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A New Compact Neuron-Bipolar Junction Transistor
(�BJT) Cellular Neural Network (CNN) Structure

with Programmable Large Neighborhood Symmetric
Templates for Image Processing

Chung-Yu Wu, Fellow, IEEE,and Wen-Cheng Yen

Abstract—Based on the basic device physics of the
neuron–bipolar junction transistor ( BJT), a new compact
cellular neural network (CNN) structure called the BJT CNN
is proposed and analyzed. In the BJT CNN, both BJT and
lambda bipolar transistor realized by parasitic p-n-p BJTs in the
CMOS process are used to implement the neuron whereas the
coupling MOS resistors are used to realize the symmetric synapse
weights among various neurons. Thus it has the advantages of
small chip area and high integration capability. Moreover, the
proposed symmetric BJT CNN can be easily designed to achieve
large neighborhood without extra interconnection. By adding a
metal-layer optical window to the BJT, the BJT can be served
as the phototransistor, and the BJT CNN can receive optical
images as initial state inputs or external inputs. The correct
functions of the BJT CNNs in noise removal, hole filling, and
erosion have been successfully verified in HSPICE simulation.
An experimental chip containing a 32 32 BJT CNN and a 16

16 BJT CNN with phototransistor design, has been designed
and fabricated in 0.6- m single-poly triple-metal n-well CMOS
technology. The fabricated chips have the cell state transition time
of 0.8 s and the static power consumption of 60 W/cell. The
area density can be as high as 1270 cells/mm2. The measurement
results have also confirmed the correct functions of the proposed

BJT CNNs.

Index Terms—Cellular neural network, BJT, large neighbor-
hood.

I. INTRODUCTION

T HE cellular neural network (CNN) proposed by Chua and
Yang [1], is a special type of analog nonlinear processor

array. Due to its continuous-time dynamics and parallel-pro-
cessing feature, the CNN is very effective in real-time image
processing applications such as noise removal, edge and
corner detection, hole filling, connected component detection,
shadowing, etc. Moreover, regularity, parallelism, and local
connectivity in the CNN circuit architecture make it suitable
for very large scale integration (VLSI) implementation. So far,
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several application-dedicated analog CMOS CNN chips with
programmable template [2]–[9] or fixed template [10]–[12]
have been reported.

It is known that VLSI implementation of neural networks has
been a very interesting and challenging research area, which can
enhance the performance of neural networks for various applica-
tions. To efficiently simplify the VLSI neural network structure
for large-size network implementation on a single chip, some ef-
fort has been contributed to implement neural network functions
using the basic physical characteristics of CMOS or bipolar de-
vices [13]–[19]. Two basic device structures based on this ap-
proach have been proposed. One is the neuron-MOS (MOS)
device [13]. The other is the neuron–bipolar junction transistor
( BJT) [17]–[19]. In the neuron–bipolar device, basic neural
functions are realized by the BJTs with multiple base termi-
nals separated by base resistances. It has been applied to the im-
plementation of Hamming neural network [17] and CNNs [18],
[19].

In many CNN applications of image halftoning [20] and
subcortical visual pathway [21], [22], the templates with more
than one neighborhood, i.e., , are required. To realize
large-neighborhood templates in CNN structures, template
decomposition methods [23], [24] have been proposed to
decompose them into several smaller single-neighborhood tem-
plates which can be implemented on CNN universal machine
(CNNUM) [23], [25] or discrete-time CNN (DTCNN) through
multiple CNN operations [24]. Generally, it is difficult to
directly implement the large-neighborhood templates through
single CNN operation.

In this paper, a new circuit structure is proposed to
compactly implement CNNs with certain types of single- or
large-neighborhood symmetric templates [19]. In the new
structure called the neuron–bipolar CNN orBJT CNN [19],
the BJTs are used as the neurons with the emitter current
as the neuron output whereas the base resistances connected
among the base terminals ofBJTs and realized by MOS
devices, are used to realize the symmetric synapses in the

-template [1]. Due to the compact structure, theBJT
CNN has small chip area and high integration capability.
In the BJT CNN, the synapse values in the template can
be adjusted through the gate voltages of MOS devices. The
self-feedback function is compactly realized by incorporating
a pMOS transistor with the BJT. The resultant structure
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Fig. 1. (a) The cross-sectional view. (b) The equivalent circuit. (c) The device symbol of the proposed neuron–bipolar junction transistor (�BJT).

is similar to that of the lambda bipolar transistor [26] and
has a small chip area. The neuron input can be applied to
the base of BJT through the nMOS transistors. Since the
neurons are realized by theBJTs which can also be served
as the phototransistors, the optical images can be input
directly to the BJT CNN without adding any extra sensor
device. As the demonstrative examples on the applications of

BJT CNNs, the functions of noise removing, hole filling,
and erosion have been successfully realized and verified.

In Section II, the structure of BJT is described. In Sec-
tion III, the VLSI implementation of symmetricBJT CNN
structures with single or large neighborhood are analyzed.
Some application examples are also demonstrated for verifi-
cation. In Section IV, the experimental results are presented.
Finally, the conclusion is given.

II. NEURON–BIPOLAR JUNCTION TRANSISTOR( BJT)
STRUCTURE

The cross-sectional view and the equivalent circuit structure
of the basic BJT realized in the n-well CMOS technology is il-
lustrated in Fig. 1(a) and (b). As shown in Fig. 1(a), the ver-
tical parasitic p -n-well-p-substrate p-n-p bipolar junction tran-
sistor with the collector biased at ground is used as the neuron.
The neuron output signal is the emitter current whereas
the neuron state signal is the base voltage or the base
current . The input currents , , , and rep-
resenting neuron input signals from external sources or other
neurons, are applied to the four base terminals in the n-well
base spreading resistance arrayto . Thus the multi-input
neuron structure can be compactly realized by simply extending
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the base diffusion region. When all the input currents are zero,
the standby base current keeps the BJT in the active re-
gion. The input currents which may be positive or negative, are
summed together with their synaptic weights at the base node
to drive the BJT to conducting or off region. The symbol of
the BJT is shown in Fig. 1(c). Since the basic operational prin-
ciple of the BJT is based on the majority carrier transportation
of the BJT [15], the realized neuron structure becomes compact
without complicated interconnection.

In the equivalent circuit of Fig. 1(b), the base of theBJT
is driven by , , , , and through the spreading
resistance array. To develop a simple analytical model for the
synaptic weights of BJT, one-dimensional (1-D) uniform re-
sistor array with the same resistanceis considered as shown
in Fig. 1(b). Based on the theoretical model in [27] and [28]
and some fundamental assumptions, the current flowing
through at the th node is derived in Appendix B. In Fig. 1(b),
if the only excitation is with all other current-source exci-
tations equal to zero, the contribution of to can be
expressed by using (B7) and (B12) in Appendix B as

(1)

where

is the total number of resistors, and is the thermal
voltage. Similarly, the contribution of to can be
written as

(2)

By using the linear superposition principle and generalizing
the expression, can be approximated by

(3)

Generally, the factor

is smaller for larger and the contribution of to be-
comes smaller than that of . This means that farther cur-
rent excitation from has smaller contribution to . The
above degradation effects become more significant for larger.

Besides receiving the inputs from other neurons, theBJT
in Fig. 1(b) can send its output current via the base node to
other neurons as well. Applying the same theoretical model in
Appendix B, the currents sent to the neurons at the nodes
and are

(4)

where

and

As discussed before, is smaller for larger.
From (3) and (4), it can be realized that the factor

is equivalent to the synaptic weight in the neuron. Sinceis
dependent on which is a nonlinear function of , the value
of weighting factor is also dependent on. In the BJT appli-
cation on the CNN with , about 2.5 A is chosen for
for to realize the template coefficients. During the CNN
operation period from the beginning to the point that all the tran-
sition neurons move across their critical states toward the final
stable states, the change ofis within 28% which causes the
variations of the synapse weighting factor being within 5% for

and k . Once the transition neurons pass the
critical states, the template coefficients have no effects on the
neuron states. In theBJT application on the CNN with ,
the variation of for from 0.1 to 0.3 A. This causes the
variations of the synapse weighting factor being within 10% for

and k .The below 10% variations of tem-
plate coefficients are tolerable in theBJT CNN applications.

As may be seen from (3), the summation of the weighted in-
puts from other neurons is performed at the base node in the cur-
rent mode. Moreover, the input excitation currents and
from farther neurons still can reach the excited neuron across
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Fig. 2. (a) The cross-sectional view and (b) the equivalent circuit of the improved�BJT structure which uses the enhancement nMOSFETs to realize the base
resistance array.

the nearest neuron without extra direct interconnection. Simi-
larly, the neuron can send its weighted output currents via the
base node to other neurons as may be seen from (4). For farther
neurons, the master neuron still can source its weighted outputs
without direct interconnection. This special feature is the major
advantage of using a BJT instead of a MOSFET as the basic
neuron. It makes theBJT very suitable for large neural net-
work implementation in VLSI.

To efficiently realize the resistor array of Fig. 1(b) in
VLSI, the base spreading resistance is replaced by an
enhancement-mode n-channel MOSFET which is inserted
between the bases of two parasitic p-n-p BJTs in n-well
CMOS process as shown in Fig. 2(a) [27]. Through the
control of the gate voltages and , the inserted
nMOSFET can be operated in either strong inversion region
or subthreshold region to provide a wide range of resistance
values to achieve the wide-range adjustment of synapse
weights. Generally, the proposedBJT structure in Fig. 2(a)
has a smaller chip area than that in Fig. 1(a). The equivalent
circuit of Fig. 2(a) is shown in Fig. 2(b) where the input
current which is applied to the base of theBJT ,
represents either initial state input or external input currents
to the neuron.

To verify the characteristics of theBJT of Fig. 2(a), an ex-
perimental chip of 98 1 BJT array was designed and fab-
ricated by 0.5 m double-poly double-metal (DPDM) n-well

Fig. 3. The measured results of the fabricated 98� 1 �BJT array withI =

5�A and� = 4:8 for different coupling MOS resistance values.

CMOS technology. A current source of 5A is applied to the
base of one BJT in the array. Fig. 3 shows the measured results
of the emitter current of each BJT versus pixel position for
different coupling MOS resistance values under the single-point
stimulus of 5 A. It can be seen that larger coupling resistance
leads to faster decreasing rate ofand less effect of the stim-
ulus on the father BJTs. This means that the stimulus has no
effect on farther BJTs if the coupling resistance is large enough.
Thus the coupling resistor can be used to control the connected
layers of neighborhood neurons in the CNN.
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Fig. 4. The complete cell circuit of one��BJT neuron in the�BJT CNN.

III. SYMMETRIC BJT CNN STRUCTURES

A. BJT CNN with Single Neighborhood

The basic cell circuit of the BJT CNN is shown in Fig. 4
where the neuron is realized by theBJT with the nMOS
transistor biased by the gate voltage to generate the
standby base current . Such a neuron is called the

BJT neuron. The neuron output current flows through the
load pMOS device to generate the neuron output voltage

. The neuron state voltage is the base voltage. The
HSPICE simulated neuron output voltage versus neuron
state voltage is shown in Fig. 5. This transfer characteristic
curve is similar to that in [1] except that a small nonlinearity ex-
ists. For different , is different. Thus the current
can also be used to realize thetemplate [1] as will be described
later.

In the BJT neuron of Fig. 4, provides a positive feed-
back to so that the negative resistance is generated and the
neuron has two stable states. Thus theBJT CNN formed by

BJT neurons is of the monotonic binary-valued CNNs [29].
The self-feedback synapse in the CNN is realized by using the

positive-feedback pMOS transistor with gate connected to
ground and source (drain) connected to emitter (base) of.
The structure of and is called the lambda bipolar tran-
sistor as proposed in [26]. In realizing the lambda bipolar tran-
sistor, can be compactly implemented in the n-well base
region with its source shared with the emitter of and its
n-well substrate with the base. Thus the substrate of is
connected to its drain and the positive substrate bias exists [26].
Since the neuron structure combinesBJT with lambda bipolar
transistor, it can be called the neuron–lambda–BJT neuron or

BJT neuron. As shown in Fig. 4, the input capacitance of the

Fig. 5. The transfer characteristic of neuron output voltageV versus neuron
state voltageV .

BJT neuron is the capacitance seen at the base node, which is
dominated by the base–emitter junction capacitance. The input
resistance is the resistance seen at the base node, which is the
input resistance of in parallel with the output resistance of

.
The HSPICE simulated – characteristic of the lambda

bipolar transistor is shown in Fig. 6 where the curves of
and versus are also plotted. In the – character-
istic, is equal to zero when is smaller than 0.6 V. In this
case, and are off and is forced to zero. When

is larger than 0.6 V, is greater than and is
turned on with increased with . When is larger than
the peak voltage , the increase of is greater than that
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Fig. 6. The HSPICE simulated currentsI , I , andI versus the voltage
V in the p-n-p lambda bipolar transistor.

Fig. 7. The HSPICE simulated transfer curves of the currentsI andI
versus the emitter voltageV in the�BJT neuron with p-n-p lambda BJT.

of and thus both and are decreased with , cre-
ating a negative-resistance region. When is larger than the
valley voltage , is equal to and is turned off
with . It can be seen from Fig. 6 that theBJT neuron
has one stable state in the region 0.7 V with

ON and the other in the region with
OFF. Moreover, the self-feedback current is proportional to
the neuron output voltage between 0.6 V and . But

is not linearly proportional to as in [1]. Since the BJT
CNN is a monotonic binary-valued CNN, the nonlinearities in
both – and neuron transfer characteristic of Fig. 5 are
tolerable. Due to the local stability, theBJT CNN can guar-
antee functionality [29].

The HSPICE simulated characteristics of the currents
and in the BJT neuron of Fig. 4 versus the emitter voltage

is shown in Fig. 7 where the peak and valley voltages are
and , respectively. It can be seen from Fig. 7 that

the two stable points are located at and which
are the intersection points of and in the positive-re-
sistance region of . In the stable state , the
source–gate voltage is low (high) and the self-feedback current

to the base is low (high). The corresponding neuron state
voltages in both states are and . For A

and V, we have V and
V from the HSPICE simulation.

The peak and valley voltages in the - characteristic
curve are important parameters. They can be expressed in terms
of device parameters. At the peak voltage, is operated in
the active region, is operated in the saturation region, and

is operated in the linear region. , , and can
be written as

(5)

(6)

(7)

where and are given by

In the above equations, is electron (hole) mobility,
is the capacitance per unit area,is the channel length,

is the channel width, is the threshold voltage of
under positive substrate bias , is the threshold voltage
of , and is the emitter–base voltage of . The peak
voltage is determined by the maximum point of ,
which can be calculated from conditions

and

By using (5)–(7) and assuming a constant, can be cal-
culated as

(8)

From (8), it can be seen that can be controlled by the
ratio

and .
Similarly, the valley voltage can be derived from the

condition with operated in the saturation
region. If is known, can be written as

(9)

Substituting the parameter values into (8) and (9), we have
V and V, which are consistent

with the HSPICE simulate results.
The voltages , , , and can be charac-

terized analytically by using the suitable device equations. The
detailed derivations are given in Appendix A. With
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V and A, the calculated V and
V which are close to the HSPICE simulated

values.
In Fig. 4, the input voltage of the neuron is sent to the

base of through the nMOS transistor . It can also be
sent to other neighboring neurons through the nMOS transis-
tors as the synapse weight control. In this way, the
template of the CNN can be realized. Using a similar structure,
the initial state of the neuron can be sent to the base of

through the nMOS transistor with the gate voltage
. can be taken off from the base of by

turning off with . The standby base voltage
is either or depending on the initial input voltage

.
Besides the self-feedback, the neuron output current can be

sent to the neighboring neurons from the base ofBJT
through the nMOS transistors , , , and
as the synapse weight control. Similarly, the outputs of neigh-
boring neurons are sent to the base of through the same
MOS devices and summed there to control the neuron state.
The operational principle and basic theoretical model for this
structure are described in the previous section. According to the
derived model, the symmetric-template of the CNN can be
realized by the nMOS transistors with their gate voltages used
to control the synaptic weights of-template.

The symmetric -template as realized by the nMOS transis-
tors , , , and in Fig. 4, can be character-
ized in terms of the currents , , , , and . In
the stable state with , is nearly zero and part of is
shared by the currents , , , and . Thus the ef-
fective self-feedback current is equal to

rather than . In this stable state, the
required amount of the current to make a transition to the
other stable state is . Thus the
condition for the transition is

In the stable state with , the currents , , ,
and are either negative or equal to zero. In this case, the
effective self-feedback current is equal towhich is very small
as shown in Fig. 5. In this stable state, the required transition
current is

where and are the values of and at the peak
point . The condition for the transition is

To achieve the symmetric transition, the condition
must be satisfied by adjusting via . In this de-

sign, A is chosen to achieve symmetric transition
with . Decreasing (Increasing) leads to a negative
(positive) value of . The semiempirical relation between
and is = 12 + 0.6 .

Fig. 8. The synaptic coefficients of theA-template as represented by the
currentsI , I , I , I , andI .

TABLE I
SOME CNN TEMPLATES

From the above analysis, the synaptic coefficients of the
-template can be represented by the self-feedback current

and the four neighboring output currents , , ,
and as shown in Fig. 8. Since the self-feedback current
is very small and the currents sent out to the neighboring
neurons are much smaller than the input currents from them in
the stable state , the ratios , , ,
and are determined in the stable state . The
current ratios can be controlled by adjusting the gate voltages
of the corresponding nMOS transistors , , ,
and , to change their resistances. The relation of currents
to resistances can be approximately determined from (3) and
(4) in Section II. In the simple structure of Fig. 4, only one
nMOS transistor is used to realize the coupling path between
two neurons. Thus only symmetric templates with positive
coefficient sign can be realized.

The synaptic coefficients of -template can be represented
by the current to the master neuron and the currents
to the neighboring neurons as shown in Fig. 4, which can be
adjusted by the corresponding gate voltages. In this way, the
synaptic coefficients of -template must have positive sign.

By using the cell circuit of the BJT neuron of the Fig. 4,
a two-dimensional (2-D) BJT CNN array can be formed. To
verify its function, three CNN applications with symmetric tem-
plates are tested in theBJT CNN by using the HSPICE simu-
lation.

In the noise removal CNN, the cloning template is given in
the Table I where the central weight is two times larger than its
four neighboring weights [1]. This template can be realized by
making the self-feedback current two times larger than the
four output currents , , , and to the four neigh-
boring cells. This can be achieved by controlling the resistance
of nMOS transistors in Fig. 4 through their gate voltages. To
implement the noise removal operation, first, the suitable gate
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Fig. 9. (a) The initial image and (b) the final output image in the�BJT CNN under the noise removal operation.

Fig. 10. The transient waveforms of the neuron state voltagesV in different
cells of the�BJT CNN in performing noise removal function.

voltages are applied to the gate of the MOS transistors realizing
the template coefficients. Then the initial image pattern is ap-
plied to the input base node of the neuron as the initial condition.
Secondly, the initial input is taken away by turning off in
Fig. 4 and the BJT CNN starts its operation. After the transient
time, the BJT CNN can reach a steady state. The transient time
is dependent on the resistance and the capacitance in theBJT
neuron. The final steady state can be read out by sending out the
state voltage through a source follower as the output buffer
so that is not disturbed during readout.

Fig. 9(a) shows the initial noisy image used to test the noise
removal capability of the proposedBJT CNN. The image size
is 32 32 pixels and the BJT CNN has 32 32 cells. The
HSPICE simulated output image from theBJT CNN is shown
in Fig. 9(b). It can be seen from Fig. 9(b) that the noise has
been eliminated. Fig. 10 shows the HSPICE transient wave-
forms of neuron state voltages in ,
and cells where the states are kept constant by the initial
inputs during 1 to 5 s.

To test the hole-filling function of the BJT CNN, both
and templates [8], [22] in Table I are used. To realize

the -template, the input image is sent to the cell through
the nMOS . Its gate voltage is adjusted to make

two times larger than the self-feedback current in

Fig. 11. (a) The input image and (b) the final output image in the�BJT CNN
under the hole filling operation.

the -template. A is used to realized the
-template with . The neuron states are all initialized

to the black stable state with V. For the white pixel,
V. Fig. 11(a) shows the input image containing four

holes, which is sent to theBJT CNN. The output image with
the holes filled is shown in Fig. 11(b).

As a third example, the erosion operation is tested in theBJT
CNN. The erosion templates are given in Table I [22]. To imple-
ment the -template, the nMOS transistors and for

as shown in Fig. 4 should be used. A is used
to realized the -template with . Fig. 12(a) shows the
input image used to test the image erosion operation. The initial
states is V. The HSPICE simulated output image from
the BJT CNN is shown in Fig. 12(b) which verifies the correct
function of the BJT CNN in the erosion operation.

B. BJT CNN with Phototransistor Design

In the BJT neuron of Fig. 4, the BJT can be served as
the phototransistor by simply using a metal layer to define the
optical window and cover the rest area [14]–[16], [27]. With the
phototransistor design, theBJT CNN can use the optical im-
ages as its initial state input of the neurons. Since no extra sensor
devices are required and the devices associated with initial state
input can be saved, theBJT CNN with phototransistor design
has small chip area and high integration capability. Similarly,
the same BJT CNN with phototransistor design can use the
optical images directly as its external input if only the self-feed-
back coefficient exists in the -template. The optical external
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Fig. 12. (a) The input image and (b) the output image in the�BJT CNN under the image erosion operation.

Fig. 13. The 7� 7 template with numberr of connected neighborhood equal to: (a) 1; (b) 2; and (c) 3.

input image is applied to the CNN right after turning off the op-
tical initial-state input image. For larger self-feedback-tem-
plate coefficient, higher light intensity is used. If more than one
coefficient exist in the -template, another phototransistor is re-
quired.

C. BJT CNN with Large Neighborhood

As shown in Fig. 3 and derived in (2) and (3), smaller cou-
pling resistors lead to slower decreasing rate of the currents
sending from one neuron to other neurons. Thus the farther neu-
rons can receive the current from the master neuron through its
neighboring neuron without extra interconnection. Based upon
the above principle, the coupling resistor can be used to con-
trol the connected layers of neighboring neurons in the CNN.
Fig. 13(a) and (b) shows the-templates for the noise removal
image processing with the number of neighborhood layers
and , respectively. In template, the synaptic coef-

ficients decrease with the distance from the central coefficient.
In the template with , the synaptic coefficients are de-
termined from the output current of a neuron in the high stable
state (white) to the first-neighborhood neuron in the transition
point from low to high stable state and to the second-neighbor-
hood neuron in the low stable state (black). For the template with

given in Fig. 13(b), the self-feedback current of the central
neuron, its output current to the first-neighborhood neuron, and
that to the second-neighborhood neuron are 4.08, 2.21, and 0.31

A, respectively. The nMOS devices used to realize the template
coefficients have the device dimension m m.
The device voltages are V and
V in the first neighborhood layer and V and

V in the second layer. Thus the effective cou-
pling resistances are 232 and 237 K, respectively.

Using the -template with as shown in Fig. 13(a) and
the input noisy image of Fig. 14(a) in theBJT CNN, the output
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Fig. 14. With (a) the initial state image in the�BJT CNN for noise removal, the resultant output images are shown in (b) forr = 1; (c) for r = 2; and (d) for
r = 3.

images is shown in Fig. 14(b) where the 4-pixel square black or
white noise images are not removed even if the self-feedback
coefficient is reduced from 2 to 1. But these noise images can
be removed by using the-template with as shown in
Fig. 13(b). Since in the -template with , there is a larger
spatial mask of 5 5, thus they have stronger local averaging ef-
fects which makes all the white (black) noisy pixels in the local
region change to the black (white) ones when the total number
of black (white) pixels is larger than that of white (black) pixels.
From the above simulation results, it can be seen that the noise
removal capability is enhanced for .

In the proposedBJT CNN, simple MOS resistors are used to
realize the -templateswith largeneighborhood.Thus the realiz-
able template coefficients in the large neighborhood layers must
besmallerandthoseintheintermediatelayerscannotbezero.

IV. EXPERIMENTAL RESULTS

Based on the cell circuits in Fig. 4, an experimental chip of the
proposed symmetricBJT CNNs with the array sizes of 3232
and 16 16 as well as the 16 16 BJT CNN with phototran-
sistor design, has been designed and fabricated by using 0.6-m
single-poly triple-metal (SPTM) n-well CMOS technology. Due
to its compact structure, a high cell density of 1270 cells per

square millimeter is achieved in the 3232 BJT CNN with
five -template coefficients, one-template coefficient, and.
Fig. 15 shows a photograph of the fabricated chips of 3232

BJT symmetric CNN, 16 16 symmetric BJT CNN with
, and 16 16 symmetric BJT CNN with phototransistor

design. In the 32 32 symmetric BJT CNN experimental chip,
both image noise removal and hole-filling operations are tested.

The image-noise removal function of the fabricated 3232
BJT CNN chip has been successfully verified with the fixed

initial noisy image of Fig. 9(a) for noise removal and the fixed
input image of Fig. 12(a) for hole filling. The fixed initial image
is input to the chip simultaneously through as shown in
Fig. 4 whereas the fixed input image through and . To
read out the neuron state voltage, a source follower is used
as the output buffer for each cell. To save the wiring, only 16
cells are read out at a period of 5s. The measured character-
istics of the 32 32 BJT CNN experimental chip are sum-
marized in Table II. Fig. 16 shows the measured currents
and versus the voltage in the fabricated p-n-p BJT
neuron. Due to fabricated process variations, about 10% devi-
ation between SPICE simulation and measured results is ob-
served. Fig. 17 shows the measured output waveforms of the
neuron state voltage in the cells ,
and cells with the initial noisy image of the Fig. 9(a).
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Fig. 15. The chip photograph of 32� 32 �BJT CNN and 16� 16 �BJT CNN with phototransistor design.

TABLE II
THE SUMMARY ON THE CHARACTERISTICS OF THEFABRICATED

�BJT CNN CHIP

Fig. 16. The measured currentsI andI versus the voltageV in the
fabricated p-n-p��BJT neuron.

It can be seen from Fig. 9(a) that the state transition time of the
cell is 0.8 s. Thus the minimum readout time is 1s.

In the fabricated 16 16 BJT CNN array with phototran-
sistor design and the cell circuits in Fig. 4, the third metal layer
is used to define the optical window for the transistor and
cover the rest part of cell circuit. The same metal layer is used
to define the input image pattern by putting the optical window
only in the white pixels. The size of the optical window is 16m

16 m whereas the base area is 15m 15 m. Fig. 18 shows
the measured output emitter current of the fabricated p-n-p pho-
totransistor with the light illumination turned off to complete

Fig. 17. The measured waveforms of the neuron state voltageV in the�BJT
CNN under noise removal operation.

Fig. 18. The measured emitter currentI of the fabricated bipolar
phototransistor with the light illumination turned off during the sweep ofV .

darkness during the sweep of . The measured dark current
is about 60 pA whereas the illuminated current is 65A. In this
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Fig. 19. (a) The initial state optical image incident to the fabricated�BJT CNN chip with phototransistor design for noise removal and (b) its final output image.

Fig. 20. The measured waveforms of the neuron state voltageV of (a) the cellC(2; 10) and (b) the cellC(3; 4) in the�BJT CNN with phototransistor design
under the noise removal operation on the initial states image of Fig. 19(a).

case, the dynamic range is close to 120 dB. The measured large
bright-to-dark current ratio provides an enough wide range for
input optical images with different optical intensity. The current
gain is about 17.5 for the parasitic vertical p-n-p phototransistor.

Fig. 19(a) shows the initial state input optical image incident
to the fabricated 16 16 BJT CNN chip with phototransistor
design. Since the image pattern has been defined on-chip by cre-
ating the optical window of the third metal layer on the white
pixels, a light source incident on the chip can provide the input
image to the chip. It can be seen from the output image shown
in Fig. 19(b) that the noise has been eliminated. Fig. 20(a) and
(b) shows the measured waveforms of the state voltageof
the cells and in the BJT CNN with photo-
transistor design under the noise removal operation on the ini-
tial-state image of Fig. 19(a). The characteristics of the fabri-
cated 16 16 BJT CNN chip with phototransistor design are
summarized in Table III.

The image noise removal function of the fabricated 1616
symmetric BJT CNN chip with has been experimen-
tally verified with the initial noisy image of Fig. 21(a) where
the 4-pixel square black noise image is created. By using the

-template with as shown in Fig. 13(b), the noise can be
removed as shown in the measured output image of Fig. 21(b).
The measured waveforms of the neuron state voltagein the
cells and of the 4-pixel square black noise

TABLE III
THE SUMMARY ON THE CHARACTERISTICS OF THEFABRICATED 16� 16�BJT

CNN CHIP WITH PHOTOTRANSISTORDESIGN

pixels as well as the cells and of the normal
black pixels are shown in Fig. 21(c). It can be seen that the noisy
black cells become white with higher whereas the normal
black cells keep their lower value and remain black.

In the fabricated BJT CNN chip, the current gain of BJTs
is not completely matched due to process variations. One of the
dominant factors for mismatch is the base width. Since the
parasitic p-n-p BJTs in n-well CMOS process has a wide base
width, the resultant value is 17.5 and the mismatch is low.
The measured global variations are 3%–6% on the same wafer
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Fig. 21. (a) The initial noisy image with the 4-pixel square black noise, (b) the measured final output image, and (c) the measuredV waveforms of the selected
cells in the fabricated 16� 16 symmetric�BJT CNN withr = 2 under noise removal operation.

and 2%–4% in the same chip. Thus thevariation has negligible
effects on the characteristics of theBJT CNN structure.

The chip area of the BJT and pMOS of Fig. 4
can be reduced to a minimum value of 7m 8 m in 0.6

m SPTM n-well CMOS technology, where the emitter area is
1.5 m 1.5 m with only a minimum metal contact. Thus
the overall chip area of the same CNN cell as that in the 32

32 symmetric BJT CNN can be further reduced to 16m
18 m, which is equivalent to a high cell density of 2430

cells/mm . As compared to 3000 cells/mmin the CNN pro-
posed in [30] with mixed-signal single-neighborhood template
coefficients and hard-limited neuron transfer characteristics re-
alized in 0.25 m double-poly hexagonal-metal CMOS tech-
nology, the cell density of the symmetricBJT CNN is in the
same range.

V. CONCLUSION

A new CNN structure called the neuron–bipolar CNN (BJT
CNN) is proposed and analyzed. In theBJT CNN, the lambda
bipolar transistor is incorporated with theBJT to form the

BJT neuron. Based on the basic device physics, simple MOS
resistor array is used in theBJT to realize the symmetric
synapse weights of the-template. Thus theBJT CNN has
a compact structure which leads to small chip area and high
packing density. Through the adjustment of MOS resistance by
controlling the gate voltage, theBJT CNN can easily extend
its neighborhood layer size without extra interconnection
Moreover, the phototransistor design can be easily applied to
the BJT CNN to enable optical inputs as the neuron initial
inputs or external inputs. Thus the chip area can be further
reduced. The noise removal, hole filling, and erosion functions
have been successfully verified through both simulation and
measurement in the symmetricBJT CNN with the sizes of 32

32 or 16 16.
Future research will focus on the improvement ofBJT

CNNs in realizing asymmetric templates, with positive and
negative coefficients. Since the proposedBJT CNN has
a soft-limited transfer characteristics and the self-feedback
device can be turned off, further research on the applications of

gray scale image processing as well as other image processing
will also be explored.

APPENDIX A

A. and

At the point of , is operated in the linear region,
and are operated in the saturation region, and is

operated in the active region. We have

(A1)

(A2)

In (A1) and (A2), and can
be neglected. Thus and can be derived by using the
relation . The results are

(A3)

(A4)

where

B. and

At the point of , is operated in linear region,
and are operated in saturation region, is oper-

ated cutoff region. In the case
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By using the MOS device equations, we have

(A5)

(A6)

From (A5) and (A6), and can be written as

(A7)

(A8)

APPENDIX B

Consider the 1-D BJT and resistor array shown in Fig. 1(b)
where each node is connected to the BJTs with the
emitter–base voltage and the current for = 1, 1,
2, . To model its operation, the following basic assumptions
are used.

1) The array resistors have the same resistancewhich is
independent of the flowing current.

2) The upper and lower subarrays are symmetrical and the
total number of resistors is very large.

3) The lumped array can be approximated by a continuous
one.

4) The common-base current gainof all BJTs in the array
is constant.

5) The leakage current is neglected.
Assume that the only excitation is the current . The

emitter–base voltage of the BJT at the th node of a
subarray can be expressed as

(B1)

where
is the emitter–base junction voltage of the reference,
is the current flowing through at the th node,
is the node number from 1 to , and
is the total node number in the each side of linear
array.

Based on the third assumption given above, the summation ex-
pression can be substituted by the integration as in (B1). Since

all BJTs are biased in the active region, the emitter current
at the th pixel can be expressed as

(B2)

where is the reverse-saturation current andis the thermal
voltage. The current flowing through at the node is
given by

(B3)

where is the base current of BJT at theth node and is
the common-base current gain of BJTs.

Differentiating with respect to in (B3) and assuming
that the integration of with respect to at the th
node is nearly independent of, we have

(B4)

where the expression of in (B2) has been used with
given in (B1). Differentiating (B4) with respect to

and using the fact that and are nearly indepen-
dent of , we have

(B5)

This is a second-order nonlinear differential equation. The so-
lution is

(B6)

where and are arbitrary constants determined by
boundary conditions.

As shown in Fig. 1(b), Since the upper and lower subarrays
are symmetrical, the boundary conditions are

(B7)

(B8)
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Substituting (B6) into (B8), we have

(B9)

Given , the constants and can be solved from
(B7) and (B9) by using the numerical method. It is found that
the value of is approximately equal to if is sufficiently
large.

In order to obtain the analytical solution of , in (B7)
is approximated by and the constant can be expressed as

(B10)

where is defined as

(B11)

Using and substituting (B10) and (B11) into (B6),
can be rewritten as

(B12)
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