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Abstract--ln this paper, a new multiplier method that decomposes variable space into decom- 
posed spaces is introduced. This method allows constrained minimization problems to be decom- 
posed into subproblems. A potential constraint strategy that uses only part of the constraint set 
in the decomposed-space subproblems is also presented to increase the efficiency of this new space- 
decomposition multiplier method. Three examples are given to demonstrate this method and the 
potential constraint strategy. (~) 2001 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In this paper, a space-decomposition multiplier (SDMP) method is proposed for solving the 
constrained minimization problem 

min f(x), (1) 
xE~" 

subject to 

gj(x) ~ O, j = l , . . . , m ,  (2) 

h~(x)=0,  S = l , . . . , m ' ,  (3) 

where f : Nn __. N, gj : Nn ~ ~, and hs, : Nn ~ N are lower-bounded, continuous functions. The 
(augmented Lagrangian) multiplier methods introduced by Hestenes [1] and Powell [2] were pop- 
ular for such constrained minimization problems in the 1980s. Powell showed that the multiplier 
method can be superior to the penalty function method [2]. The multiplier methods have continu- 
ously found their applications in neural networks for constrained problems [3], in neural networks 
learning rules [4,5], and in mixed-integer, discrete, and continuous optimization [6]. Recently, new 
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penalty and multiplier methods have continuously been developed [7]. Although the multiplier 
method can significantly improve the efficiency of classical penalty function method, it has been 
shown that other higher-order algorithms, such as the sequential quadratic programming (SQP) 
method [8], are more efficient than the classical multiplier method [9,10]. However, despite being 
less efficient, the multiplier method is still superior in some ways that are listed below. 

1. Constrained minimization problems can be transformed into unconstrained minimization 
problems using the multiplier method. Therefore, the unconstrained minimization tech- 
nique, including decomposition and parallel processing techniques, can be used directly to 
solve constrained minimization problems. 

2. In general, the multiplier method requires less computer storage space, especially when 
used for large-scale minimization problems. 

3. Exact boundary values for g(x)  and h(x)  can be found using the multiplier method. 

Combining all of these advantages and overcoming the inefficiency of the multiplier methods, the 
space-decomposition multiplier (SDMP) method is proposed in this paper. The SDMP method 
extends the classical multiplier method using the space-decomposition minimization (SDM) al- 
gorithm proposed by Liu and Tseng [11]. The SDM algorithm decomposes the original variable 
space S E Nn into subspaces, and allows the minimization problem (1) to be decomposed into sub- 
problems that can be solved either singly on a single processor [11] or simultaneously on parallel 
processors [12]. The SDM algorithm is based on decomposition methods that provide a systematic 
approach to decompose minimization problems into small-scaled and coupled subproblems. Mul- 
tilevel optimization methods, whose applications can be found in structure optimizations [13,14] 
and in mixed-discrete optimization problems [15], are typical hierarchic decomposition methods. 
It has been shown that multilevel optimization methods can decompose problems into a set of 
hierarchically related subproblems, while preserving the coupling among the decomposed sub- 
problems [16]. The applications of multilevel optimization methods can be also found in neural 
networks learning rules [17]. Other decompositionmethods that decompose minimization prob- 
lems into subproblems directly have also been proposed by Kibardin [18], Mouallif, Nguyen and 
Strodiot [19]. Recently, Bouaricha and Mord [20] introduced partial separability for large-scale 
minimization problems. In these studies, the computing efficiency was shown to increase when 
the original minimization problems could be decomposed into subproblems. 

The SDM algorithm is also based on parallel variable distribution techniques. The parallel 
variable distribution. (PVD) algorithm, proposed by Ferris and Mangasarian [21], and further 
extended to inexact PVD algorithms by Solodov [22], was a method that distributes q blocks 
Xl , .  • •, Xq of variable x among q processors. These q variable blocks are communicated among 
processors either synchronously or asynchronously. The PVD algorithm provides a mechanism 
for updating coupled variables among decomposed subproblems. More recently, Fukushima [23] 
proposed a more general framework that was called the parallel variable transformation (PVT) 
algorithm. In this algorithm, the variables are transformed into spaces of smaller dimension, 
which altogether span the space of the original variables. Fukushima [23] showed that the PVD 
algorithms can be a special case of the general PVT framework. 

The notation and terminology used in this paper are described as follows: S E Nn denotes 
n-dimensional Euclidean design space with ordinary inner product and associated two-norm [[. I[, 
italic characters denoting variables and vectors. For a differentiable function f : N'~ --~ ~, V f  
denotes the n-dimensional vector of partial derivatives with respect to x and Vfs~  ( x s , )  denotes 
the ni-dimensional vector of partial derivatives with respective to xs~ E ~ '~ .  For simplicity of 
notation, changes in the ordering of variables are allowed throughout this paper. Therefore, the 
variable vector x E S can be decomposed into subvectors. That is, x = [ x s l , . . . , x s , , ] ,  where 
xs~, i = 1 , . . . ,  q, are subvector or subcomponent of x. 

This paper is organized as follows. In Section 2, basic definitions of the decomposed-space 
set, decomposed-space minimization function, and decomposed-space constraint set are given. 
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In Section 3, the SDM algorithm for unconstrained minimization problems is introduced. In 
Section 4, convergence criteria are derived. The classical multiplier method and the space- 
decomposition multiplier method are introduced in Sections 5 and 6, respectively. In Section 7, 
the potential constraint strategy that uses only a subset of the constraints is proven. Numerical 
results are presented in Section 8. 

2. D E C O M P O S E D - S P A C E  SET 

The space-decomposition minimization (SDM) algorithm [11] is a sequential algorithm that can 
solve minimization problems (1). The decomposed-space set and decomposed-space minimization 
function defined in [11] are modified as follows for this paper. 

DEFINITION 2.1. NONOVERLAPPING DECOMPOSED-SPACE SET. The original variable space S 
is spanned by {x [ x E ~n}. If the variable x is decomposed into x = [xs~,... ,  xs,], then the 
decomposed space Si, spanned by the subvector {xs~ [ xs~ E Nn~, where ~q=i ni = n}, forms a 
no.noverlapping decomposed-space s e t  { S I ,  . . . , S q } .  That is, Uq=~ Si = S and SiNSj = ~, if i ~t j .  

From Definition 2.1, the minimization function (1) can be decomposed as 

S(x)  = ss, + (4) 

where xg~ is the complement vector of xs~, fs~ (xs~, xg~) is the decomposed-space minimization 
function in the decomposed space Si and f9~ (xg~) is the complement decomposed-space function. 

COROLLARY 2.2. From (4), f$~ (x9~) is only a function of xg~. Therefore, it can be removed from 
the minimization subproblem ff x~  is invaxiant in the decomposed space Si. 

DEFINITION 2.3. DECOMPOSED-SPACE CONSTRAINT SET. The decomposed-space constraint 
sets gj,s, (xs~, xg~) and hj,,s, (xs~, xg~ ) axe defined as 

= gj, , + gj, , <_ o, 

h i . (= )  = t, j . ,s, + hj. , = o, 

j = l , . . . , m ,  i = l , . . . , q ,  (5) 

j ' = l , . . . , m ' ,  i = l , . . . , q .  (6) 

COROLLARY 2.4. From Definition 2.3, the complement decomposed-space constraints gj,~ ( x $~ ) 
and hj,,~ (xg~) axe only functions of x~;  that is, if x~  is a constant vector, gj,9~ (x$~) and 
hi,,9 ~ (x$~) will be constant values. Therefore, they need be calculated only once during the 
minimization process in decomposed space Si. 

Step 1. 

Step 2. 

Step 3. 

3. S P A C E - D E C O M P O S I T I O N  

M I N I M I Z A T I O N  ( S D M )  A L G O R I T H M  

The SDM algorithm is a sequential algorithm that can efficiently solve unconstrained mini- 
mization problems on a single processor [11]. In this section, the SDM algorithm is presented 
in brief without proof. In the following sections, it will be further expanded to the constrained 
minimization problem (1)-(3). 

ALGORITHM 3.1. SPACF~DECOMPOSITION MINIMIZATION (SDM) ALGORITHM. 

Decompose the variable space into a nonoverlapping decomposed-space set {$1, . . . ,  Sq} 
and derive the decomposed-space minimization functions fs~ (xs~, x~) ,  for i = 1 , . . . ,  q. 

Choose the starting point x (1), where x0) --Lrx(1)sl , " " ,  x(1)]sqJ and set k -- 1. 

For i = 1 to q, solve one or more steps of the minimization subproblems fs , (x(k) ,x~)  
using any convergent descent algorithm that satisfies 

( [x(k) x-'~ ) [X (k) X- ~TA(k) > (71 VfSi [ S, ' S,) > 0 (7) - V / s ,  ~, s, , s%] ~s ,  - 
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and 

where al(.), a2(.) are forcing functions [21,23], and d (k) is the search direction in the s, 
decomposed space Si. 

Step 4. Apply convergence criterion, such as I IV S s, (x(sk,), x~,)II <-- e, to all decomposed spaces Si. 
If the convergence criterion has been satisfied for all decomposed spaces, the minimum 
solution has been found as x* =Ix* ...  x* 1. sl ,  , sq ,  °therwise,  set k = k + l and g°  to  S tep  3. 

4. C O N S T R A I N T  V I O L A T I O N  A N D  C O N V E R G E N C E  C R I T E R I A  

As shown in [24], two convergence criteria are required for the inner loop and the outer loop 
of multiplier methods. In the inner loop, the unconstrained minimization convergence criterion 
is called Lagrangian condition. In the outer loop, the constraint condition is required. For 
the algorithm presented in this paper, the Lagrangian condition is satisfied first, and then the 
constraint condition is satisfied. 

If the gradient method is used for the decomposed-space subproblem in the inner loop, the 
Lagrangian condition can be 

IIVAII=~~I,VAs, II2<el.~=I (9) 

In the outer loop, the constraint violation is monitored using the violation criteria for all con- 
straints. Therefore, a maximum constraint violation V (k) is defined as [25] 

Y (k) = max{O;gl, . . .  ,gin; Ih l l , . . . ,  Ihm, I} • (10) 

Therefore, the constraint condition for the outer loop is satisfied when 

V (k) _< e2. (11) 

If only inequality constraints are presented in the constraint set, the cumulative constraint mea- 
sure that permits representation of large numbers of inequality constraints by a single cumulative 
measure can be used. This approach is generally applied to structure optimization and is defined 
as [261 

V (k) = In exp (pgj) , 

where p is an arbitrarily large number taken between 25 and 50. 

(12) 

5. A U G M E N T E D  L A G R A N G E  M U L T I P L I E R  M E T H O D  

Multiplier methods that combine the penalty function and the Lagrange multiplier A are 
briefly reviewed before describing the space-decomposition multiplier (SDMP) method. The 
decomposed-space augmented Lagrangian function is also illustrated in this section. 

To solve the constrained minimization problems (1)-(3), the augmented Lagrangia~ function 
is defined as [27] 

7Tt m 

= :(-)÷ E ÷ [,,(-)+,,'.]' 
j-=l j=l 

m ~ m '  

+ E [~)+j,hj,(x)] +r(k) E [hy(x)] 2 , 
j ' = l  3'=1 

(13) 
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A~ k) are the Lagrange multipliers and r (k) is the penalty parameter in the k th iteration. To where 
avoid the necessity of having m additional slack variables s5, the augmented Lagrangian function 
is shown to be equivalent to [28] 

A(x) : f ( x ) +  Z [A~ k)~j(x)] +r(k)~-~ [aJ (x)]2 + ~ [A(mk)+5'hs'(x)] ÷r(k) Z [h5 '(x)]2' (14) 
j = l  j = l  j ' = l  j'----1 

where ( ~ ( ~ / =  max g s ( ~ ) , - 2 - - ~ | "  (15) 

Therefore, the minimization solution can be found by minimizing the augmented Lagrangian 
function A(x), with the Lagrange multipliers updated using 

)~(k+l) = ~k) + 2r(k)(~j(x), j = 1, m, j " ' ' ,  

and 

(1~) 

where 

a 5 (xs, ,x~,)  = max gs,s, (xs, ,x~,)  + gs,gi (x$,) '-2r(k----" ~ (20) 

and 

hs, (xs , ,x~,)  = hs,,s, (x~, ,~ . , )  + hs,,~, (~. , )  • (21) 

In addition, equations (16),(17) can be modified to 

A!k+l) = A~k) + 2r(k)~ 5 (XS, x$~) j = 1 , . . , m ,  (22) 
J ' , * 

A(k+l) ~(k) 2r(k) j '  m'. m+5' = "'m+5' + [hs,,s , (xs, ,xg,)  + hs,,9 , (xg,)] , = 1 , . . . ,  (23) 

Therefore, the augmented Lagrangian function (14) can be rewritten as 

A(x) = As, (xs, ,xa,)  + f$, (x~,). (24) 

Since fa~(x8~) is a constant value in decomposed space Si, it can be omitted during the min- 
imization process. In addition, gs,~, (xa~) and hs,,a ~ (x~) are also constant values in (20)-(23). 
Therefore, they need be calculated only once during the minimization process in the decomposed 
space Si. 

A(k+l) ~(k) 2r(k)hj,(x), j '  1 , . . .  (17) m T j '  = " ' m + j '  -{- = ' mr"  

Then, the penalty parameter r (k) is updated using 

r (k+l) = cr (k), (18) 

where c > 1 is a constant value. The iterative process in (14)-(18) continues until convergence 
has been achieved. 

From Definitions 2.1 and 2.3, the decomposed-space augmented Lagrangian function that  will 
be used in the following sections can be defined as 

m m 

j----I j = l  
, , (19) 

j'----1 j ' = l  
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6. SPACE-DECOMPOSITION MULTIPLIER (SDMP) METHOD 

As shown in the previous sections, the space-decomposition minimization (SDM) algorithm can 
be applied to the multiplier method and is summarized as the space-decomposition multiplier 
(SDMP) method. The SDMP method for the constrained minimization problems (1)-(3) includes 
an outer loop and an inner loop. The outer loop provides a framework for the classical multiplier 
method, while the inner loop minimizes the augmented Lagrange function (19) using the SDM 
algorithm. This is summarized as follows. 

ALGORITHM 6.1. SPACE-DECOMPOSITION MULTIPLIER (SDMP) METHOD. 

OUTER LOOP. 

Step 1. Decompose the variable space S E ~n into q nonoverlapping decomposed spaces 
($1 , . . .  ,Sq}. Then, derive the q decomposed-space minimization function fs , ,  
the q decomposed-space constraint sets ga,s~ (xs~, x~ ) ,  ha,,s ~ (x8~, xg~), and the q 
complement decomposed-space constraint sets gj,~ (x~),  h a,,3~ (x~) ,  where i = 
1 , . . . ,q ,  j = 1 , . . . ,m ,  and j~ = 1 , . . . ,m ' .  

Step 2. Choose the starting point x (1) , where x(1) = Lrx(1)s~, • • • , x(1)ls,, J and set k = 1. 

Step 3. Initialize the Lagrange multiplier ~1), the penalty parameter r (1) and the constant 

value c > 1. In general, set )~1) = 0, where j = 1 , . . . ,  (m + m'). 

INNER LOOP. 

Step 4. For i = 1 to q, solve the minimization solution of the augmented La- 
grange function (19) using any zero or one-order convergent descent al- 

gorithm. Then, update x(k '~), which is a subvector of x(k); that is, 

X ( k )  __-- [X(kl '1) X ( k ' q ) ]  
' " " " ' S~ J" 

Step 5. If the Lagrangian condition (9) has been satisfied, go to Step 6 of the Outer 
loop; otherwise, go to Step 4 of the inner loop. 

Step 6. Update the penalty parameter r (k) by (18) and the Lagrange multiplier )~k) 
by (22),(23). 

Step 7. If the constraint condition (11) has been satisfied, the minimization solution is 
found asx* x* .. x* • = [ s~, ", s~], otherwise, set k = k + 1 and go to Step 4 of the inner 
loop. 

7. POTENTIAL CONSTRAINT S T R A T E G Y  

Numerical algorithms that use only subsets of the constraints are said to use a potential 
constraint strategy [25]. The main effect of using such a strategy is on the efficiency of the 
iterative process. This is especially true for large and complex minimization problems that may 
have hundreds of constraints, but only a few constraints may be in the potential set. In this 
section, it will be shown that any constraint not in the potential set can be temporarily removed 
from the constraint set during the iterative process. This elimination of constraints can reduce the 
dimensions of decomposed-space subproblems and increase the efficiency of the entire algorithm. 
Therefore, the potential constraint strategy is highly beneficial and should he used in practical 
optimization applications [25]. 

To apply the potential constraint strategy to the SDMP method, the constraint set (2),(3) 
is divided into potential constraint set ~s~ and nonpotential constraint set ~ in decomposed 
space Si as follows: 

= {gJ Ida v j  c { 1 , . . , m } }  and {hi, I ha' Vj' c (25) 

and 

¢s,=(gJ I gJ (x~)  ~ ~s,, Vje  (1 , . . . ,m}}  and (h a, I hj, (z~)  ~ ~ , ,  Vj ' e  ( 1 , . . . , m ' } } .  (26) 
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That is, the potential constraint set ~s, is constructed by the constraints that are functions of xs, 
and/or x~,. By contrast, the nonpotential constraint set (s, is constructed by the constraints that 
are functions of xg~. The potential constraint strategy can be applied to the decomposed-space 
augmented Lagrangian function (19), and is formulized in the following theorem. 

THEOREM 7.1. For the constrained minimization problems (1)-(3), /f any constraint is not in 
the potential constraint set (s~, it can be temporarily removed from the constraint set in the 
decomposed space S~. 

PROOF. From (5), if g3(x) is a function of only x~ in decomposed space Si, then 

g3(x) = gj,~ (x$~) = constant value in Si. (27) 

Therefore, (15) gives 
a3 (x) = constant value in Si. (28) 

Similarly, if h i, (x) is a function of only xg~ in the decomposed space Si, from (6), we can also 
have 

hj,(x) = hj, ,~ (x~)  = constant value in Si. (29) 

Therefore, the decomposed-space augmented Lagrangian function (19) can be rewritten as 

+r(~) ]~ [hJ'(~,,~e,)] ~+ Z [hj,( ~,)7 
hi, E¢s i hi, ECs~ 

gj E ¢8 i gj E¢S i 
[~(k) 
[Am+j"~J' (Xsi ,X s i )  ]'4-r(k) + 

hi, E~s i hi, E(s i 

_ L"m+Y '°3 
hi, E¢s~ 

[~3(xe,)] ~ } 
g~ e ¢s~ 

,~,)]~ 

(30) 

(31) 

where 

[~?).j (x~,)] + r(~) ~ [.j (x~,)]: 

L"mTj, '°3' 
h~, ~¢s~ 

[h3, (x~,)] ~ 

Since x~  is a constant vector in the decomposed space Si, ¢ (x~)  is also a constant value. 
Therefore, ¢(xg~) can be removed from (31) without affecting the minimization solutions of the 
decomposed-space subproblems. That is, the nonpotential constraint set (s~ can be temporarily 
eliminated from the constraint set in the decomposed space Si. Since only a subset of the 
constraint set is required to evaluate the minimization solution, the efficiency of the SDMP 
method can be improved especially for large-scale constraint sets. | 
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From Theorem 7.1, the decomposed-space augmented Lagrangian function (19) can be rewrit- 
ten as 

E E 
g:i E ~sl g~ E ~s~ 

(32) 
+ E E 

h~, E(s~ h~, E~s~ 

that can be applied to Step 4 of Algorithm 6.1. 

8. IMPLICIT C O N S T R A I N E D  MINIMIZATION P R O B L E M  

In many mechanical and structural engineering applications, the minimization problem is the 
weight, mass, or material volume of the designed system. This is usually an explicit function of 
variables x. Implicit minimization problem, such as stress, displacement, vibration frequencies, 
etc., can also be treated by introducing artificial variables [25]. Therefore, a general minimization 
problem can be formulated as an explicit minimization function f (x)  satisfying the implicit 
constraints 

gj(x,U) <_ O, j = 1 , . . . ,m,  
(33) h~(~,U) = 0, j' = 1 , . . . ,m' ,  

or the explicit constraints 
g~(x) < o, j = 1 , . . . , m ,  

(34) 
h~(x) =0 ,  j' = 1, . . . ,m' ,  

where U is an implicit function of x. In some engineering applications, such as the structural 
systems, the implicit variables U can be expressed as theequilibrium equation 

K(x)U = F(x), (35) 

where K(x) is a ~ x l stiffness matrix and F(x) is an effective load vector having £ components. 
The stiffness matrix and effective load vector generally depend explicitly on the variables x. 

If the one-order descent method is used to minimize the constrained minimization problem, it 
is necessary to evaluate the gradients of constraint functions. When the constraint functions are 
implicit in variables x, the special procedures for gradient evaluation are required [25]. From (33) 
and the chain rule of differentiation, the total derivative of gj with respect to the variables in the 
decomposed-space Si is given as 

~g~ ogj og7 du (36) 
dzs, = Oxs, + O--ff dzs--,' 

where 

Og~ _ r og~ Ogj Og~ 1 T 
ou L OU, ' ou2' " " ou~ j 

and 

dU = [ dU1 dU2 dUt ]-r 
dxs, [~ss,' d x s , ' " " d x s ,  J 

The partial derivatives ~ and ~ are easy to calculate. The ~ can be obtained by differ° Oxs~ 
entiating (35). That is, 

K(x) dU (OF(x) OK(x) U a x ~ , -  ~ ~ . (37) 
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Therefore, the dU can be calculated by (37), because the explicit form of K ( x )  and F ( x )  is 

generally available. Then, the gradient of constraint can be calculated from (36). The gradients 

of the equality constraints can also be calculated by the similar procedure discussed above. 

Other  efficient procedures for calculating derivatives of implicit function with respect to the 
variables x were generally known as design sensitivity analysis [29]. Further research on the 
design sensitivity analysis for the SDMP method is warranted. 

9 .  E X A M P L E S  A N D  N U M E R I C A L  R E S U L T S  

In this section, three constrained minimization problems are used to demonstrate the decompos- 
ed-space minimization function and the potential constraint strategy. 

EXAMPLE 1. (See [30].) 

Minimize: 

subject to: 

f ( x )  : (Xl  - -  1) 2 -[- (~2 - -  2)  2 -[- ( x3  - -  3)  2 -[- ( x4  --  4) 2 , 

X 1 - -  2 = 0, 

• i + - 2 = o.  

In this problem, { X l ,  X2, X3, X4} spans the original design space S E N4. When the design space 
is divided into four one-dimensional decomposed spaces Si E N1, i = 1 , . . . ,  4, the decomposed- 
space subproblems using the potential constraint strategy are as follows. 

Subproblem 1. f s l  (x) = (Xl - 1) 2 with constraint Xl - 2 = 0. 
Subproblem 2. fs2 (x) = (x2 - 2) 2 with no constraint. 

Subproblem 3. fs~ (x)  = (x3 - 3) 2 with constraint x32 + ~, where ~ = x 2 - 2 is a constant 
value in $3. 

Subproblem 4. fs4 (x) = (x4 - 4) 2 with constraint x 2 + ~, where ~ = x32 - 2 is a constant 
value in $4. 

The numerical results of the SDMP method and the SQP method [31] axe shown in Table 1. 

Table  1. Numer ica l  resu l t s  of  E xampl e s  1 as compared  to t he  S Q P  m e t h o d .  

M e t h o d  x~ x~ x~ x~ V* f(x*) T (s) 

Exac t  Solut ion 2.00000 2.00000 0.84853 1.13137 13.8579 

S D M P  M e t h o d  1.99999 2.00000 0.84853 1.13138 1.19E - 10 13.8578 0.015 

S Q P  M e t h o d  2.00000 1.99989 0.84852 1.13138 2.11E - 08 13.8579 0.020 

EXAMPLE 2. (See [30].) 

Minimize: 

subject to: 

f ( x )  = 100 (z2  - x12) 2 + (1 - Z l ) :  + 90 (x4 - xg)  2 + (1 - z3)  2 

+ 10.1 (x2 - 1) 2 + 10.1 (x4 - 1) 2 + 19.8 (x2 - 1) (x4 --  1), 

- 10_< xi _< 10, i = 1 , . . . , 4 .  

The original design 
subproblems axe as 

Subproblem 
Subproblem 

Subproblem 
Subproblem 

space is decomposed as in numerical Example 1, and the decomposed-space 
follows. 

1. fSl  (x) ---- 100(x2 - x~) 2 + (1 - Xl) 2 with constraints - 1 0  _< X 1 __( 10. 
2. fS2 (X) ---- 100(X2 --X12) 2 + 10.1(X2 -- 1) 2 + 19.8(X2 -- 1)(X4 -- 1) with constraints 

- 1 0  _< x2 _< 10. 
3. f s3 (x )  = 90(xa - x32) 2 + (1 - x3) 2 with constraints - 1 0  < x3 N 10. 
4. fs4 (x) = 90(xa -x32) 2 + 10.1(x4 - 1) 2 + 19.8(x2 - 1)(x4 - 1) with constraints 

- 1 0  < x4 <_ 10. 
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Table 2. Numerical results of Examples 2 as compared to the  SQP method. 

Method x~ x~ x~ x~ V* f(x*) T (s) 

Exact Solution 1.00000 1.00000 1.00000 1.00000 0.000000 - -  

SDMP Method 1.00117 1.00233 0.99882 0.99767 0.00000 0.000005 0.080 

SQP Method 0.99888 0.99787 1.00040 1.00083 0.00000 0.010000 0.110 

The numerical results of the SDMP method and the SQP method [31] are shown in Table 2. 

EXAMPLE 3. (See [30].) 

Minimize: 

subject to: 

f ( x )  = X l  - x 2  - x 3  - X l X a  + x l x 4  + x 2 x 3  - x 2 x 4 ,  

8 - - X l - - 2 x 2  ~ 0 ,  

1 2 - 4 X l - X 2 ~ 0 ,  

12 - 3Xl - 4x2 ~ 0, 

8 - -  2X3 - -  X4 ~ O ,  

8 -- X3 -- 2X4 ~ 0, 

5 - - X 3 - - X 4  ~ 0, 

xi > 0, i = 1 , . . . , 4 .  

The original design space can be decomposed into two decomposed spaces that  are spanned 

by {Xl,X2} and {x3,x4}, respectively. The decomposed-space subproblems then become the 
following. 

Subproblem 1. f ( x )  = x l  - x 2  - x l x 3  + x l x 4  + x 2 x 3  - x 2 x 4 ,  

subject to: 8 - Xl - 2x2 _~ 0~ 

1 2 -  4Xl - x2 _> 0, 

12 - 3xl - 4x2 _~ 0, 

x~ >_ 0, i = 1,2. 

Subproblem 2. f ( x )  = - x 3  - X l X 3  + x l x 4  + x 2 x 3  - x 2 x 4 ,  

subject to: 8 - 2x3 -- x4 ~ 0, 

8--X3--2X4 ~ 0 ,  

5--  X3 -- X4 >_ 0, 

xi >_ 0, i = 3, 4. 

Further decomposing the spaces into one-dimensional decomposed spaces, the decomposed-space 

subproblems become 

Subproblem 1. 

subject to: 

f ( x )  = X l  - x l x 3  +XlX4, 

8 -- Xl -- 2X2 ~ 0, 

1 2 -  4Xl - x2 ~ 0, 

1 2 -  3Xl - 4x2 ~ 0, 

Xl ~ 0. 

Subproblems 2-4 have forms similar to Subproblem 1. Since only inequality constraints are 
presented in this problem, the cumulative constraint measure (12) can also be applied to this 
problem. The numerical results as compared to the SQP method [31] are shown in Table 3. 
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* * * V *  Method x 1 X~ X 3 X 4 f(X*) T (s) 

Exact Solution 0.0000 3.0000 0.0000 4.0000 - -  -15.0000 - -  

SDMP Method 2.24E - 5 2 .9999  -9.89E - 7 4 .0000  3.99E - 09 -14.9999 0.015 

SQP Method 0.0000 3.0000 0.0000 4.0000 2.45E- 10 -15.0000 0.010 

The  numer ica l  results  for all example problems were ob ta ined  on a P e n t i u m  150 Mhz machine  

wi th  48 MB of RAM memory. The  Lagrangian  condi t ion for the  inner  loop and  the  cons t ra in t  

condi t ion  for the  outer  loop were set as c1 = 10 -4  and  ~2 = 10 - s ,  respectively. As shown in 

Tables  1-3, the numer ica l  min imiza t ion  solut ions from the SDMP method  are similar  to the  

solut ions  from the  SQP method.  In  addit ion,  the cons t ra in t  violat ions and  the  efficiency are also 

equivalent  to t ha t  of the  SQP method.  

10. C O N C L U S I O N S  

A f u n d a m e n t a l  convergent  space-decomposi t ion mult ipl ier  method  is presented in this  paper  

for cons t ra ined  min imiza t ion  problems. This  method  allows min imiza t ion  problems to be decom- 

posed into subprob lems  tha t  can be solved using zero- or one-order convergent  a lgori thms.  The  

cons t ra in  set can also be decomposed into potent ia l  cons t ra in t  set and  nonpo ten t i a l  cons t ra in t  

set. I t  is shown tha t  any  cons t ra in t  not  in the potent ia l  cons t ra in t  set can be t empora r i ly  removed 

from the  cons t ra in t  set in the  decomposed space. Numerical  results show tha t  the new mul t ip l ier  

me thod  can perform well with the potent ia l  cons t ra in t  strategy. 
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