NiSi2, and Si, we only used

diffraction amplitude up to {004} diffractions. We cyclically

operated the P1 and P2 projections until the satisfatory solu-

tion was found in both real and reciprocal spaces. The detailed

processes of these two projections are given in Fig. 5b, which

shows a flow chart version of the Gerchberg–Saxton algorithm

and the cyclic procedures of P1 and P2 operations. The gn is an

initial default in real space. In the beginning it was obtained

using a Wiener filter. The g�n is a MEM solution after P1

projection, i.e. a deconvoluted solution from MEM. It contains

phase information of higher spatial frequencies. G�n is a

Fourier transform of g�n. P2 operation is a process of replacing

the modulus |G�n| by the measured diffraction amplitude

|Gn|. The phase information is saved in P2 projection. After P2

operation, G�n becomes Gn. The inverse Fourier transforma-

tion brings Gn back to real space and the new solution is called

gn + 1. The gn + 1 is set to be a new default solution that contains

higher spatial information than gn. The application example of

Gerchberg–Saxton algorithm in SiC twin boundary is given

here. Figures 6a and 6b show the power spectra of Figs 4a and

4e, respectively. The phase information is extrapolated to the

higher frequency domain in Fig. 6b, which is equivalent to

higher resolution, and is achieved in real space in Fig. 4e.

Figure 6c shows the resultant solution of V(r) after 1000

iterations of P1 and P2 cyclic operations. The Si and C are more

distinguishable than that in Fig. 4e.

This algorithm is applied to solve the atomic structure of

defects in epitaxial NiSi2 / Si interface, which is usually called

type A interface. The type A NiSi2 / Si interface usually has

processes of structural multiplicity [38]. NiSi2 has a face-

centre cubic unit cell with CaF2 structure and lattice constant

a = 0.5406 nm. Si has a diamond cubic structure with lattice

constant a = 0.543 nm. They have 0.4 % of lattice misfit. The

diffraction patterns of NiSi2 / Si are recorded in Fuji imaging

plate near the interface with smallest electron beam in a

JEOL 4000EX TEM, Cs = 1.0 mm, focal spread 	f = 15 nm,

and the beam divergence 
�= 0.8 mrad. All HRTEM images

Fig. 7 (a) and (b) Diffraction patterns and intensities of Si and NiSi
2
, respectively. (c) Indexed schematic pattern for (a) and (b).
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are recorded at an underfocus value near –32 nm, estimated

from the thin amorphous region with reference of minimum

contrast. A set of diffraction pattern is shown in Figs 7a and

7b. An indexed schematic pattern for (a) and (b) is given in

Fig. 7c. In Si, the {002} and {222} diffractions are very weak

compared with that in NiSi2. This might imply that there is not

too much dynamical effect involved. Figure 8a is an experi-

mental HRTEM image showing a 2 × 1 alternating contrast in

the interface. Resolution is extended using the maximum

entropy deconvolution method and Gerchberg–Saxton algo-

rithm described above. Figure 8b shows a predicted image

calculated using eq. (4) with the optimum solution of �(r) and

V(r). The simulated image shows very good matches in the

image character with the experimental image. The phase part

V(r) and a schematic structure pasted with the V(r) is shown

in Fig. 8c. We can see that there are alternative Si rich atomic

columns in the interface which exhibit a 2 × 1 compositional

reconstruction. This type of structure is also observed in the

CoSi2 / Si interface [39]. Another example is shown in Fig. 9.

Figure 9a shows an interfacial dislocation of ¼<111> type in

the NiSi2 / Si interface. This dislocation separates two inter-

facial domains that have different atomic structure. A pre-

dicted image is given in Fig. 9b for comparison with the

experimental image. It can be seen that the simulated image

calculated using optimum solution has reasonably good

matches with the experimental image. The bending of (220)

lattice plane associated with strain field of the edge compo-

nent of this interfacial dislocation near the interface can be

seen in the phase part V(r) given in Fig. 9c. A schematic struc-

ture deduced from the positions of the bright dots in Fig. 9c is

given in Fig. 9d. From Fig. 9d, the extra half-plane associated

with this interfacial dislcoation is clearly revealed. We can see

that the maximum entropy deconvolution method refines the

atomic peak position according to the experimental image,

although the diffraction intensities are recorded from a region

larger than the image, which gives an average structure in the

beginning. A quantitative comparison of the atomic peak

positions in Fig. 9c with computational positions from strain

field of an interfacial dislcoation will be interesting to study.

From this we should be able to make some comments about

the precision of this method in determination of the atomic

structure [40].

What could be wrong

We have shown that the resolution form HRTEM image(s) can

be extended using maximum entropy deconvolution method

and diffraction intensities. There are some factors that might

cause difficulties in the application of this technique. In the

Fig. 8 (a) Experimental HRTEM image showing a 2 × 1 alternating

contrast in the interface. (b) A predicted image calculated using eq.

(4) with the optimum solution of �(r) and V(r). (c) The optimum

phase part V(r) and a schematic structure. Red circles represent Si

atoms and blue circles represent Ni atoms.
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real space projection, an initial default solution might be

important, since it provides a set of phases in the low

frequency domain. If there are errors in the phases in the low

frequency domain, the algorithm may take long iteration

processes to correct them. In the worst case, the error of

phases in an initial default in the low frequency domain might

be accumulated to give a wrong solution when the phases are

extrapolated to the higher frequency domain. Since the initial

default solution is obtained using a Wiener filter [28] with an

input CTF, the accuracy needed in the CTF may depend on

how far the resolution is extended. In the reciprocal space,

even with special care in alignment of the crystal axis, the

same set of diffraction spots may still have roughly 10–15%

difference. This arises because the sensitivity of human eyes is

not as good as that of imaging plates. The measured intensi-

ties from the same set of diffraction spots are averaged if the

bulk structure is known and is centro-symmetrical.

The intensities of the atomic peaks in SiC and in NiSi2 / Si do

not have any particular relationship with the atomic number

of atoms. This method, which is the same as the electron crys-

tallography methods [10–20] utilizing diffraction intensities,

only revealed the atomic peak position, but not the exact form

of the exit wave. This may be due to the fact that dynamical

diffraction becomes more important in high-order diffraction

Fig. 9 (a) HRTEM image of an interfacial dislocation of ¼<111> type in the NiSi
2 
/ Si interface. (b) A predicted image from optimum solution.

(c) The optimum solution of phase part V(r). The bending of {220} lattice plance associated with strain field of the edge component of this inter-

facial dislocation near the interface can be seen. (d) A schematic structure deduced from the positions of the bright dots. The extra half-plane

associated with this interfacial dislocation is clearly revealed. Red circles represent Si atoms and blue circles represent Ni atoms.
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[15], which causes the linear imaging constraint in our

method at high spatial frequencies to break down. The inaccu-

racy in the deault image may be responsible for this also. A

more precise initial default containing higher frequencies may

be obtained using more defocus images with well-determined

CTF functions. Combination of the focal series [4,7,8] or tilt

beam [37] series with our method may make it possible to

extend the resolution beyond the information limit numeri-

cally.

Concluding remarks

A generalized maximum entropy method coupled with

Gerchberg–Saxton algorithm has been developed to extend

the resolution of high-resolution TEM images for weak objects.

In our methodology, a generalized maximum entropy method

(Kullback–Leibler cross entropy) dealing with complex signal

in a weak object is used as a real space (P1) projection. A case

of semi-blind deconvolution (P1 projection alone) to improve

the resolution in SiC twin boundary is shown. The nature of

the bonding in this twin boundary is Si-C but it was rotated

180° along the boundary normal. The resolution extension is

completed by cyclic operation of P1 (real space) and P2 (recip-

rocal space) projections. Application examples of resolution

extension for 2 × 1 interfacial reconstruction and interfacial

dislocation in NiSi2 / Si have been shown. The bending of

{220} plane associated with the strain field of the edge com-

ponent of an interfacial dislocation can be seen. This implies

that the maximum entropy deconvolution method will refine

the atomic peak position according to the experimental image,

even though the diffraction data come from a larger area. For

future work, a quantitative comparison of the atomic peak

positions with computational positions is of interest and will

allow us to make some comments about the precision of this

method in the determination of atomic structure.
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