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Abstract

A doubly symmetric thin-walled beam element with open section is derived using co-rotational (CR) total Lagrangian (TL) for-
mulation. The effects of deformation-dependent third-order terms of element nodal forces on the buckling load and post-buckling
behavior are investigated. All coupling among bending, twisting, and stretching deformations for beam element is considered by
consistent second-order linearization of the fully geometrically nonlinear beam theory. However, all third-order terms of nodal forces,
which are relevant to the twist rate, rate of twist rate and curvature of the beam axis are also considered. An incremental-iterative
method based on the Newton—Raphson method combined with constant arc length of incremental displacement vector is employed for
the solution of nonlinear equilibrium equations. The zero value of the tangent stiffness matrix determinant of the structure is used as
the criterion of the buckling state. A parabolic interpolation method of the arc length is used to find the buckling load. Numerical
examples are presented to demonstrate the accuracy and efficiency of the proposed element and to investigate the effect of third-order
terms of element nodal forces on the buckling load and post-buckling behavior of doubly symmetric thin-walled beams. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to reduction of weight, material and cost, thin-walled beams with open section are extensively used
in aerospace and aircraft structures, and are often designed to work under post-buckling conditions. Such
flexible structures can undergo large displacements and rotations without exceeding their elastic limits. To
understand the behaviors of such flexible structures and to evaluate their elastic limits many different
formulations and numerical procedures for the buckling and post-buckling analysis of thin-walled beams
have been proposed [1-35]. The buckling of the beam structures is caused by the coupling among bending,
twisting, and stretching deformations of the beam members. Thus the buckling analysis is a subtopic of
nonlinear rather than linear mechanics [7]. Currently, the most popular approach for the analysis of three-
dimensional beam is to develop finite element models. The formulations, which have been used in the
literature, might be divided into three categories: total Langrangian (TL) formulation, updated Lagrangian
(UL) formulation, and co-rotational (CR) formulation. In order to capture correctly all coupling among
bending, twisting, and stretching deformations of the beam elements, the formulation of beam elements
might be derived by the fully geometrically nonlinear beam theory [36]. The exact expressions for the el-
ement nodal forces, which are required in a TL formulation for large displacement/small strain problems,
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are highly nonlinear functions of element nodal parameters. However, the dominant factors in the geo-
metrical nonlinearities of beam structures are attributable to finite rotations, the strains remaining small.
For a beam structure discretized by finite elements, this implies that the motion of the individual elements
to a large extent will consist of rigid body motion. If the rigid body motion part is eliminated from the total
displacements and the element size is properly chosen, the deformational part of the motion is always small
relative to the local element axes. Thus in conjunction with the CR formulation, the higher-order terms of
nodal parameters in the element nodal forces may be neglected by consistent second-order linearization
[32,36]. However, the values of twist rate, the rate of twist rate and curvature of the beam axis are de-
formation dependent, not element size dependent. Thus their values may not always be much smaller than
unity. It seems that some third-order terms of the element nodal forces, which are relevant to the twist rate,
the rate of twist rate and curvature of the beam axis, may not be negligible for some cross-sections with
large rotations. In [34], the effect of these deformation-dependent third-order terms of element nodal forces
on the buckling load and post-buckling behavior was investigated for doubly symmetric beams with solid
sections. It was reported in [34] that the third-order term of twist rate is the dominant third-order term of
the element nodal forces and may not be negligible for the buckling and post-buckling analysis. In [35] the
formulation proposed in [32] for beams with solid sections was extended to the thin-walled beam with
monosymmetric open section. In [35] the third-order term of the twist rate is considered in element nodal
forces. However, the effect of deformation-dependent third-order terms of element nodal forces on the
buckling load and post-buckling behavior was not investigated in [35]. To the authors’ knowledge, the effect
of deformation-dependent third-order terms of element nodal forces on the buckling load and post-
buckling behavior of thin-walled beam with open section has not been reported in the literature.

The doubly symmetric thin-walled beam has been extensively used in practice. Thus, a reliable and ef-
ficient formulation for geometric nonlinear analysis of doubly symmetrical thin-walled beam may be re-
quired. The object of this paper is to present a CR TL finite element formulation for the geometric
nonlinear analysis of doubly symmetrical thin-walled beams and to investigate the effects of deformation-
dependent third-order terms of element nodal forces on the buckling load and post-buckling behavior of
thin-walled beam.

The shear center and centroid are coincident for doubly symmetric beam but not for monosymmetric
beam. Thus, the kinematics of the monosymmetric beam element is much more complicated than that of
doubly symmetric beam element. The monosymmetric beam element proposed in [35] may be inefficient for
the analysis of doubly symmetric beams. Moreover, the beam element proposed in [35] cannot be used to
investigate the effect of third-order terms on the buckling load and post-buckling behavior of thin-walled
beam. However, even beam elements proposed in [34,35] are not suitable for the present study, it seems that
the formulations given in [34,35] can be adapted for doubly symmetric thin-walled beams. Thus, the for-
mulations of beam elements proposed in [34,35] are modified and employed here. All third-order terms of
the element nodal forces, which are relevant to the twist rate, the rate of twist rate and curvature of the
beam axis, are retained here.

An incremental-iterative method based on the Newton—-Raphson method combined with constant arc
length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations.
The zero value of the tangent stiffness matrix determinant of the structure is used as the criterion of the
buckling state. A parabolic interpolation method of the arc length is used to find the buckling load. An
inverse power method for the solution of the generalized eigenvalue problem is used to find the corre-
sponding buckling mode. In order to initiate the secondary path, at the bifurcation point a perturbation
displacement proportional to the first buckling mode is added. Numerical examples are presented to
demonstrate the accuracy and efficiency of the proposed method and to investigate the effect of third-order
terms of the element nodal forces on the buckling load and post-buckling behavior of doubly symmetric
thin-walled beams.

2. Finite element formulation

The formulations given in [34,35] are modified and employed here.
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2.1. Basic assumptions

v

6.

The following assumptions are made in the derivation of the beam element behavior.

The beam is prismatic and slender, and the Euler—Bernoulli hypothesis is valid.

The cross-section of the beam is doubly symmetric.

The unit extension of the centroid axis of the beam element is uniform.

The cross-section of the beam element does not deform in its own plane and strains within this cross-
section can be neglected.

The out-of-plane warping of the cross-section is the product of the twist rate of the beam element and
the Saint Venant warping function for a prismatic thin-walled beam of the same cross-section.

The deformation displacements of the beam element are small.

In this study, Prandtl’s membrane analogy and the Saint Venant torsion theory [37] are used to obtain an
approximate Saint Venant warping function for a prismatic thin-walled beam.

2.2. Coordinate systems

In this paper, a CR TL formulation is adopted. In order to describe the system, we define four sets of

right-handed rectangular Cartesian coordinate systems:

1.

2.

A fixed global set of coordinates, X¢ (i = 1,2,3) (see Fig. 1); the nodal coordinates, displacements, and
rotations, and the stiffness matrix of the system are defined in these coordinates.

Element cross-section coordinates, x3 (i = 1,2,3) (see Fig. 1); a set of element cross-section coordinates is
associated with each cross-section of the beam element. The origin of this coordinate system is rigidly
tied to the shear center of the cross-section. The x} axis is chosen to coincide with the normal of the un-
warped cross-section and the x5 and x§ axes are chosen to be the principal directions of the cross-section.

. Element coordinates; x; (i = 1,2, 3) (see Fig. 1), a set of element coordinates is associated with each ele-

ment, which is constructed at the current configuration of the beam element. The origin of this coordi-
nate system is located at node 1, and the x; axis is chosen to pass through two shear centers of end
sections of the element; the x, and x; axes are chosen to be the principal directions of the cross-section
in the undeformed state. Note that this coordinate system is a local coordinate system not a moving co-
ordinate system. The deformations, internal nodal forces and stiffness matrix of the elements are defined

Fig. 1. Coordinate systems.
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in terms of these coordinates. In this paper the element deformations are determined by the rotation of
element cross-section coordinate systems relative to this coordinate system.

4. Load base coordinates, X (i = 1,2,3); a set of load base coordinates is associated with each configura-
tion-dependent moment. The origin of this coordinate system is chosen to be the node where the con-
figuration-dependent moment is applied. The mechanism for generating configuration dependent
moment is described in these coordinates, and the corresponding external load and load stiffness matrix
are defined in terms of these coordinates.

In this paper, the symbol { } denotes the column matrix. The relations among the global coordinates,

element cross-section coordinates, element coordinates and load base coordinates may be expressed by

XO = Agsx®, X9=Agx, X°=AX, 1)
where X = {X%, X¢,XC},x5 = {x5,x3,x3}, x = {x1,x2,x3}, and X" = {X" X7 X}; Ags, Age, and Agp are

the matrices of direction cosines of the element cross-section coordinate system, element coordinate system,
and load base coordinate system, respectively.

2.3. Rotation vector

For the convenience of later discussion, the term ‘rotation vector’ is used to represent a finite rotation.
Fig. 2 shows that a vector b which as a result of the application of a rotation vector ¢a is transported to the
new position b. The relation between b and b may be expressed as [38]

b = cos ¢b + (1 — cos ¢)(a - b)a + sin ¢(a x b), (2)

where ¢ is the angle of counterclockwise rotation, and a is the unit vector along the axis of rotation.

2.4. Kinematics of beam element

The deformations of the beam element are described in the current element coordinate system. From the
kinematic assumptions made in this paper, the deformations of the beam element may be determined by the
displacements of the shear center axis of the beam element, orientation of the cross-section (element cross-
section coordinates), and the out-of-plane warping of the cross-section. In this study only the doubly
symmetric cross-section is considered. Thus the shear center and centroid of the cross-section are coinci-
dent. Let Q (Fig. 1) be an arbitrary point in the beam element, and P be the point corresponding to Q on

2

Fig. 2. Rotation vector.
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the shear center axis. The position vector of point Q in the undeformed and deformed configurations may
be expressed as

o = X€; —|—ye2 + ze; (3)
and
r = x.(x)e; + v(x)es + w(x)es + 0y ,we] + ye + zej, (4)

where x.(x),v(x), and w(x) are the x;,x, and x; coordinates of point P, respectively, in the deformed
configuration, ® = w(y,z) is the Saint Venant warping function for a prismatic beam of the same cross-
section, and e; and €’ (i = 1,2, 3) denote the unit vectors associated with the x; and x¥ axes, respectively.
Note that ¢; and € are coincident in the undeformed state. Here, the triad €’ in the deformed state
is assumed to be achieved by the successive application of the following two rotation vectors to the
triad e;:

0,=0,n (5)
and
0, = 0it, (6)
where
n = {0,0,/(65 + 03)'2,05/(65 + 63)""*}, (7)
t = {cos0,, 05, —0,}, (8)
cos0, = (1 — 02— 02", (9)
o dw(x)  dw(x) dx w
P P P e (10)
_do(x) do(x)dx 0
05 = ds  dx ds 1+e’ (11)
Os
& = a — 1, (12)

in which n is the unit vector perpendicular to the vectors e; and e, and t is the tangent unit vector of the
deformed shear center axis of the beam element. Note that the orientation of ] coincides with that of t. 0, is
the rotation about vector t. 0, is the angle measured from x; axis to vector t, ¢ is the unit extension of the
shear center axis and s is the arc length of the deformed shear center axis measured from node 1 to point P.
In this paper, the symbol ()" denotes () = d()/dx.

Using Egs. (2)-(8), the relation between the vectors e; and €’ (i = 1,2,3) in the element coordinate
system may be obtained as [32]

e =Re,, (13)

where R is the so-called rotation matrix. The rotation matrix is determined by 6; (i = 1,2, 3). Thus, 0; are
called the rotation parameters in this study.

Let 0 = {01, 0,05} be the column matrix of rotation parameters, 60 be the variation of 6. The triad e’
(i =1,2,3) corresponding to # may be rotated by a rotation vector ¢ = {3, d¢,, d¢5} to reach their new
positions corresponding to 0 + 50 [32]. When 0, and 65 are much smaller than unity, the relationship be-
tween 060 and ¢ may be approximated by [32]
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1 052 —0,)2
0=|-0; 1 0 |dp=T"'5¢. (14)
0, 0 1

The relationship among x.(x), v(x), w(x), and x may be given as
x(x) = uy +/ [(1+2.)" — 0% —wi]'dx, (15)
A : :

where u; is the displacement of node 1 in the x; direction. Note that due to the definition of the element
coordinate system, the value of u; is equal to zero. However, the variation of u; is not zero. Making use of
Eq. (15), one obtains

L
C=L+u —u =x(L) —x(0) = / [(1+ 80)2 - Ui - W.zx]l/zdxv (16)
o : ;

in which ¢ is the current chord length of the shear center axis of the beam element, and L is the length of the
undeformed beam axis, and u, is the displacement of node 2 in the x; direction. Making use of the as-
sumption of uniform unit extension, ¢, may be calculated using Eq. (16).

Here, the lateral deflections of the shear center axis, v(x) and w(x), and the rotation about the shear
center axis, 0, (x), are assumed to be the Hermitian polynomials of x. v(x), w(x) and 0, (x) may be expressed
by

U(x) - {N13N27N33N4}I{UI;U/1 , U2, Ulz} = N;,uba
W(x) = {Nh 7N2;N37 7N4}Z{Wl7 7W’17W2; 7W’2} = Ni,llc, (17)
01(x) = {N1, Na, N3, N} {011, By, 012, B} = Nyug,

where v; and w; (j = 1,2, 3) are the nodal values of v and w at nodes j, respectively, v; and w/ (j = 1,2) are
the nodal values of v, and w, at nodes j, respectively, and 0,; and 8; (j = 1,2) are nodal values of 0y, 0, at
nodes j, respectively. Note that, due to the definition of the element coordinates, the values of v; and
w; (j = 1,2) are zero. However, their variations are not zero. N; (i = 1-4) are the shape functions and are
given by

M= (1= 2P@ 18, M=t(1-8)1-9),
| § (18)
N3:Z(l+€)2(2—f), N4=§(_1+52)(1+§)’
where
S ®

The axial displacements of the shear center axis may be determined from the lateral deflections and the
unit extension of the shear center axis using Eq. (15).

If x, y and z in Eq. (3) are regarded as the Lagrangian coordinates, the Green strain &y, &, and &3 are
given by [39]

1
(fr,—1), en= Erfxr,y7 g3 = Erfxrz. (20)

N —

&1 =

Substituting Egs. (4), (8)-(13) into Eq. (20) and retaining all terms up to the second-order and the third-
order terms, which are relevant to the retained third-order terms of nodal forces, yield
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1 1 1 1
Bl = Ec — Wiy — ZW oy + 00 4 + =& + @801 xx (y2 +zz)0f +-2 w + — 20%
: 2 %e 2 X 2 xx 2 Xx
- yelwgcx + Zglv,xx + yZU,xxW,xx - ywv,xxgl,xx - Za)w;oc(—)l:xx _ywel,xw,xx - Zw@ixv,xx, (21)

1 1
€12 zz(w,y _Z)Hl,x+z 5

+ ww,yal,xal,xx] ) (22)

Z(U,xw,xx - W,xv,xx) + [wygcgl,x + (U) - ywy)el,xvxx - Zw,yel,xw,ﬁoc

1 1 1
&13 = E (a),z +y)01x + Zy(wexv,xx - v,xwexx) += w,zgcel,x + ((,{) - Zw,z)gl,xw,xx - yw,zel,xv,xx

7
+ a)wizgl,xel,ﬁoc]' (23)

The underlined terms in Eq. (21) are the retained third-order terms of strains.

2.5. Nodal parameters and forces

The element employed here has two nodes with seven degrees of freedom per node. Two sets of element
nodal parameters termed ‘explicit nodal parameters’ and ‘implicit nodal parameters’ are employed. The
explicit nodal parameters of the element are used for the assembly of the system equations from the element
equations. They are chosen to be u;; (u; = u;,up; = v;,u3; = w;), the x; (i=1,2,3) components of the
translation vectors u; at node j (j = 1,2), ¢, the x; (i = 1,2,3) components of the rotation vectors ¢; at
node j (j = 1,2), and ;, the twist rate of the shear center axis at node j. Here, the values of ¢, are reset to
zero at the current configuration. Thus, d¢,;, the variation of ¢,;, represents infinitesimal rotations about
the x; axes [32], and the generalized nodal forces corresponding to d¢;; are m,;, the conventional moments
about the x; axes. The generalized nodal forces corresponding to du;;, the variations of u;;, are f;;, the forces
in the x; directions. The generalized nodal forces corresponding to 6, the variations of f8;, are bimoment
B,.

The implicit nodal parameters of the element are used to determine the deformation of the beam
element. They are chosen to be u;;, the x; (i = 1,2,3) components of the translation vectors u; at node j
(G =1,2), 0, B;,v}, and w) (j = 1,2) defined in Eq (17). Let 07,05, and 03, (j =1,2,3) denote 0y, —
and v respectively. The generallzed nodal forces corresponding to 5u,,,59 and 5/3 are fi, m and B
the forces in the x; directions, the generalized moments, and bimoments, respectlvely Note that m are
not conventional moments, because 5()* are not infinitesimal rotations about the x; axes at deformed
state.

In view of Egs. (10) and (14), the relations between the variation of the implicit and explicit nodal
parameters may be expressed as

ouy L 0 0 0 0]/ ou
o0y Ty Ta Ty 0 0 o,
5(]0 = 51]2 = 0 0 I3 0 (_) (3[12 = T(1¢5q, (24)
00, T, 0 -Tp T, 0[],
op 0 0 0 0 L]
0 0 0 1 05;/2  —0y/2
Ty, = —(92_,-/L 0 0f, Ty=|-0s 1+e 0 (Gj=12), (25)
—03_/'/L 0 0 92j 0 1 + &

where ou; = {du;, dv;, ow;}, 60; = {50, —ow), 0v}}, 6¢; = {0¢,;, 6¢y;, 005} (j = 1,2) and op = {0, 6p,};
I, and 15 are the identity matrices of order 2 >< 2 and 3 x 3, respectively, and 0 and 0 are the zero matrices of
order 3 x 3 and 3 x 2, respectively.

Let f={f;,m,f,my, B}, fy = {f;,m{,f,,m§, B}, where f;, = {fi;,f>,/s}, m; = {my;, my;, ms;}, m =
{m{ ],mzj,m3j} (j=1,2), and B = {B,B,}, denote the 1nternal nodal force vectors corresponding to the
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variation of the explicit and implicit nodal parameters, dq and dq,, respectively. Using the contragradient
law [40] and Eq. (24), the relation between f and f,, may be given by

f = Tj,f,. (26)

The global nodal parameters for the structural system corresponding to the element local nodes j
(j = 1,2) should be consistent with the element explicit nodal parameters. Thus, they are chosen to be Uj;,
the X; (i =1,2,3) components of the translation vectors U; at node j (j =1,2), ®;;, the X; (i =1,2,3)
components of the rotation vectors ®; at nodes j (j = 1,2), and f8,, the twist rate of the shear center axis at
node j. Here, the values of @; are reset to zero at the current configuration. Thus, 6®;;, the variations of @,
represent infinitesimal rotations about the X; axes [32], and the generalized nodal forces corresponding to
0®;; are the conventional moments about the X; axes. The generalized nodal forces corresponding to oUj;,
the variation of Uj;, are the forces in the X; directions. The generalized nodal forces corresponding to 6f;,
the variation of f3;, are B;.

2.6. Element nodal force vector

The element nodal force vector fy (Eq. (26)) corresponding to the implicit nodal parameters is obtained
from the virtual work principle in the current element coordinates. It should be mentioned again that the
element coordinate system is a local coordinate system not a moving coordinate system. Thus, a standard
procedure is used here for the derivation of fy. For convenience, the implicit nodal parameters are divided
into four generalized nodal displacement vectors u; (i = a, b, ¢, d), where

u, = {uy,ur} (27)

and w,,u., and u, are defined in Eq. (17).
The generalized force vectors corresponding to ou;, the variation of w; (i = a, b, ¢, d), are

fa = {ﬁlale}a fb = {ﬁlamglaﬁbmgQ}a
fo = {fa,m5y, fro,my},  £a = {mi\,Bi,mj,, B>} (28)

The virtual work principle requires that

5u;fa + 5u§,f,, + (Sllifc + 5ll[dfd = /(0'115811 + 20'12(3812 + 20'135813) dV, (29)

4

where V' is the volume of the undeformed beam, de;; (j = 1,2, 3) are the variations of ¢;; in Eqs. (21)—(23),
respectively, with respect to the implicit nodal parameter. ¢,; (j = 1,2, 3) are the second Piola—Kirchhoff
stress. For linear elastic material, the following constitutive equations are used:

g1 = E8117 g1 = 2G812, and g13 = 2G813, (30)

in which E is Young’s modulus and G is the shear modulus.

If the element size is chosen to be small enough, the values of the rotation parameters of the
deformed element defined in the current element coordinate system may always be much smaller than
unity. Thus the higher-order terms of rotation parameters in the element internal nodal forces may be
neglected. However, in order to include the nonlinear coupling among the bending, twisting, and
stretching deformations, the terms up to the second-order of rotation parameters and their spatial
derivatives are retained in eclement internal nodal forces by consistent second-order linearization of
Eq. (29). However the values of 0., 0, V., and w,, in Egs. (21)-(23) are deformation dependent, not
element size dependent. Thus their values may not always be much smaller than unity and their third-
order terms may not be negligible. Here, the third-order terms of 0, ., 0, ., v, and w,, are also retained
in Eq. (29).
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From Egs. (21)-(23), (27)-(30), we may obtain

f, = AELsC<1 +§sc> +lEIp/Hixdx—k%EIy/wixdx—i-%Elz/vixdx

2 2

+ = E]w/lexdx—"_E]w)z/Hl,xxv,xxwxxdx Gaa (31)

f, = E[z(l + 86) / N'b’u,xxdx —l—f]sz —l—E([z — Iy)/N”Qlwmdx + = 3 /(N//Ql Wy — N;QLxW‘xx)dx

HEI“’”/ Mol EK"'Z / N0 0asdr 45 e / N v, dx

+= EKyz / Nw? v dx + Cp / N;;ef?xvtdeEEKyz / N; 07 w . dx, (32)

1
£, = EL(1 + &) / N'wody + f12Go + E(L — 1) / N!Oyv e +5.GJ / (N Oy 0 — N0y 10 d

1
+3Elwyz/N"01xxvxxdx+ ~EK, /N” LW xxdx+§EKy/N’c’w?mdx

+§EK,,_7 / N/ wdx + C, / Ngeixw,xde%EKﬂ / N/07 0, dx, (33)
f, = [GJ+EIpsC]/N 0, dx + EI,(1 + 3¢.) /N”é)mderE /Ndvxxwm
%GJ/N’ (Wb — . wxx)dx+3E1wﬂ/N“ W dr+ = EKI/N’ Ldx
;EK(U / N;0; . dx + 2L, / Ny (W — %) dx + Gy / N2, 01 dx + C. / N,w? 01, dx
+;EKU,Z / Nv%, 01 dx + 5 EKwy / N2, 01 dx + Cy / (N6} 01 + N0 0,,) dx, (34)
where
:%{—1,1}, Gb:/Ngu,xdx, GL:/N;W,de, (35)

Iy:/zszv [z:/ysz7 ]p:Iy+[27 Iu)yz:/wyZdAa Iy :/wsza
1 1
Cp = EE(Kz + K. +4l,.) +GL, C.= EE(Ky + K,z — 4loy:) + GJ,,

C; =

1
EE(Ka)y +sz)+GJw7 Kv :/Z4dA7 sz:/yzzsza Kz :/y4dAa

Ki=K,+K +2K., K,= /a)“dA, Kwyz/wzzsz, KwZ:/co2y2dA,

J:/ (=240, + 0+ 0.)7|d4, Jy:/ (o — )" + 202 | dd
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J = / (0= y0,)" + 0|4, J, = / (02 + o2 ) dd (36)

in which the range of integrations for the integral [()dx in Egs. (31)—(36) is from 0 to L, A4 is the cross-
sectional area, and N, (j = b, ¢, d) are given in Eq. (18). The underlined terms in Eqs. (31)—(34) are the third-
order terms of 0, 0} xx, Uy, and W .

The element nodal force vector f (Eq. (26)) corresponding to the explicit nodal parameters may be
obtained from Eqs. (26) and (31)—(34). Note that only the terms up to the second-order of nodal parameters
and the third-order terms of 0, ,, 0, .., v, and w,, are retained in fy. Thus, the corresponding f in Eq. (26)
may be rewritten as

£ =1+ (Tyy — L)), (37)
where f}) are the first-order terms of nodal parameters of fy, and I 4 is the identity matrix of order 14 x 14.
2.7. Element tangent stiffness matrices

The element tangent stiffness matrix corresponding to the explicit nodal parameters (referred to as
explicit tangent stiffness matrix) may be obtained by differentiating the element nodal force vector f in
Eq. (37) with respect to explicit nodal parameters. Using Egs. (24) and (37), we obtain

L O of dq, _

=544 30" [ko+ (Th, = 1) + ] T, (38)

where k) = 0f/0q, is the tangent stiffness matrix corresponding to implicit nodal parameters (referred to as
implicit tangent stiffness matrix), k) are the zeroth-order terms of nodal parameters of ky, and H is a
unsymmetrical matrix and is given by

0 hy, 0 hy, 0
by, hy —hy, 0 (:)

H= 0 —hy 0 —hy 0|, (39)
h;, 0 —h,, h, 0

0 0 0 0 0

0 —(1/Lymy, —(1/Lyms, 0 m —m);
hb_,-: 0 0 0 , ha_,-: 0 0 (1/2)m‘1’j 0:1,2,3), (40)
0 0 0 0 —(1/2)mi, 0

where 0,,0 and 0 are the zero matrices of order 2 x 2, 3 x 3 and 3 x 2, respectively.
Using the direct stiffness method, the implicit tangent stiffness matrix ky may be assembled by the
submatrices

of;

= 41
i 6“17 ( )

k

where f; (i = a, b, c,d) are defined in Egs. (31)-(34) and u; (i = a, b, ¢, d) are defined in Eqgs. (17) and (27).
Note that k;; are the symmetric matrices. The explicit form of k;; may be expressed as

K., = AEL(1 + 36.)G,G.,

K, =G, (AEG; + EL / N/ v dx + El,,. / N/ O oW dx> ,
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kac == Ga (AEGZ + EI) / N;,//W,xxdx + EIwyz / Nzlel‘xxv,xx dx) )

k, =G, <E1,, / N0, . dx + 3EI, / N0, dx + EL,. / NIV oWy dx>,

Ky = EL(1 +sc)/NZN’b"dx+f12/N;Nde

3 t t t !
+ 5 EK / NN 1de+ EK / N/Ny v, dx + = EK),_, / NN, w? dx + Cy / N/N} 07, dx,

s 3 1 s 3
Ky = E(L — 1,) / N/N0, dx + 3EI,,. / NN Oy e+ 5.GJ / (N/N' = NIN" )0, de

, 1
+ EK)Z / NZN/CI (3U,Xxw,xx + 50%,)() dx’

1 ! !
kpy = E(I, — 1) / NN w . dx + = : / (NyN,jw, — N,N,w ) dx + 3EL,,.

X / NINY W dx+3EK,,. / NINY 0, 0 dx + 2C, / NN 0, 0, dx + EK,. / NN O w1 dx,

ke = EL(1 + &) / N/N" dx + fis / NN/ dx

+§E1<wy / N/N/0 lxxdx—&- EK / NIN w2, dx + = EK}Z / N/N/? dx + C. / NIN07, dx

Lo ,
Ky =E(L — 1) / NINjvdv 45 / (N'N'w — N'N,tw.) dx + 3EL,,.

x / NN/ v, dx+ 3EK,,, / NN 0w 1 dx + 2C., / NN 0, W dx + EK,. / NN 0, 0 ., dx,

ki = [GJ + Elz.] / NN/, dx + EI,(1 + 3¢,) / NN dx

3 , 3 ,
+5EK) / N;,Ng,efxdx+—EKw / NIN[ 07 . dx + 2EL,, / NN (W2, — v2,) dx

XX

dx

dxx

+Cp / N, N/v%, dx + C. / NONGiw?, dx + = Esz / NN 2

+§EKwy / NNw? dx + Cy / [N;,N/’ef o T NONGHO}  + 2(N N/ +N§N;)01‘x01,xx] dx, (42)

where the underlined terms are the second-order terms of 0, ., 0 ., vy, and w,,.
The element tangent stiffness matrix referred to the global coordinate system is obtained by using the
standard coordinate transformation.

2.8. Load stiffness matrix

Different ways for generating configuration-dependent moment were proposed in the literature
[8,10,33,41]. Here, for simplicity, only the conservative moments generated by conservative force or
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forces (with fixed directions) are considered, and the ways for generating conservative moment proposed
in [33] are employed here. For completeness, a brief description of the ways for generating conservative
moment is given here. In this study, a set of load base coordinates X (i = 1,2,3) associated with each
configuration-dependent moment is constructed at the current configuration. The mechanism for gen-
erating configuration-dependent moment is described in these coordinates, and the corresponding ex-
ternal load and load stiffness matrix [42] are defined in terms of these coordinates. Unless stated
otherwise, all vectors and matrices in this section are referred to these coordinates. Note that this co-
ordinate system is just a local coordinate system constructed at the current configuration, not a moving
coordinate system. Thus, it is regarded as a fixed coordinated system in the derivation of the load
stiffness matrix.

The first way for generating configuration-dependent moment may described as follows.

Consider a sphere of radius R whose centroid is rigidly connected with the structure at node O as shown
in Fig. 3. Two strings wound around a great circle of the sphere are acted upon by forces of magnitude P.
Thus, the strings are always tangent to the sphere. The great circle and the forces are on the same plane at
the undeformed configuration of the structure. However, the great circle and the forces are generally not on
the same plane when the structure is deformed. The origin of the load base coordinate system is chosen to
be located at the node O. The X{ axis is chosen to coincide with the normal of the plane of the great circle,
and the X} and X7 axes lie in the plane of the great circle.

Let A4 denote the contact point of the force P and the great circle. Because P is tangent to the sphere, P is
perpendicular to the line OA. Let e4 denote the unit vector in the direction of line OA. e, may be expressed
by

e, = a/(a’a)l/z, (43)
a=e) xn" ={0,0,-0}, (44)

where e§ = {{1,4,,0;} is the unit vector in the direction of P, and n” is the unit normal of the plane
of the great circle. Note that n” coincides with ef = {1,0,0}, the unit vector associated with the X7
axis.

The external moment vector at node O generated by the above-mentioned mechanism may be expressed
by

M=Me, xe, (45)

where M = 2RP is the magnitude of the moment. The corresponding load stiffness matrix k, may be ex-
pressed as

k, = M(&2 + 02) Pk + M(E + £2) 7k, (46)

S ———-—

Fig. 3. Mechanism for generating configuration-dependent moment.
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where
[0 4l —ho,
ko= |0 6ty B2, (47)
0 —2—2 —b
[0 —06(B+6) 06(E+6)
Ky = |0 2T —ee . (48)
0 20 —2005

Three special cases shown in Fig. 4 are considered here. Following [10], they are referred to as quasitan-
gential (QT) moments of the first and second types, and semitangential (ST) moment. The load stiffness
matrices corresponding to QT and ST moment at the configurations shown in Fig. 4 may be obtained from
Eqgs. (46)—(48) and given by

0 0 0
K" =m0 0 of, (49)
L0 —1 0
0 0 0
KX =M|0 0 1], (50)
L0 0 0
0 0 0
M
kgTz7 0 0 1]. (51)
0 -1 0

The second way for generating configuration-dependent moment may described as follows.

Consider a rigid arm of length R which end is rigidly connected with the structure at node O as shown in
Fig. 5. The other end of the rigid arm is acted upon by a conservative force (with a fixed direction) of
magnitude P. The origin of the load base coordinates X/ (i = 1,2, 3) is chosen to be located at the node O.
The X axis is chosen to coincide with the axis of the rigid arm, and the X7 and X7 axes are perpendicular to
the rigid arm.

The external moment vector at node O generated by the above-mentioned mechanism may be expressed
by

P
M:RPthep, (52)
where eﬁ = {,, 5,43} is the unit vector in the direction of P, and t” is the unit vector in the axial direction

of the rigid arm. Note that t” coincides with e/ = {1, 0,0}, the unit vector associated with the X7 axis. The
corresponding load stiffness matrix may be expressed as

P / P/2
P7 R P /tZN XPP 27 R X2

X5 2 2
SPARNOAN SV,
QT1 QT2 ST

(a) (b) (c)

Fig. 4. Quasitangential (QT) moment and semitangential (ST) moment.
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X{

R Rigid arm

X5

X3

Fig. 5. Mechanism for generating configuration-dependent moment by an off-axis load.

0 6 b
k,=RP|0 —¢; 0 |. (53)
0 0 —¢

The load stiffness matrix referred to the global coordinate system is obtained by using the standard
coordinate transformation and may be expressed by

kO = Acrk,AL,, (54)

where Agp is the transformation matrix given in Eq. (1).

2.9. Equilibrium equations

The nonlinear equilibrium equations may be expressed by
Y=F-P=0, (55)

where ¥ is the unbalanced force between the internal nodal force F and the external nodal force AP, where A
is the loading parameter, and P is a reference loading. Note that P may require to be updated at each
iteration if the applied load is configuration dependent. F is assembled from the element nodal force
vectors, which are calculated using Eqs. (31)-(34) and (37) first in the current element coordinates and then
transformed from current element coordinate system to global coordinate system before assemblage using
standard procedure.

In this paper, a weighted Euclidean norm of the unbalanced force is employed as the error measure for
the equilibrium iterations, and is given by

1%,
M‘\/N\ ol

where NV is the number of equilibrium equations; e, is a prescribed value of error tolerance.

(56)

2.10. Criterion of the buckling state

Here, the zero value of the tangent stiffness matrix determinant is used as the criterion of the buckling
state. The tangent stiffness matrix of the structure is assembled from the element stiffness matrix and load
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stiffness matrix. Let Kr(4) denote the tangent stiffness matrix of the structure corresponding to the loading
parameter A. The criterion of the buckling state may be expressed as

D(2) = det [Kr(2)| = 0. (57)

Let Anp denote the minimum loading parameter satisfying Eq. (57). Ang is called the buckling loading
parameter here.

The buckling mode corresponding to Axg may be obtained by solving the following generalized eigen-
value problem

KX = —LKGX, (58)

ANB

where K, is the linear stiffness matrix of the structure, and K; = Kt — Kj is the geometric stiffness matrix of
the structure corresponding to /Jyng. It can be seen that Ayp is also an eigenvalue for Eq. (58). The eigen-
vector corresponding to eigenvalue Anp is the required buckling mode. Here, the inverse power method [43]
is used to find the buckling mode.

3. Numerical algorithm

An incremental-iterative method based on the Newton-Raphson method combined with constant arc
length of incremental displacement vector [44,45] is employed for the solution of nonlinear equilibrium
equations. For a given displacement increment or corrector, the method described in [32,46] is employed to
determine the current element cross-section coordinates, element coordinates and element deformation
nodal parameters for each element. A parabolic interpolation method of the arc length is employed here to
find the buckling load. In order to initiate the secondary path, at the bifurcation point a perturbation
displacement proportional to the first buckling mode is added [47].

The basic steps involved in the parabolic interpolation method are outlined as follows.

Assume that the equilibrium configuration of the Ith incremental step is obtained. Let AS; denote the arc
length of the incremental displacement vector of the Ith incremental step, 4; and K'T denote the loading
parameter and tangent stiffness matrix corresponding to the equilibrium configuration of the Ith incre-
mental step, respectively, and D(2;) denotedet [K%|. If Ki! is positive definite and K. is positive nondefinite,
the following steps are used to obtain the buckling load.

1. Let ASL = 0, ASR = AS[, }VL = 0, )\.R = /1], DL = D(/I],]), and DR = D(;L])

2. Let AS; = 1(AS, + ASy).

3. Repeat the Ith incremental step to obtain a new 4;, K- and D(/,).

4. If K-Il- is pOSitiVe deﬁnite, let /lM = /lL, ASM = ASL, Dy = DL, )vL = )\,[, ASL = AS], and D, = D(;L]) If KIT is
pOSitiVe nondeﬁnite, let /lM = /l]g, ASM = ASR, DM = DR, iR = /1], ASR = AS[, and DR = D(;\. )

5. Let 2; = (A + Ar) /2. If |21 — Az|/ A < E;, where E; is a prescribed error tolerance, stop the iteration; oth-
erwise go to step 6.

6. Let D(AS) = aAS? + bAS + ¢ denote the parabola that passes through points (AS;, Dy), (ASy, D) and
(ASg, Dg). If b*> — 4ac > 0, let AS; and AS, be the solutions of D(AS) = 0. If AS;, < AS; < ASg (i = 1, 2),
let AS; :%(AS] +AS,). If AS; < AS; < AS; (i = 1 or 2), let AS; = AS;. If ASg<AS; or AS; = AS;
(l = 1, 2), let AS[ = %(ASL + ASR) If b2 —4dac < 0, let AS[ = %(ASL + ASR)

7. Go to step 3.

The buckling load Ang is chosen to be the converged 4;.

4. Numerical studies

In order to investigate the effect of the third-order terms of the element nodal forces on the buckling load
and post-buckling behavior of three-dimensional beams, the following cases are considered:
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Fig. 6. Geometry of I section.

te

1. NF = 1: All the terms up to the second-order in Egs. (31)—(34) and the third-order term of the twist rate,
1EK; [ Ni,@f‘s ds in Eq. (34), and the corresponding terms in Eq. (42) are considered.

2. NF = 2: All the terms in Egs. (31)-(34), and Eq. (42) are considered.

Here only the beams with rectangular cross-section and doubly symmetrical I sections shown in Fig. 6 are

considered. The approximated Saint Venant warping function of the thin-walled I section used here is given

by

—y(z—d+1t) for top flange (—0.56<y<0.5b, 0.5d — t; <z<0.5d),
=< iz for web (—0.56<y<0.5b, 0.5d — t; <z<0.5d),
—y(z+d —1t) for bottom flange (—0.5b<y<0.5h, —0.5d <z<0.5d — #).

For convenience, in this study, WF and WR are used to denote that the cross-sections are warping free
and warping restrained, respectively.

Example 1 (Cantilever beam subjected to end torque). The example considered here is a W21x 93 can-
tilever beam subjected to an end torque T as shown in Fig. 7. Three different warping boundary con-
ditions are considered: (a) WF at both ends of the beam; (b) WR at fixed end of the beam and WF at
free end of the beam; (c) WR at both ends of the beam. Since only the primary path is considered for this
example, the ways of generating end moment are rendered irrelevant here. The geometry and material
properties are: L =240 in.; b =8.42 in.; t =093 in.; d =21.62 in.; t, = 0.58 in.; Young’s modulus
E = 29,000 ksi, and the shear modulus G = 11,200 ksi. It is noted that the only nonzero deformations are
01,015 and ¢, for this example. The present results are obtained by using 20 elements and shown in
Fig. 8. The results of NF = 1 and 2 are nearly identical for this example. Thus only the results of NF =1
are shown in Fig. 8. As can be seen the torsional stiffness increases with the increase of the twist angle. It
indicates that the effect of the third-order term of the twist rate is not negligible when the twist angle is
not small for this example.

Example 2 (Cantilever beam subjected to end force (buckling analysis)). The buckling load of the I-section
cantilever beam subjected to a vertical end force P as shown in Fig. 9 is studied here. This example was
investigated experimentally and theoretically by Anderson and Trahair [5] and also studied by Pi and
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X5
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1 X6
1B 4
Al L |

cross section

Fig. 7. Cantilever beam subjected to end torque.

case (c) (b) (a)

0.4 B I,” ’,/’ ”,f/
0.2} e
---- Linear solution
O'O l | ! ]
0.0 0.5 1.0 1.5 2.0

#g (rad)

Fig. 8. Load-end twist angle for cantilever beam subjected to end torque.
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Trahair [24] using the finite element method. The clamped end of the beam is fully restrained against
warping, and the free end is warping free. The geometry and material properties of the beam are: b = 1.241
in.; & =0.1232 in.; A =2.975 in.; t, = 0.0862 in.; Young’s modulus E = 9,444,854 psi, and the shear
modulus G = 3,766, 629 psi. The present results for NF = 1 and 2 obtained by using 5 and 10 elements are
all nearly identical. The present buckling loads for NF = 1 obtained by using five elements are shown in
Table 1 together with those given in [5,24]. It can be seen that the agreement among these solutions given in
Table 1 is very good.

Example 3 (Cantilever beam subjected to end force (post-buckling analysis)). The example considered here is
an I-shaped cantilever beam with a vertical force P applied at the centroid of the end cross-section as shown
in Fig. 10. The clamped end of the beam is fully restrained against warping, and the free end is warping free.
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X§,w

5 yd a=0,d/2

----- - x§,U

cross section

S
X3

Fig. 9. Cantilever beam subjected to end force (buckling analysis).

Table 1
Buckling load for cantilever beam subjected to end force
Load applied at L (in.) Buckling load Pyg (Ib)
Exp. [5] Theory [5] FEM [24] Present
Upper face 50 91.2 94.6 92.1 91.8
65 59.7 56.8 56.5 56.2
Centroid 50 134.2 139.2 141.8 138.1
65 72.7 74.2 76.1 74.5
X§,W
G
| XSV .
Y /
G
- 5—X{,U
A L |

cross section

s
X3

Fig. 10. Cantilever beam subjected to end force (post-buckling analysis).
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Here, three cases studied in the literature are considered. The geometrical and material properties are: (1)
L=10m,»=0.19 m, tf =0.013 m, d = 0.613 m, ¢, = 0.025 m, Young’s modulus £ = 206 x 10° N/m?,
and Poisson’s ratio v=0.3 [29]; (2) L =130 in., b = 0.86 in., ¢y = 0.122 in., d = 2.984 in., ¢, = 0.085 in.,
Young’s modulus £ = 9, 300, 000 psi, the shear modulus G = 3,698, 534 psi and the self-weight is 0.0436 1b/
in. [6] and (3) L =4800 mm, b =300 mm, # =25 mm d = 325 mm, ¢, =25 mm, Young’s modulus
E = 200,000 N/mm?, and Poisson’s ratio v = 0.3 [48]. The present results are obtained using 40 elements
for cases (1), (2) and 80 elements for case (3). The results for NF = 1 and 2 are nearly identical for this
example. Thus only the results for NF = 1 are given here. The present buckling loads are Pyg = 47.333 kN
for case (1), Pyg = 5.751 1b for case (2), and Pyg = 1015.661 kN for case (3). The linear buckling loads [2]
are 46.359 1b and 833.32 kN for cases (1) and (3), respectively. The ratios of the minor axis (out-of-plane)
flexural stiffness to the major axis (in-plane) flexural stiffness are 0.018 and 0.296 for cases (1) and (3),
respectively. Because this ratio is large for case (3), the difference between the nonlinear buckling load and
linear buckling load is significant for case (3). The load—deflection curves of the present study together with
the results given in the literature are shown in Figs. 11-13. In Fig. 11, the results of [29] are obtained by

“=Wg
z
‘S
Fe _,: --- Present
n
,' — [29]
I
3
I I 1 1 | |
O'OO 1 2 3

Tip displacements (m)

Fig. 11. Load-tip displacements for cantilever beam subjected to end force (case 1).

10
a
Z 5
A ¥
L — Present
{ o s Experimental [6]
1 1 I I
GU 10 20

Tip displacements (in)

Fig. 12. Load-tip displacements for cantilever beam subjected to end force (case 2).
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1 —-- SEMe4 [48]
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! ] | ! |
0O 1 2 3
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Fig. 13. Load-tip displacements for cantilever beam subjected to end force (case 3).

considering a small twist imperfection, which varies linearly from zero value at the support to a value of
1073 radian at the tip. In Fig. 12, the initial deflections caused by the self-weight are excluded. In Fig. 13, the
results of [48] are obtained by 48 4-node and 9-node stress resultant based semimixed shell elements, SEMe4
and SEMe9, respectively. It can beseen that the agreement among these solutions given in Figs. 11-13 is
quite good.

Example 4 (Simply supported beam subjected to eccentric axial force). This example was first analyzed by
Soltis and Christiano [4]. The example considered is a simply supported W14 x 43 beam subjected to an
eccentric axial force P as shown in Fig. 14. The ends of the beam are free to warp and free to rotate about
Xy and Xy axes, but restrained from rotation about X{” axis. The translation is restrained at end point 4,
and is free only in the direction of X axis at points B. The geometrical and material properties are

X§,w

XS,V
P (/ ¢ B P G
A : ''''' —— gl Xi,U

| L |
cross section
X3
0.5in —=| |=—
=51

+ load point

Fig. 14. Simply supported beam subjected to eccentric axial force.
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Fig. 15. Load—displacement for simply supported beam subjected to eccentric axial force.

L=264.61in., b =7.995 in., tt = 0.53 in., d = 13.66 in., ¢, = 0.305 in., Young’s modulus £ = 29,000 ksi,
and the shear modulus G = 11,200 ksi. The present results are obtained by using 40 elements. The buckling
loads of the present study and [4] are Pyg = 139.1 and 150.1 kip, respectively. The load—deflection curves of
the present study together with the results of [4] are shown in Fig. 15. As can be seen that the mid-span
displacements for NF = 1 and 2 are nearly identical when the load is less than 1.3Pyg. However, as the load
exceeds approximately 1.4Pyp, the difference between the mid-span displacements for NF = 1 and 2 is not
negligible.

Example 5 (Simply supported beam subjected to a central concentrated force). The example considered is a
simply supported I-beam subjected to a mid-span concentrated load P at the upper face as shown in Fig. 16.
This example was experimentally and theoretically studied by Woolcock and Trahair [6]. The ends of the
beam are free to warp and free to rotate about Xy’ and Xy axes, but restrained from rotation about X axis.
The translation is restrained at end point A, and is free only in the direction of X axis at points B. The
geometrical and material properties are L = 143.9 in., b = 0.86 in., t = 0.122 in., & = 2.862 in., t, = 0.085
in., Young’s modulus £ = 9,300,000 psi, the shear modulus G = 3,698,534 psi and the self-weight is
0.0436 Ib/in. The present results are obtained by using 40 elements. The results for NF = 1 and 2 are nearly
identical for this example. Thus only the results for NF = 1 are given here. The present buckling load and
the theoretical buckling load of [6] are 17.65 1b and 17.68 1b, respectively. The load—deflection curves of the
present study together with the experimental results given in [6] are shown in Fig. 17. In Fig. 17, the initial
deflections caused by the self-weight are excluded. Very good agreement between these two solutions is
observed.

Example 6 (Simply supported beam subjected to uniform moment). The example considered is a simply
supported W10 x 100 beam subjected to equal end moments M applied about its major axis as shown in
Fig. 18. A disturbing moment of 0.01 M applied at the right end of the beam to initiate lateral defor-
mations in large displacement analysis is also shown. This example was analyzed by Conci and Gattass [21]
and Izzuddin [27]. The ends of the beam are free to rotate about Xy and XY axes, but restrained from
rotation about X axis. The translation is restrained at end point 4, and is free only in the direction of X\
axis at points B. Two different warping boundary conditions are considered: (a) WF at both ends of the
beam, (b) WR at both ends of the beam. Because of the rotational boundary conditions used here, the way
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Fig. 16. Simply supported beam subjected to a central concentrated load.
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Fig. 17. Load-displacement for simply supported beam subjected to a central concentrated load.

of generating end moments is rendered irrelevant. The geometrical and material properties are L = 610 cm,
b =26.2636 cm, t; = 2.8448 cm, d = 28.194 cm, t,, = 1.7272 cm, Young’s modulus £ = 19,994,804 N/ cm?,
and the shear modulus G = 8,273,712 N/cm?. The theoretical buckling moments [49] are Myp = 1.7523
and 2.4401 x 10® N/cm? for cases (a) and (b), respectively. The buckling moments of the present study
are given in Table 2. The load—deflection curves of the present study obtained by using 40 elements
together with results of [21,27] are shown in Figs. 19 and 20. As can be seen the difference between

present results for NF = 1 and 2 is negligible. The present results are in good agreement with the results
of [27].

Example 7 (Cantilever angle subjected to end force). The example considered is a cantilever right-angle
frame subjected to an in-plane end force P as shown in Fig. 21. A disturbing out-of-plane load of 0.01
P applied at the free end of the frame to initiate lateral deformations in large displacement analysis is
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Fig. 18. Simply supported beam subjected to uniform moment.

Buckling moment for simply supported beam subjected to uniform moment

6045

Number of elements

MNB (108 N/sz)

Case (a) Case (b)
10 1.7262 2.3365
20 1.7277 2.3388
40 1.7281 2.3394
80 1.7282 2.3395
5 -
4t Ve
g
© 3t case (a)
Z.
% = [27]
= Ry - [21]
2 - —
it 4 — Present, NF=1
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O | ] 1 1 1 L
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Displacements (cm)

Fig. 19. Load-displacement for simply supported beam subjected to uniform moment (case a).

also shown. This example was first introduced by Yang and McGuire [15]. Each member of the frame
has a W21 x 93 section with the web lying in the plane of the frame. The geometry and material
properties are: L =240 in.; b =842 in.; t =093 in.; d = 21.62 in.; ¢, = 0.58 in.; Young’s modulus
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Fig. 20. Load-displacement for simply supported beam subjected to uniform moment (case b).
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Fig. 21. Cantilever angle subjected to end force.

E =29,000 ksi, and Poisson’s ratio v = 0.3. Here, two cases are considered for the warping condition at
member ends: (a) WF at the fixed end, corner joint connecting two members, and free end, (b) WR at
the fixed end and corner joint, and WF at free end. The results for NF = 1 and 2 are nearly identical
for this example. Thus only the results for NF =1 are given here. The present buckling loads are
Py = 13.089 kip and 18.679 kip, for cases (a) and (b), respectively. The corresponding linear buckling
loads given in [15] are 12.33 kip and 17.42 kip, respectively. The load—deflection curves of the present
study obtained by using 40 elements together with the results of [15] are shown in Figs. 22-24. As can
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Fig. 22. Load-displacement (U) for cantilever angle subjected to end force.
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Fig. 23. Load-displacement (V) for cantilever angle subjected to end force.
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Fig. 24. Load—displacement (W) for cantilever angle subjected to end force.
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Fig. 25. Cantilever angle subjected to end torque.

Table 3

Buckling moment for cantilever angle subjected to end torsion

Type of moment

Buckling moment (N/ ‘mm?)

Present Ref. [33] Ref. [50]
QT1 53.74 262.2 833
QT2 82.99 271.1 729
ST 104.82 274.6 1444
60
_‘UC "'WC
= ~V,
—_ 40 L
g
B0
z QT1
&= 20
0 | 1 |

0

ul
120

Tip displacements (mm)

240

Fig. 26. Load-displacement for cantilever angle subjected to end torque (QT1).
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Fig. 27. Load-displacement for cantilever angle subjected to end torque (QT2).
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Fig. 28. Load-displacement for cantilever angle subjected to end torque (ST).

be seen the deflections of the present study and [15] are nearly identical when the load is less than Pyg.
However, as the load exceeds Pyp, differences between the deflections of the present study and [15]

become significant.

Example 8 (Cantilever angle subjected to end torque). The example considered here is a cantilever angle
with rectangular cross section subjected to an end torque 7. The quasitangential and semitangential mo-
ments are considered. The corresponding load base coordinates are shown in Fig. 25. The geometry and
material properties of the angle are: L =240 mm; »=0.6 mm; 2= 10 mm; Young’s modulus
E = 71,240 N/mm?, and the shear modulus G = 27,191 N/mm?”. Here, the warping conditions at member
ends are WF at the fixed end, corner joint connecting two members, and free end.

The present results are obtained by using 240 elements. The results for NF =1 and 2 are nearly
identical for this example. Thus only the results for NF = 1 are given here. The present buckling loads
are shown in Table 3 together with the results of [33,50] obtained by the linear buckling analysis. As
can be seen, the discrepancy between geometric nonlinear and linear buckling loads is marked. Note
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that the pre-buckling displacements for this example are quite large. Thus the nonlinear buckling
analysis is required for reliable buckling loads. The load—deflection curves are shown in Figs. 26-28. It
can be seen that the secondary paths are unstable for QT1 moment and stable for QT2 and ST
moments.

5. Conclusions

A CR TL finite element formulation of doubly symmetric thin-walled beams with open section is pre-
sented. The effects of deformation-dependent third-order terms of element nodal forces on the buckling
load and post-buckling behavior are investigated. The formulations of beam elements proposed in [34,35]
are modified and employed here. All coupling among bending, twisting, and stretching deformations for
beam element is considered by consistent second-order linearization of the fully geometrically nonlinear
beam theory. All deformation-dependent third-order terms of the element nodal forces are also considered.
It is found that for most examples studied the agreement between the pre-buckling displacements and
buckling loads of the present study and those given in the literature is very good. However, for some ex-
amples discrepancies between the post-buckling deflections of the present study and those given in the
literature become significant. For cases with large pre-buckling displacements, the discrepancy between the
nonlinear buckling loads of the present study and the linear buckling loads given in the literature is marked.
The discrepancy between buckling loads and loading-deflection curves for NF = 1 and 2 is negligible for all
examples studied, when the displacements and rotations are not very large. It shows that the third-order
term of twist rate, %EKI Ik N;His ds (Eq. (34)) is the dominant third-order term of element nodal forces. As
can be seen from the results of Example 1, the effect of the third-order term of twist rate, 1EK; [ N;,Gis ds is
not negligible. Thus it is suggested that when the displacements and rotations are not very large, the third-
order term 1EK; [N/,0;  ds should be retained and the rest of the third-order terms may be dropped for the
geometric nonlinear analysis of thin-walled beams with open cross-section. However, when the displace-
ments and rotations are very large, all deformation-dependent third-order terms are suggested to be re-
tained for reliable solutions.

Acknowledgements

The authors would like to acknowledge the constructive and thoughtful comment of the referee. The
research was sponsored by the National Science Council, Republic of China (Taiwan) under the contract
NSC 8§9-2212-E-009-052.

References

[1] V.Z. Vlasov, Thin walled Elastic Beams, second ed. (English translation published for US Science Foundation by Israel Program
for Scientific Translations, 1961).

[2] S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability, second ed., McGraw-Hill, New York, 1963.

[3] R.S. Barsoum, R.H. Gallagher, Finite element analysis of torsional and torsional-flexural stability problems, moments, Internat.
J. Numer. Methods Engrg. 2 (1970) 335-352.

[4] L.A. Soltis, P. Christiano, Finite deformation of biaxially loaded columns, J. Struct. Div. ASCE 98 (1972) 2647-2662.

[5] .M. Anderson, N.S. Trahair, Stability of monosymmetric beams and cantilevers, J. Struct. Div. ASCE 98 (1972) 269-286.

[6] S.T. Woolcock, N.S. Trahair, Post-buckling behavior of determinate beams, J. Engrg. Mech. Div. ASCE 100 (1974)
151-171.

[7] D.O. Brush, B.O. Almroth, Buckling of Bars, Plates and Shells, McGraw-Hill, New York, 1975.

[8] H. Ziegler, Principles of Structural Stability, Birkhauser, Basel, 1977.

[9] J.H Argyris, P.C. Dunne, D.W. Scharpf, On large displacement-small strain analysis of structures with rotation degree of freedom,
Comput. Methods Appl. Mech. Engrg. 14-15 (1978) 401-451, 99-135.

[10] J.H. Argyris, O. Hilpert, G.A. Malejannakis, D.W. Scharpf, On the geometrical stiffness of a beam in space — a consistent v.w.

approach, Comput. Methods Appl. Mech. Engrg. 20 (1979) 105-131.



W.Y. Lin, K. M. Hsiao | Comput. Methods Appl. Mech. Engrg. 190 (2001) 60236052 6051

[11] J.H. Argyris, H. Balmer, J.St. Doltsinis, P.C. Dunne, M. Haase, M. Kleiber, G.A. Malejannakis, H.P. Mlejenek, M. Muller, D.W.
Scharpf, Finite element method — the natural approach, Comput. Methods Appl. Mech. Engrg. 17/18 (1979) 1-106.

[12] J.H. Argyris, S. Symeonidis, Nonlinear finite element analysis of elastic systems under nonconservative loading-natural
formulation. Part I: quasistatic problems, Comput. Methods Appl. Mech. Engrg. 26 (1981) 75-123.

[13] A. Gjelsvik, The Theory of Thin Walled Bars, Wiley, New York, 1981.

[14] M.M. Attard, Lateral buckling analysis of beams by FEM, Comput. Struct. 23 (1986) 217-231.

[15] Y.B. Yang, W. McGuire, Joint rotation and geometric nonlinear analysis, J. Struct. Engrg. ASCE 112 (1986) 879-905.

[16] J.C. Simo, L. Vu-Quoc, A three-dimensional finite strain rod model. Part II: Computational aspects, Comput. Methods Appl.
Mech. Engrg. 58 (1986) 79-116.

[17] W.E. Chen, E.M. Lui, Structural Stability, Theory and Implementation, Elsevier, New York, 1988.

[18] A. Cardona, M. Geradin, A beam finite element non-linear theory with finite rotations, Internat. J. Numer. Methods Engrg. 26
(1988) 2403-2438.

[19] M. Iura, S.N. Atluri, On a consistent theory and variational formulation of finitely stretched and rotated 3-D spaced-curved
beams, Comput. Mech. 4 (1989) 73-88.

[20] M.A. Crisfield, A consistent co-rotational formulation for non-linear, three-dimensional, beam elements, Comput. Methods Appl.
Mech. Engrg. 81 (1990) 131-150.

[21] A. Conci, M. Gattass, Natural coordinates for geometric nonlinear analysis of thin-walled frames, Internat. J. Numer. Methods
Engrg. 30 (1990) 207-231.

[22] H. Chen, G.E. Blandford, Thin-walled space frames, part I: large deformation analysis theory, part II: algorithmic details and
applications, J. Struct. Engrg. ASCE 117 (1991) 2499-2539.

[23] A.F. Saleeb, T.Y.P. Chang, A.S. Gendy, Effective modeling of spatial buckling of beam assemblages, accounting for warping
constraints and rotation-dependency of moments, Internat. J. Numer. Methods Engrg. 33 (1992) 469-502.

[24] Y.L. Pi, N.S. Trahair, Prebuckling deflections and lateral buckling, part I: theory and part II: application, J. Struct. Engrg. ASCE
118 (1992) 2949-2985.

[25] A.S. Gendy, A.F. Saleeb, Generalized mixed finite element model for pre- and post-quasistatic buckling response of thin-walled
framed structures, Internat. J. Numer. Methods Engrg. 37 (1994) 297-322.

[26] A.C.R. Djugash, V. Kalyanaraman, Nonlinear analysis of thin-walled members under biaxial bending, J. Construct. Steel Res. 31
(1994) 289-304.

[27] B.A. Izzuddin, An Eulerian approach to the large displacement analysis of thin-walled frames, Proc. Instn. Civ. Engrs. Structs. &
Bldgs. 110 (1995) 50-65.

[28] G. Jelenic, M. Saje, A kinematically exact space finite strain beam model-finite element formulation by generalized virtual work
principle, Comput. Methods Appl. Mech. Engrg. 120 (1995) 131-161.

[29] B.A. Izzuddin, D.L. Smith, Large-displacement analysis of elastoplastic thin-walled frames, part I: formulation and
implementation and part II: verification and application, J. Struct. Engrg. ASCE 122 (1996) 905-925.

[30] L.H. Teh, M.J. Clarke, Co-rotational and Lagrangian formulations for elastic three-dimensional beam finite elements,
J. Construct. Steel Res. 48 (1998) 123-144.

[31] L.LH Teh, M.J. Clarke, Symmetry of tangent stiffness matrices of 3D elastic frame, J. Engrg. Mech. ASCE 125 (1999)
248-251.

[32] K.M. Hsiao, Corotational total Lagrangian formulation for three-dimensional beam element, AIAA J. 30 (1992) 797-804.

[33] K.M. Hsiao, R.T. Yang, W.Y. Lin, A consistent finite element formulation for linear buckling analysis of spatial beams, Comput.
Methods Appl. Mech. Engrg. 156 (1998) 259-276.

[34] K.M. Hsiao, W.Y. Lin, A co-rotational finite element formulation for buckling and postbuckling analysis of spatial beams,
Comput. Methods Appl. Mech. Engrg. 188 (2000) 567-594.

[35] K.M. Hsiao, W.Y. Lin, A co-rotational formulation for thin-walled beams with monosymmetric open section, Comput. Methods
Appl. Mech. Engrg. 190 (2000) 1163-1185.

[36] J.C. Simo, L. Vu-Quoc, The role of non-linear theories in transient dynamic analysis of flexible structures, J. Sound Vib. 119
(1987) 487-508.

[37] R.D. Cook, W.C. Young, Advanced Mechanics of Materials, Macmillan, New York, 1985.

[38] H. Goldstein, Classical Mechanics, Addision-Wesley, Reading, MA, 1980.

[39] T.J. Chung, Continuum Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[40] D.J. Dawe, Matrix and Finite Element Displacement Analysis of Structures, Oxford University, New York, 1984.

[41] L.H. Teh, M.J. Clarke, New definition of conservative internal moments in space frames, J. Engrg. Mech. ASCE 123 (1997)
97-106.

[42] K.S. Schweizerhof, E. Ramm, Displacement dependent pressure loads in nonlinear finite element analysis, Comput. Struct. 18
(1984) 1099-1114.

[43] K.J. Bathe, Finite Element Procedure in Engineering Analysis, Prentice-Hall, New York, 1982.

[44] M.A. Crisfield, A fast incremental/iterative solution procedure that handles snap through, Comput. Struct. 13 (1981) 55-62.

[45] K.M. Hsiao, H.J. Horng, Y.R. Chen, A co-rotational procedure that handles large rotations of spatial beam structures, Comput.
Struct. 27 (1987) 769-781.

[46] K.M. Hsiao, C.M. Tsay, A motion process for large displacement analysis of spatial frames, Internat. J. Space Struct. 6 (1991)
133-139.

[47] T. Matsui, O. Matsuoka, A new finite element scheme for instability analysis of thin shells, Internat. J. Numer. Methods Engrg. 10
(1976) 145-170.



6052 W.Y. Lin, K. M. Hsiao | Comput. Methods Appl. Mech. Engrg. 190 (2001) 6023-6052

[48] J. Chroscielewski, J. Makowski, H. Stumpf, Finite element analysis of smith, folded and multi-shell structures, Comput. Methods
Appl. Mech. Engrg. 141 (1997) 1-46.

[49] A. Chajes, Principles of Structural Stability, Prentice-Hall, Englewood Cliffs, NJ, 1974.

[50] Y.B. Yang, S.R. Kuo, Buckling of frames under various torsional loading, J. Engrg. Mech. ASCE 117 (1991) 1681-1697.



