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I. INTRODUCTION

Decoupling controller design has been studied
by many authors (Desoer and Gundes, 1986, Lin and
Hsieh, 1991, and Vardulakis, 1987).  The proposed
approaches are either based on a coprime factoriza-
tion of the plant or on the interpolation condition at
the poles and zeros of the plant.  A conceptually
decoupling controller can also be designed by first
diagonalizing the plant by means of a precompensator
and design controller for the diagonalized plant.  Of
course for the approach to work, care must be taken
to avoid unstable pole-zero cancellation, otherwise
the diagonalized plant would not be stabilizable. In
this paper, we consider the latter approach.  We study
the first description of admissible decoupling
precompensators, those which maintain stabiliza-
bility.  For 2-input 2-output systems this has been
given in Linnemann and Maier (1993) and for the
general square plant case in Wang (1992).  Compared
with  that given in Wang (1992), our description is
simple and easier to compute.  The simplicity of our
description is because we check the stability of the

appropriate closed-loop transfer matrix for internal
stability of the feedback system, as is now usually
done, instead of deriving conditions based on avoid-
ance of unstable pole-zero cancellations in the MIMO
sense (Anderson and Gevers, 1981).  The simple de-
scription allows us to give very simple necessary and
sufficient conditions for the existence of stable
decoupling controllers.  It is also used in the discus-
sion of optimal decoupling and the cost of decoupling.
It is shown that if the design objective is to minimize
a weighted mixed sensitivity, then the design of an
optimal decoupling controller reduces to a set of op-
timal SISO mixed sensitivity designs.

It has been noted in Desoer and Gundes (1986)
and Morari and Zafiriou (1989) that decoupling may
(and usually does) increase the multiplicities of
nonminimum phase zeros of the loop transfer matrix,
thus it further limits the achievable sensitivity and
induces a cost of decoupling.  The decoupling require-
ment usually also increases the multiplicities of un-
stable poles of the loop transfer matrix (Linnemann
and Maier, 1993) and thus further limits the achiev-
able robustness with respect to multiplicative
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uncertainty.  In this paper the cost of decoupling is
defined as the difference between the achievable op-
timal performance indices with and without decoupl-
ing constraint.  It is argued that for stable and mini-
mum phase plants the cost is zero; for stable nonmini-
mum phase or minimum phase unstable plants the cost
is moderate; and for unstable and nonminimum phase
plants the cost is usually high.

The paper is organized as follows.  The unity-
feedback system under consideration together with
some preliminary results is given section II.  Section
III describes the set of admissible decoupling
precompensators and gives necessary and sufficient
conditions for the existence of stable decoupling
controllers.  Section IV discusses optimal decoupling
and the cost of decoupling.  Section V is a brief
conclusion.

II. PRELIMINARIES

Consider the unity-feedback system S(P,C)
shown in Fig. 1, where P∈  IR po(s)n×n is the plant,
C∈  IR p(s)n×n is the controller, (u1,u2) is the input
and (y1,y2) is the output.  We assume that P is
nonsingular so  that  the inverse P−1∈  IR(s)n×n exists.
Let u:=[   u 1

T u 2
T ]T and y:=[   y 1

T y 2
T ]T.  The closed-loop

transfer matrix Hyu∈  IRp(s)2n×2n and is given by

  
H yu =

H y 1u 1
H y 1u 2

H y 2u 1
H y 2u 2

=
C(I + PC)– 1 – CP(I + CP)– 1

PC(I + PC)– 1 P(I + CP)– 1
.

(1)

We say that the system S(P,C) is (internally) stable
and C is a stabilizing controller for P if Hyu is stable,
i.e., P[Hyu]⊂CI _; the system is  decoupled  and C is a
decoupling controller for P if C stabilizes P and the
I/O map1 Hy2u1

 is nonsingular and diagonal.  We as-
sume throughout that a decoupling controller exists
for P. A necessary and sufficient condition is given
in Lin (1998).

Lemma 1. (Lin, 1998) For  the system S(P,C) with
Hyu given in (1), if Hy1u1

 and Hy2u2
 are stable then P+

[Hy2u1
]⊂(P+[P]∩Z+[P]) and P+[Hy1u2

]⊂(P+[P]∩Z+[P]).
�

Proposition 1. Consider the feedback system S(P,C)
shown in Figure 1.  Suppose the plant P is   diagonal
and that C is a stabilizing controller achieving the
I/O map H=[Hij], that is, PC(I+PC)−1=H.  Under these
conditions, there is a diagonal stabilizing controller
Cd such that PCd(I+PCd)−1=diag[Hii]. �

Comment. Thus if a diagonal plant can not be stabi-
lized by a diagonal controller, it can not be stabilized
by any (linear time-invariant) controller.

Proof. Since H=PC(I+PC)−1, in term of H, the closed-
loop transfer matrix in (1) becomes

  
Hyu =

P– 1H – P– 1HP
H (1 – H)P

(2)

and is stable.  Let Hd=diag[Hii].  Since P is diagonal,
it  follows that P−1Hd,  P−1HdP  and (I−Hd)P  are
all stable. Hence with the diagonal controller Cd=
P−1Hd(I−Hd)−1, the feedback system is stable and the
I/O map is Hd=diag[Hii]. �

Proposition 2. (Dickman and Sivan, 1985)  Let
A∈CI n×n and AD=diag[aii], where aii is the ith diagonal
element of A.  Then  σ (A)≥  σ (AD). �

For later use, we write

  
P =

Zij

Pij – Pij +
(3)

where Zij, Pij−, Pij+∈  IR[s] are mutually coprime, Pij+

is monic, Z[Pij+]⊂CI + and Z[Pij−]⊂CI −; and write

  
P– 1 =

Nij

Dij – Dij +
(4)

where Nij, Dij−, Dij+∈  IR[s] are mutually coprime, Dij+

is monic, Z[Dij+]⊂CI + and Z[Dij−]⊂CI −.
Let

Pi+= the monic least common multiple of   {Pij +}j = 1
n

(5)

and

Di+= the monic least common multiple of   {D ij +}i = 1
n

(6)

and γj be the relative degree of the jth column of P−1.
Since P∈  IRpo(s)n×n, γj>0.  Existence of a decoupling

1For convenience, we call the transfer matrix Hy2u1
 the I/O map of the feedback system.

Fig. 1  Unity-feedback system S(P,C)
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controller implies that, for i=1, ..., n, the polynomi-
als Di+ and Pi+ are coprime (Lin, 1998).  Let H=

diag[    D i +β i

αi(s)
], where βi, αi∈  IR[s], αi is Hurwitz, and

Pi+|(αi−Di+βi),   i=1, ..., n (7)

and

deg(αj)−deg(βj)≥γj+deg(Dj+),  j=1, ..., n (8)

Then H is a decoupled I/O map of the system S(P,C)
(Lin, 1998).

III. ADMISSIBLE DECOUPLING
PRECOMPENSATORS

As we mentioned, the design of  a decoupling
controller can be decomposed into two steps: find a
decoupling precompensator that open-loop decouples
the plant and  then design a SISO feedback controller
for each of the decoupled channels.  The resulting
decoupling controller combines the precompensator
and the design (SISO) controller.  Design of SISO
controllers is relatively simple; however the cascade
connec t ion  o f  t he  p l an t  and  a  decoup l ing
precompensator may not be internally stabilizable due
to unstable pole-zero cancellations (Anderson and
Gevers, 1981).  A proper decoupling precompensator
is said to be admissible if its cascade connection with
the plant maintains stabilizability.  Clearly the exist-
ence of an admissible decoupling precompensator is
equivalent to the existence of a decoupling controller.
Since if the diagonal plant is stabilizable, then it can
be stabilized by a diagonal controller.

In this section, we construct an admissible
decoupling precompensator and give a simple char-
acterization of all  admissible decoupling pre-
compensators.

Let the strictly proper P be given and let Pi+ and
Di+ be as defined in (5) and (6) respectively. Con-
sider the unity-feedback system S(P,C) shown in
Fig. 1 with the  controller

   C = P– 1diag[
D i +β i

αi– D i +β i
] (9)

where the polynomials αi and βi satisfy conditions
(7) and (8) and αi is Hurwitz.  Thus C is a  decoupling
controller for P which achieves the decoupled I/O map

H=diag[    D i +β i
αi

].  Let

   F = P– 1diag[
D i +

Pi +(s + 1)
µ i ] (10)

and

   A = F– 1C= diag[
Pi +(s +1)

µ iβ i

αi – D i +β i
] = diag[

(s +1)
µ iβ i

f i
]   (11)

where γi>0 is the relative degree of the ith column of

P−1, µi=γi−deg(Pi+)+deg(Di+) and fi=
   αi – D i +β i

P i +
 is, by

(7),  a polynomial.  It follows  that F is a proper ra-
tional matrix and each column of F has at least one
element that is not strictly proper.  It also follows
from (8)  that A is a proper rational matrix.

Now consider the feedback system S(P,F,A)
shown in Fig. 2.  Since PF is diagonal and C=FA, we
have decomposed the decoupling controller C into a
cascade connection of an open-loop decoupling
precompensator F and a diagonal controller A.  Note
that the I/O map Hy2u1

 of the system S(P,F,A) is diag

[    D i +β i
αi

], the same as the I/O map of the system

S(P,C).
We show that the system S(P ,F,A) is also

(internally) stable and thus F is an admissible
decoupling precompensator for P (since the cascade
connection of F and P is stabilizable).  The closed-
loop transfer matrix from [   u 1

T u 2
T u 3

T ]T to [   y 1
T y 2

T y 3
T ]T

is given by2

  

H yu=

C(I + PC)– 1 – CP(I + CP)– 1 F(I + APF)– 1

PC(I + PC)– 1 P(I + CP)– 1 PF(I + APF)– 1

A(I + PC)– 1 – AP(I + CP)– 1 – APF(I + APF)– 1

(12)

where we have used C=FA.  The system S(P,F,A) is
stable if and only if the transfer matrix Hyu is stable
(Callier and Desoer, 1982).  Since S(P,C) is stable,
Hyiuj

, i, j=1, 2 are stable, we thus only have to check
the stability of the remaining 5 block entries.  By
computation,

   H y 3u 1
= diag [

β i(s + 1)
µ iP i +

αi
] ,

2With a slight abuse of notation we have used Hyu for the closed-loop transfer matrices of S(P,C) and S(P,F,A)

Fig. 2  The feedback system S(P,F,A)
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   H y 3u 2
= – diag [

β i(s + 1)
µ iP i +

αi
]P ,

   H y 2u 3
= diag[

D i +f i

αi(s + 1)
µ i ] ,

   H y 1u 3
= P– 1diag[

D i +f i

αi(s + 1)
µ i ] .

The transfer matrices Hy3u1
 and Hy2u3

 are stable since
the polynomials αi are Hurwitz by choice; Hy3u2

 is
stable since every unstable pole in the ith row of P is
cancelled by zeros of Pi+; Hy1u3

 is stable since every
unstable pole in the ith column of P−1 is cancelled by
zeros of Di+; and finally Hy3u3

=-Hy2u1
 is also stable.

We thus have the following result.

Theorem 1. The transfer matrix F defined in (10) is
an admissible decoupling precompensator for P.     �

Since PF=diag[    D i +

Pi +(s + 1)
µ i ], it is clear that if R

is a diagonal matrix with diagonal entries ri∈  IR p(s)

such that, for each i, ri and   D i +

Pi +
 have no pole-zero

cancellations in CI +, then

G=FR (13)

is also an admissible decoupling precompensator for
P.  In fact every admissible decoupling precom-
pensator for P is described by (13) for some diagonal
proper R satisfying the CI +-coprimeness condition
above.  Let us see why.

If R is not proper, then the transfer matrix G,
defined in (13), is not proper since every column of
F has at least one entry which is not strictly proper.
We show below that if CI + pole-zero cancellations
between ri and Di+/Pi+ occur in forming G, then the
cas-cade connection of G and P can not be stabilized
by any diagonal controller and in view of Proposi-
tion 1 by any controller.

Let A:=diag[ni/di] be a proper diagonal control-
ler where ni, di∈  IR[s] are coprime and R:=diag[  s i

t i
]

be a proper diagonal rational matrix where si, ti∈
 IR[s] are coprime.  Suppose that for some k, 1≤k≤n,

there is a CI +-cancellation between Dk+ and tk.  Hence
for some λ∈CI +, Dk+(λ)=tk(λ)=0.  We show that ei-
ther Hy1u3

 or Hy1u1
 of the system S(P,G,A)3 has a CI +-

pole at λ in the kth column.  Since

   G = FR = P– 1diag[
Di +si

Pi +(s + 1)µ iti
]   and   A = diag[

ni
di

] ,

by computations,

  H y 1u 3
= G(I + APG)– 1

   = P– 1diag[
D i +s id i

d iP i +(s + 1)
µ it i + D i +s in i

]

   = P– 1diag[D i +]diag[
s id i

d iP i +(s + 1)
µ it i + D i +s in i

]

(14)

Now [dkPk+(s+1)µ
ktk+Dk+sknk](λ)=0 since tk(λ)=Dk+(λ)

=0.  By the definition of Di+, we know that at least
one entry in the kth column of {P−1diag[Di+]}(λ) is
nonzero.  It follows from (14) that Hy1u3

 has a pole at
λ in the kth column unless dk(λ)=0, since sk and tk are
coprime.  But if dk(λ)=0, then nk(λ)≠0 and Hy1u1

 has a
pole at λ in the kth column since

   Hy1u1
= P– 1diag[Di +]diag[

sini

diPi +(s + 1)µ iti + Di +sini
]

Therefore the system S(P,G,A) is not stable.  Similar
computations show that if there is a cancellation be-
tween Pk+ and sk at λ∈CI +, then either Hy2u2

 or Hy3u2

has a pole at λ in the kth row.  We have thus estab-
lished the following result.

Theorem 2. Assume that a decoupling controller for
the plant P exists.  Let F be as defined in (10).  Un-
der these conditions, G∈  IR p(s)n×n is an admissible
decoupling precompensator for P if and only if

G=Fdiag[  s i

t i
], for some si, ti∈  IR[s], 1≤i≤n, such that

(i) si and Pi+ have no common zero in CI +;
(ii) ti and Di+ have no common zero in CI +; and
(iii) deg(si)≤deg(ti) �

Comments:

(a) Theorem 2 completely characterizes the set  of all
admissible decoupling precompensators by the
class of proper diagonal rational matrices satisfy-
ing the CI +-coprimeness conditions (i) and (ii).

(b) It is important to note that  some decoupling
precompensators may introduce addit ional
CI +-poles and CI +-zeros into the system and thus
further limit the achievable performance of the
feedback system.  Thus, in design, the decoupling
precompensator should contain only CI +-poles and
CI +-zeros that are absolutely necessary for
decoupling while maintaining stabilizability.

(c) From (10)  and that F−1=diag[    P i +(s + 1)
µ i

D i +
]P, ev-

ery CI +-pole of F is a CI +-pole of P and every CI +-
zero of F is a CI +-zero of P, it thus follows that the

3This is the feedback system shown in Fig. 2 with the precompensator F replaced by G and the diagonal controller A as defined.
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CI +-poles and CI +-zeros of F are necessary.  Thus
the decoupling precompensator F may increase the
multiplicities of the CI +-poles and CI +-zeros of the
plant, and by Theorem 2 this possible increase in
mult ipl ic i t ies  is  shared by al l  admissible
decoupling precompensators.  This increase in
multiplicities of CI +-zeros further limits the achiev-
able sensitivity and is regarded as the cost of
decoupling (Desoer and Gundes, 1986).  The ef-
fect of these ‘pinned’ zeros is also discussed in
Morari and Zafiriou (1989).  We note that the in-
crease in multiplicities of CI +-poles of the plant
may reduce the achievable robustness with respect
to multiplicative uncertainty.

The description in Theorem 2 also allows us to
give very simple necessary and sufficient conditions
for the existence of stable decoupling controllers.

Theorem 3. Assume that a decoupling controller  for
P exists.  There exists a stable decoupling controller
for P if and only if
(a) The open-loop decoupling precompensator F de-

fined in (10) is stable; and

(b) For 1≤i≤n, the rational functions   D i +

Pi +
 satisfy the

parity interlacing property (Vidyasagar, 1985).

Proof. (Sufficiency) Since   D i +

Pi +
 satisfies the parity

interlacing property, the SISO plant represented by
   D i +

Pi +(s + 1)
µ i  can be stabilized by a stable controller

Ai(s) under the unity-feedback configuration.  Thus
with A(s)=diag[Ai(s)] the system S(P,F,A) is stable.
Since F is stable by assumption, it follows that C:
=FA is a stable decoupling controller for P.
(Necessity) We note first that P can be decoupled by
a stable controller if and only if there is a stable
decoupling precompensator G so that the cascade
connection of G and P is stabilized under unity-feed-
back configuration by the controller A(s)=I, the iden-
tity matrix.  If F is not stable, say, F has a pole at
λ∈CI + in the kth column, then necessarily Pk+(λ)=0
since F=P−1diag[Di+]diag[    1

Pi +(s + 1)
µ i ] and P−1diag

[Di+] is analytic in CI +.  By Theorem 2 if G is an ad-
missible decoupling precompensator then G must also
have a pole at λ in the kth column.  Thus there is no
stable admissible decoupling precompensator for P.
Hence P can not be decoupled by a stable controller.

Suppose that,  for some k, 1≤k≤n,   D k +

Pk +
 does not

satisfy the parity interlacing property and  the sys-
tem S(P,F,A) is stable, where A(s)=diag[Ai(s)], then

  Ak
– 1(s) is not stable, that is, for some γ∈CI +,   Ak

– 1(γ)

=0.  Now consider A−1F−1=diag[
  A i
– 1

D i +
]diag[Pi+(s+1)µ

i]

P.  By the definition of Pi+, diag[Pi+(s+1)µ
i]P is

analytic in CI +; by Theorem 2, closed-loop stability
implies that Dk+(γ)≠0.  Thus the kth column of (FA)−

1(γ) is zero, and  hence the decoupling controller FA
has a pole at γ and it follows that every decoupling
controller is unstable.

The fol lowing Theorem shows that  with
decoupling precompensator F, decoupling controller
design reduces to a set of SISO designs.

Theorem 4. Assume that a decoupling controller
exists for P.  Consider the unity-feedback system
S(PF,  A ) shown in Fig. 3, where F is defined in (10),

PF=diag[    D i +

Pi +(s + 1)
µ i ] and  A =diag[  n i

d i
] is a diagonal

controller.  If S(PF,  A ) is stable then the system
S(P,F,  A ) is stable.

Proof. Consider the feedback system S(P,F,  A )
shown in Fig. 2 by replacing A with  A , where  A =

diag[  n i

d i
].  Stability of S(PF,  A ) implies that the

diagonal transfer matrices Hyjui
, i=1, 3, j=2, 3 are

stable.  Simple computations show that the transfer
matrices Hy2u2

, Hy3u2
, Hy1u1

, Hy1u3
 are stable.  Since Hy2u2

and Hy1u1
 (the diagonal entries) are stable, it follows

from Lemma 1 that the CI +-poles of Hy1u2
 form a sub-

set of (P +[P]∩Z+[P]).  Since P satisfies the neces-
sary and sufficient conditions for existence of a
decoupling controller (Lin, 1998), Hy1u2

 is analytic on
(P +[P]∩Z+[P]) and thus is stable. �

Comment. Given a diagonal controller A defined in
(11), we see that

(s+1)µ
iβiDi++fiPi+(s+1)µ

i=αi(s+1)µ
i (15)

Since α i(s+1)µ
i is Hurwitz and deg(α i(s+1)µ

i)≥
deg(fi Pi+(s+1)µ

i), A defined in (11) is a diagonal con-
troller for PF that satisfies a Bezout identity.  Thus,
we can find all diagonal controllers for PF by
parameterizations, and the set of all I/O maps of S
(PF,A) are the same as the set of all decoupled I/O
maps of S(P,C).  Consequently, the decoupling con-
troller design is reduced to a set of SISO designs.

IV. OPTIMAL DECOUPLING AND THE COST
OF DECOUPLING

Based on the discussions following Theorem

Fig. 3  Unity-feedback system S(PF,A)
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4, decoupling controller design for P essentially
reduces to design of SISO controllers for the plant

   D i +

Pi +(s + 1)
µ i .  Thus if the criterion for optimality is

defined based on the achievable diagonal sensitivity
and/or diagonal I/O map (i.e. the complementary
sensitivity), then optimal decoupling design reduces
to a set of optimal SISO designs. To give an example,
let us consider the H∞ mixed sensitivity design
problem.

Let W1 and W2 be stable, proper, minimum phase
rational functions4.  Consider the feedback system S
(P,C).  The optimal design problem is to find a
decoupling controller C which minimizes

   W1H e 1u 1
W2H y 2u 1 ∞

The problem is equivalent to finding stabilizing con-

trollers Ai(s) for the plant Gi:=
   D i +

Pi +(s + 1)
µ i  so that

4We choose scalar weighting functions for simplicity, the conclusion holds if diagonal weighting matrices are used.
5The feedback systems under consideration are assumed to be stable throughout this section.

   
max

i
sup

ω
W1(1 + G iAi)

– 1(jω)
2

+ W2G iAi(1 + G iAi)
– 1(jω)

2

is minimized.  Thus the optimal decoupling design
problem is solved by solving n SISO optimal mixed
sensitivity problems.

To make the discussions on the cost  of
decoupling quantitative and precise we pose the de-
sign problem as one of achieving optimal weighted
sensitivity.  The cost of decoupling is defined as the
difference between the achievable optimal weighted
sensitivity with and without the decoupling constraint.
To be more precise, consider the system S(P,C)
shown in Fig. 1.  Let W(s) be a stable proper mini-
mum-phase rational function.  Let

J0:=inf{||W(I+PC)−1||∞|C∈C} and

JD:=inf{||W(I+PC)−1||∞|C∈CD]

where C is the set of all stabilizing controllers for P
and CD is the set of all decoupling controllers for P.
The cost of decoupling is defined as J:=JD−J0. Note
that J≥0.  Clearly,

JD:=inf{||W(I+PFA)−1||∞|A=diag[Ai]

is a stabilizing controller for the plant PF}

And in view of Propositions 1 and 2,

JD:=inf{||W(I+PFA)−1||∞|K

is a stabilizing controller for the plant PF}

Thus the cost of decoupling J is in fact the difference
between the achievable optimal weighted sensitivity
with the plant P and that with the precompensated
(diagonal) plant PF.

Theorem 5. If decoupling precompensator F defined
in (10) is stable, minimum phase and biproper, then
the cost of decoupling is zero. �

Proof. Since F and F−1 are proper, F and F−1 are both
stable.  Let C be any stabilizing controller for P so
that (I+PC)−1=[hij].  It can be checked that the feed-
back system S(P, F, F−1C) is  internally stable and

has the same I/O map and sensitivity map as the the
system S(P,C) has.  Thus the controller F−1C is a sta-
bilizing controller for the diagonal plant PF.  By
Proposition 1 there is a diagonal stabilizing control-
ler for the plant PF achieving the diagonal sensitiv-
ity map diag[hii].  It follows from Proposition 2 that
for every stabilizing controller C there corresponds a
decoupling controller which yields no greater
sensitivity.  Thus the cost of decoupling as defined
must be zero.

As noted in Section IV, the precompensator F
introduce neither new CI +-poles nor  new CI +-zeros
into the cascade connection, but may increase the mul-
tiplicities of the CI +-poles and CI +-zeros of P.  The
precompensation also changes the geometry of CI +-
poles and CI +-zeros, which is the main reason for the
large cost of decoupling, especially when the poles
and zeros  are close in the complex plane.  To give a
justification of the claim,  consider the plant5 P which
has a simple CI +-pole p0 and CI +-zero z0.  Write

  P(s) = R
s – p 0

+ U(s) and   P(s)– 1 = S
s – z 0

+ V(s)
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where U(s) and V(s) are analytic at CI +.  Let

Np0
=range(R) and Nz0

=null space(P(z0)T)

be respectively the right null space associated with
pole p0 and the left null space associated with zero z0

(Boyd and Desoer, 1985).  We have the following

Fact 1. Nz0
=range(ST). �

Proof. We have for all s, [S+(s−z0)V(s)]P(s)=(s−z0)I,
in particular, SP(z0)=0 and thus P(z0)TST=0.  There-
fore range(ST)⊂Nz0

.  Suppose range(ST)≠Nz0
, then there

is  a nonzero v∈Nz0
 such that Sv=0.  But

  v 2 = vTP(s)P(s)– 1v = vTP(s)[ S
(s – z 0)

+ V(s)]v

  = vTP(s)V(s)v   = vTP(z0)V(z0)v = 0

This contradicts v is nonzero.  Thus range(ST)=Nz0
.

A lower bound of the optimal weighted sensi-
tivity is given by the MIMO Zames and Francis In-
equality (Boyd and Desoer, 1985)

   H e 1u 1
W

∞

    ≥ max{ W(z 0) , cos∠(N p 0
, N z 0

)
z 0 + p0

z 0 – p 0
W(z 0) }

(16)

where cos∠(Np0
,  Nz0

):=max{ |uTv | |u∈Nz0
,  v∈Np0

,
||u||2=||v||2=1} is the cosine of the angle between the
spaces Nz0

 and Np0
.

Now consider the precompensated plant

   PF = diag[
D i +

Pi +(s + 1)
µ i ] . (17)

Let Ri be the ith row of R and Si be the ith col-
umn of S.  Clearly,

   
D i + = 1 if S i = 0

s – z 0 if S i ≠ 0
Pi + = 1 if R i = 0

s – p 0 if R i ≠ 0

(18)

Let     N p 0
′   and     N z 0

′  be respectively the right null
space associated with p0 and the left null space asso-
ciated with z0 for PF.  Let Ip0

={i|1≤i≤n, Ri≠0}, and
Iz0

={i|1≤i≤n, Si≠0}.
It follows from Fact 1 that

    N p 0
′ = { αie iΣ

i ∈ I p 0

αi∈CI}  and     N z 0
′ = { αie iΣ

i ∈ I z 0

αi∈CI}

where ei is the ith element of the standard basis for
CI n. Clearly,

    
cos∠(N z 0

′ ,N p 0
′ ) =

0 if Ip 0
∩ I z 0

= ∅
1 if Ip 0

∩ I z 0
≠ ∅

It is also clear that if Ip0
∩Iz0

=Ø, then cos∠(     N z 0
′ ,     N p 0

′ )
=0.  In other words,  if  cos∠(Nz0

,Np0
)≠0, then

cos∠(     N z 0
′ ,     N p 0

′ )=1.  Note also that dim(     N z 0
′ )≥dim(Nz0

)
and dim(     N p 0

′ )≥dim(Np0
), the possible increase in mul-

tiplicities of poles and zeros.  A lower bound of the
optimal weighted decoupling sensitivity is given by

   H e 1u 1
W

∞

    ≥ max{ W(z 0) , cos∠(N p 0
′ , N z 0

′ )
z 0 + p0

z 0 – p 0
W(z 0) }

(20)

where He1u1
 is diagonal.  The lower bound of the opti-

mal weighted decoupling sensitivity is larger than the
lower bound of the optimal weighted sensitivity.

If the pole and zero are close, that is, |p0−z0| is
small and  the subspaces Np0

 and Nz0
 are nearly

parallel, that is,  cos∠(Np0
,Nz0

) is almost 1, then the
cost of decoupling could be  very large, since  the
lower bound of the weighted sensitivity is greatly
increased.  On the other hand, if the plant is stable
then the cost of decoupling is expected to be moder-
ate since the lower bound on the achievable weighted
sensitivity, estimated  by (16), does not increase as a
consequence of decoupling.

Consider the plant P which has two simple
CI +-poles p1 and p2, and one simple CI +-zero z0.  Write

  P(s) = R1

s – p 1
+ R2

s – p 2
+ U(s)   and

  P(s)– 1 = S
s – z 0

+ V(s) (21)

where U(s) and V(s) are analytic at CI +.  Let

Npj
=range(Rj) and Nz0

=null space(P(z0)T)

be the right null space associated with pole pj, j=1, 2,
and the left null space associated with zero z0,
respectively.  Nz0

=range(ST) by Fact 1.
A generalized lower bound of the optimal

weighted sensitivity by the plant P and its inverse in
(21) is given by the MIMO Zames and Francis In-
equality (Boyd and Desoer, 1985)

   H e 1u 1
W

∞

    
≥ max

j
{ W(z 0) , cos∠(N p j

, N z 0
)

z 0 + p j

z 0 + p j
W(z 0) ,

    
cos∠(N p 1

∩ N p 2
, N z 0

)
z 0 + p j

z 0 – p j
W(z 0)Π

j
} (22)
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where cos∠(Np1
∩Np2

, Nz0
):=max{|uTv||v∈Nz0

, u∈Np1

∩Np2
, ||u||2=||v||2=1}.
Consider the precompensated plant given in

(17).  Let  Ri
j  be the ith row of Rj, j=1, 2 and Si be the

ith column of S.  Di+ is defined as the same as in (18).
And Pi+ satisfies

   
R i

j P i +(p j) ≠ 0 if R i
j = 0

Pi + = (s – p j)Pi + if R i
j ≠ 0 ,

where    P i + ∈ IR [s] and   P i +(p0)≠0

Let    N p j
′   and     N z 0

′  be respectively the right null
space associated with pj, j=1, 2, and the left null space
associated with z0 for PF.  Let Ipj

={i|1≤i≤n,  R i
j ≠0}.

Let

    N p j
′ = αie iΣ

i ∈ I p j

αi ∈ CI

Clearly,

    
cos∠(N z 0

′ , N p j
′ ) =

0 if Ip j
∩ I z 0

= ∅
1 if Ip j

∩ I z 0
≠ ∅

where     N z 0
′  is the same as defined in (19).  It is also

clear that if Ipj
∩Iz0

=Ø, then cos∠(Nz0
,Npj

)=0.  In other
words, if cos∠(     N z 0

′ ,    N p j
′ )≠0, then cos∠(     N z 0

′ ,    N p j
′ )=1.

Note also that dim(     N z 0
′ )≥dim(Nz0

) and dim(    N p j
′ )≥dim

(Npj
), the possible increase in multiplicities of poles

and zeros.  A generalized lower bound of the optimal
weighted decoupling sensitivity is given by

   H e 1u 1
W

∞

    
≥ max

j
{ W(z 0) , cos∠(N p j

′ , N z 0
′ )

z 0 + p j

z 0 – p j
W(z 0) ,

    
cos∠(N p 1

′ ∩ N p 2
′ , N z 0

)
z 0 + p j

z 0 – p j
W(z 0)Π

j
} (23)

where He1u1
 is diagonal.

In summary, if the design objective is to mini-
mize a weighted sensitivity, then for stable minimum
phase plants that have a unimodular decoupling
precompensator, the cost of decoupling is zero; for
stable non-minimum phase plants the cost is expected
to be moderate; for unstable non-minimum phase
plants the cost of decoupling is, in general, high and
could be very high if there are poles and zeros close
in the complex plane.

The same comments apply if the design objec-
tive is to minimize a weighted complementary sensi-
tivity for robustness, except that we expect the cost
for minimum phase unstable plants to be moderate

instead.  Finally since Foo and Postlethwaite (1984)
showed

   W1H y 2u 1

W2H e 1u 1 ∞

≥ 1
2

( W1H y 2u 1 ∞
+ W2H e 1u 1 ∞

)

the comments apply to the case of minimizing mixed
sensitivity as well.

E x a m p l e  1 .  C o n s i d e r  t h e  p l a n t  ( F o o  a n d
Postlethwaite, 1984)

   

P(s) =

– α(s – 5)
s – 4

s – 5
s + 1

1
s – 4

1
s + 1

By computation,

   

P(s)– 1 =

– (s – 4)
(α + 1)(s – 5)

– α(s – 4)
(α + 1)

– (s – 1)
(α + 1)(s – 5)

– (s + 1)
(α + 1)

Note that P(s) is nonsingular for all α>0.  Let the
scalar weighting function W(s)=(1+0.1s)/(1+s).  The
subspace Np0

, associated with the pole at p0=4, is one
dimensional and spanned by [α 1]T, the subspace Nz0

,
associated with the zero at z0=5, is one dimensional
and spanned by [1 0]T and

    
cos∠(N z 0

, N p 0
) =

α
1 + α2

We also have P1+=s−4, P2+=s−4, D1+=s−5 and D2+=1.
Thus dim(     N z 0

′ )=dim(Nz0
)=1 and 2=dim(     N p 0

′ )>dim
(Np0

)=1.  Without decoupling,

   
WH e 1u 1 ∞

≥ max{0.25, 2.25
α

1 + α2
}

and with decoupling, ||W He1u1
||∞≥2.25.  Thus the cost

of decoupling increases as α decreases.  Decoupling
has the effect of aligning the null space associated
with unstable poles and zeros.

Example 2. Consider the plant

  

P(s) =

1
s + 1

0 1
s + 3

s – 5
s + 1

s – 5
s – 4

0

0 1
s – 4

1
s + 3
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By computation,

  

P(s) =

1
s + 1

0 1
s + 3

s – 5
s + 1

s – 5
s – 4

0

0 1
s – 4

1
s + 3

Let the scalar weighting function W(s)=(s+200)/100
(s+2).  The subspace Np0

, associated with the pole at
p0=4, is spanned by [0 -1 1]T.  The subspace Nz0

, as-
sociated with the zero at z0=5, is spanned by [0 1 0]T.
W(z0)=0.2929.  And     cos∠(N z 0

, N p 0
) = 1

2
.  We have

P1+=1, P2+=s−4, P3+=s−4, D1+=1, D2+=s−5 and D3+=1.
1=dim(     N z 0

′ )=dim(Nz0
)=1 and 2=dim(     N p 0

′ )>dim(Np0
)

=1.  Without decoupling,

    WH e 1u 1 ∞
≥ cos∠(N p 0

, N z 0
)

z 0 + p 0

z 0 – p 0
W(z 0)

  = 9
2

W(z 0) = 1.8637

and with decoupling,

   WH e 1u 1 ∞
≥ 5 + 4

5 – 4
W(z 0) = 9 W(z 0) = 2.6357

In Matlab simulation, the optimal weighted sensitiv-
ity without decoupling is 1.8761; and the optimal
weighted sensitivity with decoupling is 2.6358.

Example 3. Consider the plant

  

P(s) =

s + 3
s – 2

–
2(s + 4)

s – 3
0

s + 3
s – 2

3(s + 4)
s – 3

–
4(s – 4)
s + 5

– s + 3
s – 2

s + 4
s – 3

s – 4
s + 5

By computation,

  

P(s)– 1 =

7(s – 2)
s + 3

2(s – 2)
s + 3

8(s – 2)
s + 3

3(s – 3)
s + 4

s – 3
s + 4

4(s – 3)
s + 4

4(s + 5)
s – 4

s + 5
s – 4

5(s + 5)
s – 4

Let the scalar weighting function W(s)=(s+200)/100

(s+2).  The respective subspaces Npj
, j=1, 2, associ-

ated with the poles at p1=2 and at p2=3, are spanned
by [1 1 -1]T and [-2 3 1]T.  The subspace Nz0

, associ-
ated with the zero at z0=4, is spanned by [4 1 5]T.
The subspaces Npj

, j=1, 2, are orthogonal with the
subspace Nz0

, thus cos∠(Nz0
,Npj

)=0, j=1, 2.  We have
P 1 + = ( s − 2 ) ( s − 3 ) ,  P 2 + = ( s − 2 ) ( s − 3 ) ,  P 3 + =
(s−2)(s−3), D1+=s−4, D2+=s−4 and D3+=s−4.  3=
dim(     N z 0

′ )>dim(Nz0
)=1 and 3=dim(    N p j

′ )>dim(Npj
)=

1, j=1, 2.  Without decoupling,

   WH e 1u 1 ∞
≥ W(z 0) = 0.34

and with decoupling,

   WH e 1u 1 ∞
≥ 4 + 2

4 – 2
4 + 3
4 – 3

W(z 0) = 21 W(z 0) = 7.14

In Matlab simulation, the optimal weighted sensitiv-
ity without decoupling is 0.34; and the optimal
weighted sensitivity with decoupling is 7.14.

V. CONCLUSIONS

In this paper, we give a simple description of
admissible decoupling precompensators.  The descrip-
tion provides an alternative to independently design-
ing each decoupled I/O channel by designing an SISO
controller for each ‘equivalent SISO plant’ and in
particular to the design of optimal decoupling
controllers.  The discussion on the cost of decoupling
provides useful information to determine whether
decoupling is worthwhile.  We note however that there
are other considerations when deciding whether a
decoupling controller should be used at all (Morari
and Zafiriou, 1989).

NOMENCLATURE

 CI the field of complex numbers
CI − {s∈CI |Re(s)<0}; equiv. the open left

half of the complex plane
CI + {s∈CI |Re(s)≥0}; equiv. the closed

right half of the complex plane
IR the field of real numbers
IR[s] the ring of polynomials in s with real

coefficients
IR(s) the field of rational functions in s with

real coefficients
IRp(s), IRpo(s) the ring of proper, resp. strictly

proper, rational functions in s with
real coefficients

deg(f/g) deg(f)−deg(g) for f,g∈IR[s]
deg(v(s)) the largest relative degree of vi(s), 1≤i

≤n, if v(s)=[v1(s) ... vn(s)]T∈IR(s)n

diag[hi] the n×n  matrix with hi as its ith
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diagonal element
f|g f divides g; equiv. g=fh for some h∈IR

[s]
P[H] the set of all poles of H in CI  for H(s)

∈IR(s)
P+[H] the set of all poles of H in CI +

Z[H] the set of all zeros of H in CI
Z+[H] the set of all zeros of H in CI +

||H||∞ supω∈IR  σ (H(jω)), H is a stable ratio-
nal matrix
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解耦預先補償與最佳解耦

林清安　吳章銘

國立交通大學電機與控制工程學系

摘　要

在線性多變數控制系統的單一回授系統的架構下，本文將探討解耦控制。

我們建立所有可行解耦補償器的參數化解的集合，利用這個解耦補償器的參數

化解，我們可以証明多變數解耦控制器的設計是等於對多個單一輸入單一輸出

的控制器設計。這個參數化解也可用來建立穩定解耦控器存在的充分與必要條

件。我們也提出最佳的解耦控制器設計並探討解耦控制所必須付出的代價。

關鍵詞：可行解耦補償器，最佳解耦，代價。
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