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Modi�ed state–space procedures for pseudodynamic testing
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SUMMARY

The existing on-line numerical integration algorithms are derived from the Newmark method, which is
based on an approximation of derivatives in the di�erential equation. The state–space procedure (SSP),
based on an interpolation of the discrete excitation signals for piecewise convolution integral, has been
con�rmed as more reliable than the Newmark method in terms of numerical accuracy and stability.
In an attempt to enhance the pseudodynamic test, this study presents an on-line integration algorithm
(referred to as the OS–SSP method) via an integration of the state–space procedure with Nakashima’s
operator-splitting concept. Numerical stability and accuracy assessment of the proposed algorithm in
addition to the explicit Newmark method and the OS method were investigated via an eigenvalue,
frequency-domain and time-domain analysis. Of the on-line integration algorithms investigated, the OS–
SSP method is demonstrated as the most accurate method with an acceptable stability (although not
unconditionally stable) characteristic. Therefore, the OS–SSP method is the most desirable method for
pseudodynamic testing if the numerical stability criterion (� t=T 6 0:5) is ensured for every vibration
mode involved. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The dynamic testing of large-scale structures continues to play a signi�cant role in earthquake
engineering research. Although the shaking table test is recognized as the most direct means for
earthquake simulation, the pseudodynamic test has been an e�ective and widely accepted practice
since the initial studies by Takanashi et al. [1], Shing and Mahin [2] and Mahin and Shing [3].
In a pseudodynamic test, the reaction forces of the tested structure or its components are directly
measured, and fed back on-line for earthquake response analysis via numerical integration. A
pseudodynamic test, requiring a quasi-static loading actuator, allows for the testing of larger-
scale structures than those permitted by a shaking table test. Additionally, the sub-structuring
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technique further reduces experiment cost. Clearly, the pseudodynamic test is more favourable
for tests requiring full-scale implementation.
The pseudodynamic test is an approximate means of simulating quasi-static dynamic struc-

tural responses. One major di�culty in pseudodynamic testing is that results are very sensitive
to experimental errors. The error resources of a pseudodynamic test are primarily executing
errors introduced during the loading process, and numerical errors introduced during the direct
integration process [4–6]. In order to avoid complications that may result from iterative proce-
dures during pseudodynamic testing, the dynamic integration algorithms employed are normally
explicitly represented (for example, the explicit Newmark method). However, the explicit-type
algorithms do not preserve the desired characteristics of stability and accuracy. To overcome
this di�culty, Thewalt and Mahin [7] presented an unconditionally stable implicit integration
scheme via the introduction of an analog electrical device without iterative procedures for
displacement correction. Nakashima et al. [8] presented the operator-splitting (OS) method by
dividing the displacement term into the implicit and explicit parts. A pseudodynamic test cor-
rects displacement via a one-step predictor–corrector iterative process without the employment
of an extra electrical device (as required by Thewalt and Mahin [7]). Additionally, if an appro-
priate parameter is chosen the OS method is unconditionally stable, as veri�ed by Nakashima et
al. [8]. This method is particularly advantageous in testing structures with inelastic behaviours.
The aforementioned numerical integration algorithms are derived from the Newmark method,

which is based on the approximation of derivatives in the di�erential equation. However, the
state-space procedure (SSP) [9; 10] (based on the interpolation of the discrete excitation sig-
nals for piecewise convolution integral) is more reliable than the Newmark method in terms
of both numerical accuracy and stability. In an attempt to enhance the pseudodynamic test, an
SSP-based integration algorithm (referred to as the OS–SSP method) is presented via an inte-
gration of Nakashima’s [8] operator-splitting concept with the state-space procedure. Although
the original state-space procedure is unconditionally stable, its derivative (i.e. OS–SSP) does
not preserve the desired characteristics of numerical stability, requiring further investigation.
Accuracy assessment of the proposed algorithms in addition to the explicit Newmark method
and the OS method is investigated via an eigenvalue, frequency- and the time-domain analysis
of both linear and non-linear structures. Of the on-line integration algorithms investigated, the
OS–SSP method is illustrated as the most accurate method with acceptable stability (although
not unconditionally stable) characteristic. Therefore, the OS–SSP method is the most desirable
method for pseudodynamic testing if the numerical stability criterion (� t=T 6 0:5) is ensured
for every vibration mode involved.

2. DERIVATION OF DIFFERENCE EQUATIONS

When an n degree-of-freedom (DOF) structure is subjected to earthquake loads w(t), its equa-
tion of motion can be expressed as

M �x(t) +Cẋ(t) +Kx(t) = Êw(t) (1)

where x(t) is an n× 1 displacement vector, M is an n× n mass matrix, C is an n× n damping
matrix, K is an n× n sti�ness matrix, and Ê is an n× 1 earthquake-loading vector. In pseudody-
namic tests, the restoring force of the structure is the reaction force measured when the structure
is forced to the estimated position x(t) by the hydraulic actuator. Therefore, the term Kx(t), in

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2001; 30:59–80



MODIFIED STATE–SPACE PROCEDURES 61

Equation (1) is replaced by the restoring force, R(t), as

M �x(t) +Cẋ(t) +R(t) = Êw(t) (2)

regardless of linear or non-linear systems.

2.1. Explicit Newmark method

The basic equations of the Newmark method [11] are generally formulated as

M �xk+1 +Cẋk+1 +Rk+1 = Êwk+1 (3)

xk+1 = xk +� tẋk +� t2[( 12 − �) �xk + � �xk+1] (4)

ẋk+1 = ẋk +� t[(1− �) �xk + � �xk+1] (5)

where � t is the integration time interval, the subscript k indicates values at time equal to
k� t and � and � are parameters characterizing the approximation strategy. This numerical
scheme can be directly implemented for pseudodynamic testing by setting parameter � to be
zero. Equation (4) is then simpli�ed as

xk+1 = xk +� tẋk +
� t2

2
�xk (6)

in an explicit manner. With xk+1 calculated, the structure is then repositioned accordingly.
For linear structures, the restoring force Rk+1 = Kxk+1. The structural response represented

by Equations (3), (5) and (6) can be concisely expressed in a recursive matrix form as

zk+1 = Azk + Ewk+1 (7)

where

zk =




xk
� tẋk
� t2 �xk




is a 3n× 1 structural response vector,

A =




I I 1
2I

−�� t2M̂−1
K I − �� tM̂−1

C− �� t2M̂−1
K (1− �)(I − �� tM̂−1

C)− �� t2

2
M̂

−1
K

−� t2M̂−1
K −� tM̂−1

C−� t2M̂−1
K −M̂−1

C� t(1− �)− � t2

2
M̂

−1
K




is a 3n× 3n e�ective system matrix,

E =




0

�� t2M̂
−1
Ê

� t2M̂
−1
Ê




is a 3n× 1 e�ective load vector and M̂ =M+C�� t is an n× n e�ective mass matrix.
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Without loss of generality, a single-degree-of-freedom (SDOF) structure is considered for
stability and accuracy assessment. Therefore, the e�ective system matrix A and the e�ective
load vector E are reduced, respectively, as

A =



1 1 1

2

−�� 1− �� − �� (1− �)(1− ��)− ��
2

−� −(�+ �) −�(1− �)− �
2


 and E =

1
!20



0

−��
−�




where � = 2�!0� t=(1 + 2�!0�� t), � = !20� t
2=(1 + 2�!0�� t) !0 and � are the natural

frequency and damping ratio of the structure, respectively. �, � and A are dimensionless
favorable for numerical stability assessment.

2.2. Operator-splitting method (OS)

The operator-splitting method proposed by Nakashima et al. [8] is derived under the frame-
work of Newmark method. The restoring force R in the equation of motion (2) is divided
into implicit linear force RI = KIx and explicit non-linear corrective force RE(x̃), i.e.

M �xk+1 +Cẋk+1 +KIxk+1 +RE
k+1 = Êwk+1 (8)

where KI is the initial sti�ness of the structure, RE
k+1 = Rk+1 − KIx̃k+1with x̃k+1being the

predicted displacement of the (k + 1)th time instant de�ned as

x̃k+1 = xk +� tẋk + (12 − �)� t2 �xk (9)

which is the explicit part of Equation (3). During each step of the testing, the structure is po-
sitioned according to x̃k+1 estimated by Equation (9) and the restoring force Rk+1 is measured.
The velocity and acceleration responses of the structure are in turn estimated from Equations
(4), (5) and (8) and the structure’s displacement at time instant k + 1 is then modi�ed as

xk+1 = x̃k+1 + �� t2 �xk+1 (10)

After elaborating the above-mentioned substitutions, the di�erence equation can be constructed
as

zk+1 = Azk + Ewk+1 + BR
E
k+1 (11)

where

A =




I − �� t2M̂−1
KI I − �� t(M̂−1

C+� tM̂
−1
KI) ( 12 − �)I − �� t[(1− �)M̂

−1
C+ ( 12 − �)� tM̂

−1
KI]

−�� t2M̂−1
KI I − �� tM̂−1

C− �� t2M̂−1
KI (1− �)(I − �� tM̂−1

C)− �( 12 − �)� t2M̂
−1
KI

−� t2M̂−1
KI −� t(M̂−1

C+� tM̂
−1
KI) −� t[(1− �)M̂−1

C+ ( 12 − �)� tM̂
−1
KI]




is the 3n× 3n e�ective system matrix,

E =



�� t2M̂

−1
Ê

�� t2M̂
−1
Ê

� t2M̂
−1
Ê
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is the 3n× 1 e�ective load vector,

B =



−�� t2M̂−1

−�� t2M̂−1

−� t2M̂−1




is the 3n× n e�ective correcting matrix, and M̂ =M+ �� tC+ �� t2KI is the n× n e�ective
mass matrix.
Without loss of generality, the stability and accuracy of the numerical method is investigated

by considering a SDOF structure. De�ning parameter � to be the ratio between the initial
sti�ness and the actual sti�ness (i.e. the instantaneous tangent sti�ness) of the structure, that
is

KI = �K (12)

and the corrective force REk+1 = (1− �)Kx̃k+1, the e�ective system matrix A and the e�ective
load matrix E are simpli�ed, respectively, as

A =



1− �� 1− �� − �� ( 12 − �)− ��(1− �)− �( 12 − �)�
−�� 1− �� − �� (1− �)(1− ��)− �( 12 − �)�
−� −(�+ �) −(1− �)� − ( 12 − �)�


 and E =

−1
!20



��
��
�




where

� =
2�!0� t

1 + 2�!0�� t + ��!20� t2
and � =

!20� t
2

1 + 2�!0�� t + ��!20� t2

are again dimensionless.

2.3. Operator–splitting state-space procedure(OS–SSP)

The equation of motion (2) is reformulated in a state-space form, leading to a �rst-order
di�erential equation as

Ż(t) = ACZ(t) + ECw(t) + BCR(t) (13)

where

Z(t) =

[
x(t)
ẋ(t)

]

is a 2n× 1 continuous-time state vector,

AC =

[
0 I
0 −M−1C

]
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is a 2n× 2n continuous-time system matrix,

EC =

[
0

M−1Ê

]

is a 2n× 1 continuous-time load vector, and

BC =

[
0

−M−1

]

is a 2n× n continuous-time correcting force matrix.
Taking a Laplace transformation of Equation (13), it gives

Z(s) = H(s)Z(t0) +H(s)G(s) (14)

where Z(t0) denotes the initial conditions of the state at t = t0, and

H(s) = (s I −AC)−1 (15a)

G(s) = ECw(s) + BCR(s) (15b)

The solution of Equation (13) is then obtained by taking an inverse Laplace transformation
of Equation (14) back to the time domain, giving

Z(t) = eAC(t−t0)Z(t0) +
∫ t

t0
eAC(t−�)[ECw(�) + BCR(�)]d� (16)

The external load w(�) and the restoring force R(�) are recorded in the form of digital signals.
It is reasonable to assume that the external load and the restoring force are linear between
two consecutive sampling instants, that is

w(�) =
(k + 1)� t − �

� t
w(k�t) +

�− k� t
� t

w((k + 1)� t); k� t 6 �6 (k + 1)� t (17a)

R(�) =
(k + 1)� t − �

� t
R(k� t) +

�− k� t
� t

R((k + 1)� t); k� t 6 �6 (k + 1)� t (17b)

When t = (k + 1)� t and t0 = k� t are assigned, from Equation (16), the analytical solution
to the continuous-time state equation (13) is a di�erence equation as

Zk+1 =ADZk + E0wk + E1wk+1 + B0Rk + B1Rk+1 (18)

where AD= eAC�t is a 2n× 2n discrete-time system matrix, which can be represented in the
form of the Taylor series expansion as

AD = I+AC�t +A2C
�t2

2!
+ · · ·+AnC

�tn

n!
+ · · ·

E0 =
[
A−1

C AD +
1
�t
A−2

C (I −AD)
]
EC (19)
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is a 2n× 1 load matrix of current time-step,

E1 =
[
−A−1

C +
1
�t
A−2

C (AD − I)
]
EC

is a 2n× 1 load matrix of next time-step,

B0 =
[
A−1

C AD +
1
�t
A−2

C (I −AD)
]
BC

is a 2n× n correcting force matrix of current time-step, and

B1 =
[
−A−1

C +
1
�t
A−2

C (AD − I)
]
BC

is a 2n× n correcting force matrix of next time-step.
Adopting the concept of operator-splitting, the restoring force, R, in Equation (2) is divided

into the implicit linear force RI=KIx and the explicit non-linear corrective force RE(x̃), and
the equation of motion can be reformulated as

M �x(t) +Cẋ(t) +KIx(t) +RE(x̃)= Êw(t) (20)

and its state-space form counterpart becomes

Ż=ACZ(t) + ECw(t) + BCRE(t) (21)

where

AC=

[
0 I

−M−1KI −M−1C

]

is a 2n× 2n continuous-time system matrix.
The discrete-time state equation of Equation (21) is

Zk+1 =ADZk + E0wk + E1wk+1 + B0RE
k + B1R

E
k+1 (22)

where AD;E0;E1;B0 and B1 are as de�ned earlier.
During each step of the pseudodynamic testing, the corrective restoring force RE

k+1 =Rk+1−
KIxk+1 at time instant k+1 is determined with Rk+1 measured when the structure is displaced
by xk+1 =DZk+1 where D=[I 0]. According to Equation (22), however, Zk+1 is a function of
RE
k+1. Therefore, the solution requires an iterative process. To avoid the complication caused
by an iterative process, the explicit part of the state in Equation (22) is considered as the
predictor, that is

Z̃k+1 =ADZk + E0wk + E1wk+1 + B0RE
k (23)

The predicted structural displacement, x̃k+1, is then calculated as

x̃k+1 =DZ̃k+1 (24)

Rk+1 is measured as soon as the structure is moved to the target position and the corrective
force RE

k+1 =Rk+1 − KIx̃k+1 can be estimated which in turn is substituted into Equation (22)
for Zk+1.
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For linear structures, the corrective restoring force RE
k+1 can be expressed as

RE
k+1 = (K −KI)DZ̃k+1 (25)

Notably, Equation (25) is also valid for time k, that is, RE
k =(K − KI)DZ̃k . Substituting RE

k
into Equation (23) gives

Z̃k+1 =ADZk + E0wk + E1wk+1 + B0(K −KI)DZ̃k (26)

Further substitution of Equations (25) and (26) into Equation (22) leads to

Zk+1 = [I+ B1(K −KI)D]ADZk + [I+ B1(K −KI)D]B0(K −KI)x̃k

+[I+ B1(K −KI)D]E1wk+1 + [I+ B1(K −KI)D]E0wk (27)

De�ning the extended state vector

�zk =

[
Zk
x̃k

]
;

then from Equations (24), (26) and (27), the extended state equation is obtained as

�zk+1 =A �zk + �E0wk + �E1wk+1 (28)

where

A=

[
[I+ B1(K −KI)D]AD [I+ B1(K −KI)D]B0(K −KI)

DAD DB0(K −KI)

]

is a 3n× 3n e�ective system matrix,

�E1 =

[
[I+ B1(K −KI)D]E1

DE1

]
and �E0 =

[
[I+ B1(K −KI)D]E0

DE0

]
:

3. STABILITY ANALYSES OF NUMERICAL METHODS

For SDOF systems, the e�ective system matrix

A=



A11 A12 A13
A21 A22 A23
A31 A32 A33




is a 3× 3 matrix. The characteristic equation of the system matrix can be expressed as

F()= 3 − a22 + a1− a0 = 0 (29)
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where

a0 = 123 =

∣∣∣∣∣∣∣
A11 A12 A13
A21 A22 A23
A31 A32 A33

∣∣∣∣∣∣∣
a1 = 12 + 23 + 31

=

∣∣∣∣∣ A11 A12
A21 A22

∣∣∣∣∣+
∣∣∣∣∣ A11 A13
A31 A33

∣∣∣∣∣+
∣∣∣∣∣ A22 A23
A32 A33

∣∣∣∣∣
a2 = 1 + 2 + 3 =A11 + A22 + A33

The necessary and su�cient conditions for the numerical stability are

F(1) = 1− a2 + a1 − a0¿0 (30a)

F(−1) = −1− a2 − a1 − a060 (30b)

|a0|6 1 (30c)

|a20 − 1|¿ |a0a2 − a1| (30d)

3.1. Explicit Newmark method

When the explicit Newmark method is adopted for the dynamic analysis of a SDOF structure,
the coe�cients of the characteristic equation (29) are

a0 = 0 (31a)

a1 = 1 +
�
2
− �� − � (31b)

a2 = 2− �� − �
2
− � (31c)

According to Equation (30), the necessary and su�cient conditions for unconditional sta-
bility are

�¿
1
2
− �
�

(32a)

��+ �6 2 (32b)

If �= 1
2 − �=� is chosen, the criterion for stability becomes �64, or equivalently

�t
T0
6
1
�
[
√
1− 3�2 + �] ≈ 1

�
(1 + �) (33)

3.2. OS method

When the OS method is adopted for the dynamic analysis of a SDOF structure, the coe�cients
of the characteristic equation (29) are

a0 = 0 (34a)
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a1 = 1 + (12 − �)� − � (34b)

a2 = 2− (�+ 1
2)� − � (34c)

According to Equation (30), the necessary and su�cient conditions for unconditional sta-
bility are

�¿
1
2
− �
�

(35a)

��+ �6 2 (35b)

If �= 1
2 − �=� and �= 1

4 are chosen, the criterion for stability becomes �64, or equiva-
lently

�t
T0
6
1
�

(
�+

√
1− �+ (4�− 3)�2
1− �

)
≈ 1
�

(
1√
1− � +

�
1− �

)
; 06�61 (36a)

�t
T0
6∞; �¿1: (36b)

Disregarding damping, Equation (36a) is simpli�ed as �t=T061=�
√
1− �. If �¿1 as depicted

in Equation (36b), that is, the actual sti�ness is less than the initial sti�ness (softening type),
the OS method is unconditionally stable regardless of the value of �t=T0, as con�rmed by
Nakashima et al. [8]

3.3. OS–SSP method

When the OS–SSP method is adopted for the dynamic analysis of an undamped SDOF struc-
ture, the e�ective system matrix can be derived as

A=



A11 A12 A13
A21 A22 A23
A31 A32 A33


 (37)

where

A11 = cos(
√
�!0�t) +

(1− �)
�

cos(
√
�!0�t)

[
sin(

√
�!0�t)√
�!0�t

− 1
]

A12 =
sin(

√
�!0�t)√
�!0�t

+
(1− �)
�

sin(
√
�!0�t)√
�!0�t

[
sin(

√
�!0�t)√
�!0�t

− 1
]

A13 =−
(
1− �
�

)2
cos(

√
�!0�t) +

(
1− �
�

)2 sin(√�!0�t)√
�!0�t

(1 + cos(
√
�!0�t))

−
(
1− �
�

)2 sin2(√�!0�t)
(
√
�!0�t)2

+
(
1− �
�

)
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× cos(
√
�!0�t)−

(
1− �
�

)
sin(

√
�!0�t)√
�!0�t

A21 =−
√
�!0�t sin(

√
�!0�t) +

(
1− �
�

)

× cos(
√
�!0�t)[cos(

√
�!0�t)− 1]

A22 = cos(
√
�!0�t) +

(
1− �
�

)
sin(

√
�!0�t)√
�!0�t

[cos(
√
�!0�t)− 1]

A23 =
(
1− �
�

)2
cos(

√
�!0�t)(cos(

√
�!0�t)− 1) +

(
1− �
�

)2 sin(√�!0�t)√
�!0�t

× (1− cos(
√
�!0�t)) +

(
1− �
�

)
(1− cos(

√
�!0�t))

−
(
1− �
�

)√
�!0�t sin(

√
�!0�t)

A31 = cos(
√
�!0�t)

A32 =
sin(

√
�!0�t)√
�!0�t

A33 =
(
1− �
�

)[
cos(

√
�!0�t)− sin(

√
�!0�t)√
�!0�t

]

and � is de�ned by Equation (12). The coe�cients of the characteristic equation (29) are

a0 = 0 (38a)

a1 =1 (38b)

a2 = 2 cos(
√
�!0�t) +

2 sin(
√
�!0�t)√

�!0�t

(
1− 1

�

)
(1− cos(

√
�!0�t)) (38c)

According to Equation (30), the necessary and su�cient conditions for unconditional sta-
bility are

− cot2
(√

�!0�t
2

)
6
sin(

√
�!0�t)√
�!0�t

(
1− 1

�

)
61 (39)

The stability limit obtained numerically from Equation (39) for the proposed OS–SSP
method depends on �, as depicted in Figure 1, while the stability limit curve for the OS
method is comparatively presented.
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Figure 1. Scope of numerical stability for the OS–SSP method.

4. ACCURACY ANALYSIS OF NUMERICAL METHODS

Eigenvalue, frequency- and time-domain analysis can evaluate the accuracy of the numerical
methods. The eigenvalues of the e�ective system matrices can extract the system parameters
including the natural frequencies and damping ratios. Veri�cation via an eigenvalue analysis
of the numerical procedures reveals that the natural frequencies and damping ratios of the
structures might not be conserved. Veri�cation via a frequency-domain analysis of the numer-
ical procedures also veri�es that the location and magnitude of the peaks of the frequency
response functions (that only contain steady-state responses) might not be conserved. By time-
domain analysis, the accuracy of the numerical methods can be obtained by comparing the
response time histories (containing both the transient and the steady-state responses). Only a
time-domain analysis can assess non-linear behaviours.

4.1. Accuracy in eigenvalue analysis

The modulus �i and phase angle #i of the eigenvalue i of the e�ective system matrix, A,
can extract the e�ective natural frequency f′

i and the e�ective damping ratio �
′
i as

f′
i =

√
(ln �i)2 + #2i

�t
(40a)

�′i =− ln �i√
(ln �i)2 + #2i

(40b)

Figure 2 depicts the e�ective frequencies with respect to the sampling ratio �t=T0. An analy-
sis employing the explicit Newmark method tends to overestimate the vibration frequency with
the �t=T0 increased, within the stability limit at �t=T0 = 1=�. An analysis by the OS method (with
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Figure 2. Accuracy of natural frequency.

Figure 3. Accuracy of damping ratio.

�=1 for elastic structures) tends to underestimate the vibration frequency with the �t=T0 in-
creased. Conversely, an analysis by the OS–SSP method (with �=1 for elastic structures)
conserves the vibration frequency within the stability limit at �t=T0 = 0:5 without distortion.
Figure 3 illustrates the e�ective damping ratios with respect to the sampling ratio, �t=T0,

where a damping ratio of 0.01 is assumed for the structures. The explicit Newmark (with
�= 1

2) and OS (with �=
1
2 ; �=

1
4) methods tend to underestimate the damping ratio as �t=T0

increases (within the corresponding stability limits), while the OS–SSP method su�ciently
conserves the damping ratio within the stability limit (�t=T0 = 0:5). Although both the explicit
Newmark and OS (with �= 1

2) methods are not numerically dissipative for undamped systems
[2; 12], they do not conserve the damping properties for damped structures.
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Figure 4. Accuracy of displacement frequency response function by explicit Newmark
method (�t=T0 = 0:1, �=0:01).

4.2. Accuracy in frequency-domain analysis

After taking discrete-time Fourier transformation for the di�erence equations (7), (11) and
(28), the structural responses �zk and external disturbance wk are related in the frequency
domain by

�z(f)=H(f)w(f) (41)

where �z(f) and w(f) are the discrete-time Fourier transformations of structural responses �zk
and external disturbance wk , respectively, and H(f) is the frequency response function. The
frequency response functions for the explicit Newmark method and the OS method are

H(f)= (e j2�f�tI −A)−1(e j2�f�t �E) (42)

and for the OS–SSP method,

H(f)= (e j2�f�tI −A)−1( �E0 + e j2�f�t �E1) (43)

If the value of �t=T0 is su�ciently small (for example �t=T0 6 0:05), as revealed from
eigenvalue analysis (see Figures 2 and 3), su�cient accuracy in any of the numerical method
discussed can be achieved. However, the sampling ratio may easily exceed 0.05 for structures
containing high-frequency responses. An accuracy analysis of the numerical methods is further
evaluated with �t=T0 = 0:1 employing the frequency-domain analysis.
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Figure 5. Accuracy of displacement frequency response function by OS method (�t=T0 = 0:1, �=0:01).

Employing the explicit Newmark method, the peak of the frequency response remains rel-
atively unchanged in magnitude and shifted rightward (Figure 4). Employing the OS method
(with �=1 for linear structures), the peak of the frequency response remains relatively un-
changed in magnitude and shifted leftward (Figure 5). Both methods illustrate a signi�cant
frequency distortion for frequency ratios (f=f0 nearby 1), however, no distortion for fre-
quency ratios beyond 1.5 and below 0.5. Furthermore, the OS–SSP method (with �=1 and
�t=T0 = 0:1) indicates no distortion of the frequency response function, regardless of the fre-
quency ratios (Figure 6), con�rming a complete conservation of the structure’s dynamic
characteristics.

4.3. Accuracy in time-domain analysis

The eigenvalue analysis and the frequency-domain analysis are only applicable for linear elastic
systems, while the time-domain analysis is valid for both linear elastic and non-linear systems.
The accuracy properties of the numerical methods are examined employing a time-domain
analysis for both linear and non-linear cases next.

4.3.1. Linear case. Considering an external load

w(t)= a sin 2�ft (44)
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Figure 6. Accuracy of displacement frequency response function by OS–SSP
method (�t=T0 = 0:1, �=0:01).

where f and a are, respectively, the frequency and amplitude of the external load. The numer-
ical solutions are obtained recursively from the di�erence equations (7), (11) and (28) with
an integration time step �t=0:1T0.
The structural responses from the numerical and exact solutions are compared in Figures

7–9 and correspond to the frequency ratio (f=f0) between the external load and the structure
of 0.5, 1.0 and 1.5, respectively. The OS–SSP method achieved an exceptional correspondence
between the numerical and exact solutions, regardless of the frequency ratio. However, serious
discrepancies within the numerical solutions employed by both the explicit Newmark and OS
methods were observed when compared with the exact solution. This might not be anticipated
except in the case of f=f0 = 1, as revealed in the frequency response functions (Figures 4
and 5) where the distortion is prominent only when f=f0 = 1 (approximately). The frequency
response functions contain only steady-state responses. Therefore, the prediction errors by the
explicit Newmark and OS methods for the cases of f=f0 = 0:5 and 1.5 are primarily attributed
to the transient responses. When a damping ratio of only 1 per cent is applied, the transient
responses decay gradually. These results con�rm the outstanding ability of the OS–SSP method
to preserve both high �delity transient and steady-state responses.

4.3.2. Non-linear case. Pseudodynamic tests are most valuable when evaluating the inelastic
behaviour of seismic structures. To verify the adequacy of the on-line integration algorithms
for non-linear structures, accuracy analysis was conducted for a SDOF inelastic structure whose
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Figure 7. Accuracy of structural displacement (�t=T0 = 0:1, �=0:01, f=f0 = 0:5).

restoring force was represented by Wen’s model [13] as

R(t)= �K0x(t) + (1− �)K0q(t; ẋ) (45)

where K0 is the initial sti�ness, x and ẋ are, respectively, the displacement and the velocity
of the structure, � is the ratio of the post-yielding sti�ness to the initial sti�ness and q is the
hysteretic restoring deformation governed by

q̇= �ẋ − �|ẋ||q|n−1q− �ẋ|q|n (46)

where �; �; � and n are parameters determining the shape of the hysteresis loop (chosen in this
example as �=2, �=0:75, �=0:25 and n=1). The mass and the initial sti�ness of the structure
were chosen so that its fundamental period, T0, before yielding is 0.4 s and sti�ness ratio of
�=0:5 and damping ratio equaled 2 per cent. The sinusoidal external load represented by Equa-
tion (44) with f=f0 = 1 is employed as the excitation, and the integration time interval �t equaled
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Figure 8. Accuracy of structural displacement (�t=T0 = 0:1, �=0:01, f=f0 = 1:0).

0.02 s such that �t=T0 = 0:05. Since no analytical solution existed for this nonlinear problem,
the ‘exact’ solution was obtained by using the original state-space procedure (which cannot
be used for direct pseudodynamic testing) with �t=0:001 s and an iterative pseudo-force
corrective procedure to assure desirable precision. The accuracy of the nonlinear analysis
employing the integration methods, OS–SSP and OS, with respect to the ‘exact’ solution was
appraised by the error percentage de�ned as

Err=

√∑N
i=1(�xi − xi)2√∑N
i=1(xi)2

× 100 per cent (47)

where xi is the ‘exact’ solution at the ith time instant, �xi is the predicted solution at the ith time
instant by one of the aforementioned integration algorithms and N is the total number of data.
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Figure 9. Accuracy of structural displacement (�t=T0 = 0:1, �=0:01, f=f0 = 1:5).

The displacement time history and the hysteresis of restoring force by the OS and the
OS–SSP methods are illustrated in Figures 10 and 11, respectively. The OS–SSP method re-
veals a signi�cant correlation between the numerical and ‘exact’ solutions. An error percentage
of 2.3 per cent in displacement and 2.2 per cent in restoring force (within the course of 10 s)
was achieved, as compared to the OS method where the error percentage of 23.5 per cent in dis-
placement and 22.6 per cent in restoring force was estimated. The OS–SSP method, an implicit
algorithm, with a one-step correction of the response calculation is comparable to the original
SSP algorithm in terms of numerical accuracy, while adaptive to pseudodynamic testing.

5. CONCLUSIONS

Both the explicit Newmark and OS method commonly adopted for the pseudodynamic testing are
based on the Newmark method. This article presents the OS–SSP method via an integration of
the state-space procedure with Nakashima’s operator-splitting concept. Numerical stability criteria
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Figure 10. (a) Hysteresis of the inelastic structure by OS method. (b) Displacement of the inelastic
structure by OS method (�= 1

2 , �t=T0 = 0:05, �=0:02, f=f0 = 1:0).

of the proposed algorithm in addition to the explicit Newmark and OS methods were de-
termined. Moreover, an accuracy assessment was extensively explored via an eigenvalue,
frequency- and time-domain analysis of linear and non-linear structures. Although the OS
method was unconditionally stable for �¿ 1, it is inaccurate when �t=T0¿ 0:05. The explicit
Newmark method contains the worst stability characteristic, which makes it unfavourable for
an analysis of structures with high-frequency responses, although it proves more accurate than
the OS method within the stability range. Whereas the OS–SSP method is conditionally stable
with a stability bound of �t=T0 = 0:5 for �=1, it exhibits the most accurate characteristic
within the stability range, as demonstrated by a consistent eigenvalue, frequency- and time-
domain analysis. Therefore, the OS–SSP method is more desirable for pseudodynamic testing
as long as the stability criterion (�t=T 6 0:5) is ensured for every vibration mode involved.
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Figure 11. (a) Hysteresis of the inelastic structure by OS–SSP method. (b) Displacement of the inelastic
structure by OS–SSP method (�t=T0 = 0:05, �=0:02, f=f0 = 1:0).
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