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A Hybrid Specification Method for the Design of a Workcell
Controller in Manufacturing Systems
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This paper presents a hybrid specification method (HSM) for
the description and design of a workcell controller in a manu-
facturing system. This hybrid method integrates the top-down
IDEF0 and bottom-up statechart approaches. The high-level
functional abstraction of a target system is first decomposed
using IDEF0. Statecharts of the overall system are then com-
bined using compositional constructs. Programmable logic con-
troller (PLCs) programs that represent the low-level abstrac-
tion are finally transformed from the statecharts. To
demonstrate the viability of this method, an example of a
workcell controller is designed using this method. The proposed
method provides an alternative to the traditional top-down
decomposition technique with reusable and extendable proper-
ties.
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1. Introduction

A workcell is usually a basic unit of a manufacturing system.
An efficient design method for workcells is the key to achieving
the goal of automation [1]. Computer tools are widely used in
the following two domains for workcell automation. One
domain concentrates on CAD/CAPP/CAM. The other one
focuses on equipment control, including workcell controller
design, shop floor control (SFC), and the manufacturing
execution system (MES) [2,3]. An efficient design method for
a workcell controller is still a fundamental but challenging
topic, which includes the analysis and synthesis of various
models including information process flow, material flow, con-
trol flow [4], and cost flow [5].

Several methods for designing a workcell controller have
been proposed [1,6,7]. However, there is no single tool or
language that satisfies the overall desired features of a workcell
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system [8]. These design methods generally addressed the
linkages between various modelling tools and introduced trans-
formation rules and implementing procedures to guide the
analysis of the functional requirements and behavioural speci-
fications of a target system. Three categories of these method-
ologies had been studied by a number of researchers, top-
down, bottom-up, and hybrid paradigms.

For the top-down decomposition method, Wang et al. [9]
proposed a multiview modelling approach, IDEM, which
describes a target system from the viewpoints of function,
information, and dynamics. Liang and Hong [7] proposed a
hierarchical transformation method (HTM), IDEF0/CPN/G2,
which analysed a manufacturing system using IDEF0 [10],
simulated it using a coloured Petri net (CPN), and implemented
the target system in a real-time expert system, G2. Jafari and
Boucher [6] also analysed a system using IDEF0 and simulated
it using CPN, but implemented it in a programmable logic
controller (PLC). Uzam and Jones [11] proposed an extended
Petri net method to analyse a target system and then
implemented it in a PLC.

The bottom-up composition methods model the submodules
in detail first, without considering the interactions among them.
The submodules are then combined by taking their interactions
into consideration [12,13]. The advantage of the bottom-up
methods is that they can easily identify the submodules since
they have physical correspondences. For instance, a workcell
may consist of machines, robots, and buffers. Each component
is a submodule in this workcell. However, combining compo-
nents will increase the complexity of interactions among the
submodules. These compositional issues will be discussed in
this paper.

This paper presents a hybrid specification method (HSM),
which integrates the top-down functional analysis using IDEF0
and bottom-up behavioural specifications using statecharts. The
results are then translated into the PLC programs directly using
the transformation rules. This method aims at state changes
that are consistent in nature and are easy to understand and
analyse [14,15], unlike the top-down decomposition approach,
which is suitable only for stable environments. Using a bottom-
up compositional strategy, the HSM meets the requirements
for changes in variable environments.
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The remainder of this paper is organised as follows. In
Section 2, the proposed method HSM is described. Section 3
presents a workcell example to demonstrate the proposed
method. In Section 4, we analyse the static structure and the
dynamic behaviour of the statecharts of the example. Related
work and other models are compared in Section 5. We conclude
in Section 6 with a summary of what HSM can support for a
workcell controller design.

2. HSM

In the development process of a system, the requirement
specification is an important stage [16]. This section demon-
strates how to acquire the functional specifications using
IDEF0. Statecharts are then adopted to describe the behavioural
specifications that lie between IDEF0 high-level functional
abstractions and PLC low-level physical implementation.
Finally, the HSM development procedures and the transform-
ation rules from statecharts to PLC programs are discussed.

2.1 Functional Specifications and IDEF0

The top-down method decomposes a module into a set of
submodule functional specifications. The formal top-down
method applies various reduction mechanisms to decompose
specifications. Functional specifications about a manufacturing
system are specified in the earliest stage as a guideline for all
design activities. Several tools are available for describing the
functional specifications of manufacturing systems. A notable
tool among them is IDEF0 (ICAM DEFinition 0), which helps
designers to capture the functional abstractions of a system.
An IDEF0 functional model is an activity flow diagram that
describes the computations to be performed by the system [6,7].

The functional specifications describe what functions a sys-
tem has to fulfil. The IDEF0 model describes the input/output
transformational relations that exist in the system. However,
IDEF0 activity relationships are represented only at the graphi-
cal level with no functional foundation to interpret them. In
this section, these functional semantics are interpreted using
Lambda-calculus [17]. The detailed correspondence between
Lambda-calculus and manufacturing systems is discussed in
Liang [18].

Lambda-calculus was designed to capture the most general
views in which functions or operators can be combined to
form other operators. An activity box in IDEF0 can be taken
as a lambda term, which is repeatedly generated from abstrac-
tions and applications. Lambda terms are defined inductively
as follows [17]:

1. All constants and variables are lambda terms (atoms).
2. If x is any variable andM is any lambda term, then (lx.M)

is also a lambda term (abstraction).
3. If M, N are lambda terms, then (MM) is also a lambda

term (application).

Activity boxes are the IDEF0 building blocks, whereas arrows
are flows. In the functional view, three labels (“mechanism”
is omitted) are involved: inputs, controls, and outputs. Outputs

Fig. 1.The correspondence between an IDEF0 box and lambda terms.

are produced under the inputs, the controls being satisfied. The
activity box describes a specific activity or function in a
manufacturing system shown in Fig. 1. From the control logic
viewpoint, the activity box indicates that if all input conditions
of function Ai are satisfied, then the functionAi is evaluated,
i.e. an activityAi is executed in a manufacturing system, and
the output labelo1 = d3 is set to be true. These operational
semantics can be expressed usingb-reduction [17] as indicated
in the righthand side of Fig. 1.

The IDEF0 model is suitable for interpreting the high-level
abstractions of a target system. However, these specifications
cannot fully capture low-level interactions and dynamic infor-
mation. They are not suitable for describing behavioural speci-
fications. To alleviate these problems, statecharts are adopted
in this study and are introduced in the next subsection.

2.2 State Machine and Statecharts

Statecharts, proposed by Harel [19,20], use a visual specifi-
cation language for specifying a discrete event system. It
extends the concept of finite state machines and can be
described as:

Statecharts= finite state machine+ depth+ orthogonality
+ broadcast communication

Finite state machineshave been widely applied as a tool
for specifying the requirements of various systems [14]. A
finite state machine consists of states connected by transitions
as displayed in Fig. 2, where state B is the next state of A.
The rounded rectangle in a state machine denotes the state.
Arcs that connect the states symbolise the flow of transitions.
A transition may be labelled as the form of a trigger event
and an output action. This hypothetical machine can be adapted
to describe the input/output relationships and state changes in
the system, i.e.

Qn+1 = d(Qn, I)
Out = g(Qn, I)

Where Qn+1 is the next state,Qn is the current state,I is
the input, d is the state change function, andg is the
output function.

Fig. 2.Transition defined by state change.
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Fig. 3.The orthogonal property of statecharts.

Depth represents the different levels of detail using state-
charts, i.e. states may be grouped into a superstate. For instance,
an AND-statez is the superstate of the OR-statesY and Z in
Fig. 3(a).

Orthogonality supports the concurrent qualities that can
reduce the number of states in the graphical representation. In
Fig. 3, the dashed line denotes that the two statecharts are
orthogonal. Figure 3(a) presents four events. Figure 3(b)
presents eight events. As the orthogonal number increases, the
complexity increases exponentially [19].

Broadcast communicationis the method of communication
from one state to another. For instance, as an eventA+ occurs
in Fig. 3, the initial statea0b0 will be changed into the state
a1b0, and an actionfA will be broadcast throughout the system.

Statecharts have several admirable properties that can be
applied in various application domains, e.g. manufacturing
system modelling, real-time system design, and object-oriented
information system development [14]. However, there are still
some restrictions in the original statechart. Many extensions
have been proposed to improve the descriptive ability or meet
the individual requirements, e.g. objectchart [21], hierarchical
state machine [22], modechart [23], extending statecharts
[24], etc.

2.3 The Compositional Technique of HSM

The benefit of the compositional strategy is that a larger
statechart may be composed from simpler components. This
means that the existing software components can be reused.
Moreover, a compositional strategy can reduce system com-
plexity and increase system design flexibility [25]. Figure 4
depicts the general development flow of the HSM compo-
sitional strategy.

Fig. 4. The HSM compositional strategy.

Fig. 5. Serial and parallel composition.

There are four types of compositional relationship identified
from the transition interactions in this paper.

1. Serial composition. The output state of one transition is the
input state of another transition. As indicated in Fig. 5,
stateX is an OR-state, where the output of transitiont1 and
the input state of transitiont2 are identical. Thus,t1 and t2
are in serial composition.

2. Parallel composition. Transitions between different modules
having the same input event denote a parallel composition.
As shown in Fig. 5,t1 and t3 are parallel transitions having
the same input eventx, and statez is an AND-state.

3. Merging composition. States between different modules have
the same input and output events. As indicated in Fig. 5,
stateB and stateE have identical input and output events
{ x, u}, and states {B, E} can be merged into a new
common state.

4. Union composition. The definition domain is shared by
many transitions with the resource contradiction. As shown
in Fig. 6, t1, t2, and t3 are contradiction transitions.

2.4 Design Steps of the HSM and Transformation
Rules

PLCs have played a significant role in modern manufacturing
systems. To write PLC programs for a simple system is trivial.
However, as systems become more complicated, it is difficult
to write or to debug the PLC programs. Grafcet [26] is a
structured tool to aid the design of sequential control systems.

Fig. 6. Union composition.
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Grafcet can be successfully applied to model simple systems
with only one token in one step, but it is not as flexible as a
general tool. Therefore, industrial users still prefer heuristic
methods to write PLC programs [27]. In this section, a heuristic
method HSM based on the statechart will be introduced.

2.4.1 Design Steps of HSM

With proper statechart syntax, the consistency and completeness
of the designed system can be ensured [15]. An overall state-
chart model can be constructed through submodules using
serial composition, union composition, parallel composition,
and merging composition. The construction steps for HSM are
as follows:

1. Depict the functional hierarchy of a target system:

IDEF0 is applied to represent the overall system func-
tional structure.

2. Depict the statechart of every submodule of the system
according to the activity flow diagram of each element in
step 1. This step consists of three tasks, analysing the
acceptable states for every component in the system,
determining the control variables or attribute values in each
submodule, and depicting the statechart of each submodule.

3. Compose the statecharts of the components into a larger
statechart using serial, union, parallel, or merging compo-
sitions based on events or states shared.

4. Repeat the above process until there are no isolated state-
charts.

5. Mark the initial configuration of the system.
6. Convert the entire statechart into PLC programs based on

the transformation rules.

PLC programs are produced through the overall statechart
model. The transformation from statecharts to PLC notations
will be described in the next subsection.

2.4.2 Transformation Rules of Statecharts and PLC in
HSM

System development can be taken as a series of transformations
that transform system specifications from one language to
another [28]. The transformation rules of HSM map every
state, event, and action in the statechart into the corresponding
PLC domain. The output of the transformation is a ladder
diagram (LD) or a set of control logic equations. An LD is a
conventional representation for a PLC application. An LD
containing rungs of symbolic entries expresses the control
logic. Most symbolic entries correspond to I/O contacts, internal
relays, counters, and timers.

However, there are various syntaxes or types in the existing
PLC languages. The general form of instruction with “set” and
“reset” was used in this study. The instruction “set” will
maintain the element “on”, irrespective of the control circuit
being “on” or “off”. The instruction “reset” will turn the
element “off”. The transformation rules are as follows:

Rule 1: basic mapping. The next state is set on, if the previous
state has been satisfied and the input event has occurred. In
Fig. 5, B(1) = Ax indicates that stateA and eventx are the
conditions to set stateB on.

Rule 2: serial composition mapping. In Fig. 5, B(1) = A
indicates that stateA is the condition to set stateB on, while
A(0) = B indicates that stateB is the condition to reset stateA.

Rule 3: parallel composition mapping. In Fig. 5, t1 and t3 are
parallel states. Because trigger eventst1 and t3 are parallel
transitions,x is the common event. Thus, the corresponding
Boolean Eq. are as follows:B(1) = xAD, E(1) = xAD, A(0) =
B, D(0) = E.

Rule 4: merging composition mapping. In Fig. 5, statesB and
E have identical input and output events {x, u}. A new state
B9 can be defined after merging the states {B, E}.

Rule 5: union composition mapping. In Fig. 6, S(1) = Rt1,
T(1) = Rt2, and U(1) = Rt3 indicates that stateR and eventt1
(respectively, t2 and t3) are the conditions to set stateS
(respectively,T and U) on.

3. Design Example of HSM

In this section, we will employ a machining workcell as an
example to illustrate the systematic steps of the HSM.

3.1 Introduction to a Workcell Example

The workcell example consists of a machining module and a
material-handling module. The machining module contains two
identical machinesM1 and M2. The material-handling module
comprises a robot, an input buffer, and an output buffer. The
workcell controller coordinates the actions ofM1, M2, the
robot, and buffers. The equipment layout for the workcell
example is shown in Fig. 7.

When a part moves into the input buffer, the workcell
process in this example is divided into six steps:

1. Start loading the part inM1 on M2 (if a machine is ready)
from the input buffer using the robot.

2. Stop loading task.
3. Start machining on the corresponding machine.
4. Stop machining task.
5. Start unloading the part into the output buffer using the

robot.
6. Stop unloading task and reset the corresponding machine,

output buffer, and robot.

Fig. 7. The equipment layout of the workcell.
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Fig. 8. Top-level functional specifications of the workcell example.

At each step of the processing cycle, it is important to
identify the trigger events since these events determine the
state changes and module compositions.

3.2 Statecharts of the Workcell Example

According to the design steps and transformation rules men-
tioned in Section 2.4, the procedures to construct the workcell
statecharts for this example are illustrated in the following sub-
sections.

3.2.1 Depict the Functional Hierarchy of the Overall
System

The top-level requirement specification is given in Fig. 8 using
IDEF0 notations. The conditions for changing states can be
identified by their input, control, and output relationships. This
information will be applied to construct the statechart for each
element of the workcell.

Detailed functional specifications for machineM1 are refined
in Fig. 9. According to these functions and flow information,
trigger conditions can be identified in the statecharts.

Detailed functional specifications for machineM2 are similar
to M1 and are depicted in Fig. 10.

Fig. 9.Functional specifications for machineM1.

Fig. 10.Functional specifications for machineM2.

Fig. 11.The statechart of the input buffer.

3.2.2 Construct the Statechart of Each Submodule

To construct the corresponding statechart of a submodule, the
acceptable states are analysed first. Trigger events in a basic
statechart connect these states. The details of each submodule
are then drawn step-by-step. For instance, the status of the
input buffer includes ready and busy states. The statechart of
the input buffer can be expressed as in Fig. 11. The busy state
of the input buffer indicates that the parts are in the process
of loading on machinesM1 or M2. The leading edge in↑(M1-
lo) denotes thatM1 starts loading parts. The falling edge in
↓(M1-lo) denotes thatM1 finishes loading parts and returns the
input buffer back to ready state. The state “Loading-c-M1”
denotes that the loading task ofM1 is completed.

The statechart of machineM1 is presented in Fig. 12, where
↑(M1-ma) denotes thatM1 starts machining a part and↓(M1-
ma) denotes thatM1 finishes machining a part.

The statechart of machineM2 is similar to that ofM1 and
is displayed in Fig. 13.

Fig. 12.The statechart of machineM1.
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Fig. 13.The statechart of machineM2.

Fig. 14.The statechart of the output buffer.

The statechart of the output buffer is shown in Fig. 14,
where ↓(M1-un) denotes thatM1 finishes unloading a part, and
the part is moved out. Consequently, the output buffer accepts
the instruction to become ready.

The processing status of the robot contains five states: Rob-
ready, Loading-M1, Loading-M2, Unloading-M1, and Unloading-
M2. The robot statechart is shown in Fig. 15. According to
union composition, the Rob-ready state is shared by four
transitions:↑M1-lo, ↑M2-lo, ↑M1-un and ↑M2-un.

3.2.3 Compositional Statecharts

We can combine two statecharts of the workcell example
using the principle of parallel composition. For simplicity, we
substitute the complicated symbols with simple characters, as
in Table 1, where * denotes {I, O, M1, M2, R}. There are
three types of event in the system, i.e. external events (e.g.
initialise), start events (e.g.↑(M1-lo)), and stop events (e.g.
↓(M1-lo)). Events determine the compositional semantics.

For instance, as a trigger event↑(M1-lo) occurs, this event
will also trigger the action of loading in the robot and the
input buffer.

Fig. 15.The statechart of the robot.

Table 1.Event and state abbreviation for the workcell example.

Events States

e1 ↑(M1-lo) S1 M1-ready
e2 ↓(M1-lo) S2* Loading-M1*
e3 ↑(M1-ma) S3 Loading-c-M1

e4 ↓(M1-ma) S4 Machining-M1

e5 ↑(M1-un) S5 Machining-c-M1

e6 ↓(M1-un) S6* Unloading-M1*
e7 ↑(M2-lo) S7 M2-ready
e8 ↓(M2-lo) S8* Loading-M2*
e9 ↑(M2-ma) S9 Loading-c-M2

e10 ↓(M2-ma) S10 Machining-M2

e11 ↑(M2-un) S11 Machining-c-M2

e12 ↓(M2-un) S12* Unloading-M2*
S13 InB-ready
S14 OutB-ready
S15 Rob-ready

3.2.4 Continue Composing Until there is no Isolated
Statechart

According to the parallel composition of statecharts, the final
statechart of this workcell controller can be obtained as shown
in Fig. 16. The system is always in these five states {I, O,
M1, M2, R}. Furthermore, there are four merging states:
s2 = [sI

2, sM12 , sR
2], s6 = [sO

6 , sM16 , sR
6], s8 = [sI

8, sM28 , sR
8], and s12 =

[sO
12, sM212 , sR

12] in terms of merging composition.

3.2.5 Mark the Initial Configuration

When the resources are available, the final statechart is marked
with the initial configuration. In Fig. 16,s0 denotes that system
power is on. We assume that the initial states are ready after
initialising the equipment. The initial configurationC equals
{ s1, s7, s13, s14, s15}.

3.3 PLC Control Equation

After specifications having been developed and analysed, the
control logic of a controller can be obtained based on the
transformation rules. The PLC control logic Eq. corresponding
to statecharts are given below. The corresponding ladder dia-
gram is also shown in Fig. 17.

s1(1) = e6 s6; s1(0) = s2

s2(1) = e1 s1 s13 s15; s2(0) = s3 s13 s15

s3(1) = e2 s2; s3(0) = s4

s4(1) = e3 s3; s4(0) = s5

s5(1) = e4 s4; s5(0) = s6

s6(1) = e5 s5 s14 s15; s6(0) = s1 s14 s15

s7(1) = e12 s12; s7(0) = s8

s8(1) = e7 s7 s13 s15; s8(0) = s9 s13 s15

s9(1) = e8 s8; s9(0) = s10

s10(1) = e9 s9; s10(0) = s11

s11(1) = e10 s10; s11(0) = s12

s12(1) = e11 s11 s14 s15; s12(0) = s7 s14 s15

s13(1) = e2 s2 + e8 s8; s13(0) = s8 + s2
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Fig. 16.The statechart of the workcell example.

Fig. 17.Ladder diagram.
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s14(1) = e6 s6 + e12 s12; s14(0) = s6 + s12

s15(1) = e2 s2 + e6 s6 + e8 s8 + e12 s12; s15(0) = s2 +
s6 + s8 + s12

4. Static Structure and Behaviour of
Statecharts

After the introduction to the statecharts, the formal syntax and
some related properties will be described in this section.

4.1 Static Structure of Statecharts

The following definitions are taken and modified from Pnueli
and Shalev [29]. These definitions are used to describe the
behaviour of a workcell. A statechartM can be described by
a 6-tuple (S, #, |, V, c0, F) model. Each tuple is described
as follows:

S is a finite set of states. A certain subset ofS is defined
as a configuration, which denotes the consistent combination
of states, i.e. the maximal set of concurrent states. The set of
all configurations composes a “Config”.

# is a parent/child relation, wherex # y refers to the fact
that y is a parent ofx or x is y, while x , y refers to the
fact that y is a parent ofx strictly. s(y) refers to the set of
all descendant states ofy.

| defines the relation of parallelism on states, wherex | y
⇒ ∃z x, y P s (z).

V is the set of I/O history in statecharts. To simplify the
presentation, letV equal F primarily, where F denotes an
empty set.

c0 is the initial global state, where a global state (c, v) P
Config × V

For instance, the static model of statecharts of the workcell
in Fig. 16 can be denoted as (S, #, |, V, c0), whereS = { s1,
s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15}, I = { s2,
s8, s13}, M1 = { s1, s2, s3, s4, s5, s6, s7}, M2 = { s7, s8, s9, s10,
s11, s12}, O = { s6, s12, s14}, and R = { s2, s6, s8, s12, s15}.

Since s1 # M1 and s2 # M1, the relation s1 | s2 can
be obtained.

Some global states can be expressed as follows:c0 = ({ s0},
F) and c1 = { s1, s7, s13, s14, s15}, initialise).

4.2 Behavioural Analysis

The mapping functionF is a mapping between global states
F: C → C, which describes the behaviour of statecharts. The
execution steps of statecharts represent the dynamic behaviour
of a system. For instance, the execution steps for machineM1

are described as follows.

1. A new part is put into the input buffer. The state values
of M1, the buffer, and the robot is “ready”. The configuration
of the global state is {s1, s7, s13, s14, s15}.

2. As evente1 occurs, the robot loads the part onM1. The
global state is {s2, s7, s14}.

3. As evente2 occurs, the robot finishes loading the parts. The
configuration of the global state is {s3, s7, s13, s14, s15}.

4. As evente3 occurs, the machineM1 starts machining. The
configuration of the global state is {s4, s7, s13, s14, s15}.

5. As event e4 occurs, the machineM1 finishes machining.
The configuration of the global state is {s5, s7, s13, s14, s15}.

6. As event e5 occurs, the robot takes the part out of the
machineM1. The parts are unloaded. The configuration of
the global state is {s6, s7, s13}.

7. As evente6 occurs, the robot finishes the unloading task.
The system is reset. The configuration of the global state
is {s1, s7, s13, s14, s15}.

As mentioned in the preceding section, the sequence of
global states or the process from the initial configuration to
the final configuration denotes the system dynamic behaviour.
However, there are still some unsolved problems, such as, how
to avoid abnormalities in the dynamic behaviour of HSM. We
adopted the following definitions and theorem proposed by
Jahanian and Mok [23] to guarantee the absence of abnormali-
ties.

Definition 4.1. Transition cycle. For any transitionti and state
Si, 1 # i # n, when ti leavesSi, the system becomesSi+1.
Also, whentn leavesSn, the system becomesS1. This indicates
that T (t1, %, ti, %, tn) is a transition cycle of state set {S1,
%, Si, %, Sn).

Definition 4.2. Abnormality of transition is defined as follows.
If a transition between two states is instantaneous, then a
transition cycle occurring at the same time will result in
an abnormality.
Theorem 4.3. The transition cycle proposed by the statechart
model of the workcell in Section 3 does not result in an abnor-
mality.
Proof. The workcell example in Section 3 illustrates that the
working states of the physical equipment consist of loading,
machining, and unloading. It takes a period of time to finish
the task in each state. It is impossible for a transition cycle to
immediately occur. Thus, this system is free from abnormality.

5. Discussion and Related Work

In this section, we explore some statechart properties and
discuss the closely related work, e.g. Petri nets. A Petri net is
the most frequently used tool for manufacturing systems model-
ling. Statecharts and Petri nets have equivalent representative
capabilities because they are both state-based models [14]. For
instance, a transition in a statechart is labelled with an input
event and an output action. This relationship can be translated
into Petri net notation, where “e1 = on” is viewed as an input
state in a Petri net, and “a1 = on” is viewed as an output
state. It is assumed that the reader is familiar with Petri net
notation [30,31]. Figure 18 relates these two state-based mod-
els. After having translated a statechart into a Petri net, we
can investigate system properties using the Petri net, e.g.
invariant analysis.

In the Petri net model, invariant analysis is an often-used
method, which allows a designer to explore the logical proper-
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ties of a target system in a formal way. A place invariant
expresses the conservative property using a weighted set of
tokens. A place invariant is defined as:iTm = iTm0, where iT

is an invariant vector,m is a marking of the system, andm0

is an initial marking of the system. Invariant vectors can be
obtained by the equation,iTA = 0, where A is an incidence
matrix.

The workcell example in Section 3 can be translated into
Petri net notation, as shown in Fig. 19. Its incidence matrix is
as follows.

A =










−1 0 0 0 0 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 1−1 0

0 0 0 0 0 0 0 0 0 0 1−1

−1 1 0 0 0 0 −1 1 0 0 0 0

0 0 0 0 −1 1 0 0 0 0 −1 1

−1 1 0 0 −1 1 −1 1 0 0 −1 1 








According to the constraint equation: iTA = 0, the following
invariant vectors can be obtained.

iT1 = (1 1 1 1 1 1 0 0 0 0 0 0 0 0 0) (1)
iT2 = (0 0 0 0 0 0 1 1 1 1 1 1 0 0 0) (2)
iT3 = (0 1 0 0 0 0 0 1 0 0 0 0 1 0 0) (3)
iT4 = (0 0 0 0 0 1 0 0 0 0 0 1 0 1 0) (4)
iT5 = (0 1 0 0 0 1 0 1 0 0 0 1 0 0 1) (5)

According to the invariant vectors, the following marking
relations can be yielded.

m(s1) + m(s2) + m(s3) + m(s4) + m(s5) + m(s6) = 1 (6)
m(s7) + m(s8) + m(s9) + m(s10) + m(s11) + m(s12) = 1 (7)
m(s2) + m(s8) + m(s13) = 1 (8)
m(s6) + m(s12) + m(s14) = 1 (9)
m(s2) + m(s6) + m(s8) + m(s12) + m(s15) = 1 (10)

The invariant vector properties indicate that there are not
two states,si and sj, si ± sj, possessing the same token
simultaneously. In a manufacturing system, this property
reflects the fact that resources are always constrained. These
conservative properties have been demonstrated as the OR-
state from Figs 11 to 15. Additionally, the following properties
can be obtained.

1. The machineM1 stays at just one state in any period of
time (OR-state of statecharts). Hence, the total marking
equals one, which is displayed in Eq. (6).

Fig. 18.The corresponding notations between statecharts and Petri nets.

Fig. 19.The Petri net of the workcell example in Section 3.

2. Similarly, machineM2 stays at just one state in any period
of time. Therefore, the total marking equals one, which is
expressed in Eq. (7).

3. The input buffer stays at just one state {InB-ready, Loading-
M1, Loading-M2} in any period of time. Hence, the total
marking equals one, which is shown in Eq. (8).

4. The output buffer stays at just one state of {OutB-ready,
Unloading-M1, Unloading-M2} in any period of time. Thus,
the total marking equals one, which is displayed in Eq. (9)

5. The robot stays at just one state {Rob-ready, Loading-M1,
Loading-M2, Unloading-M1, Unloading-M2} in any period
of time. Hence, the total marking equals one, which is
indicated in Eq. (10).

Since the OR-state in statecharts represents the conservative
property of a submodule, a consistent result can be obtained
using Petri net invariant analysis. This property demonstrates
the viability of the HSM for developing a workcell controller.

Unlike the Petri net, another related method of workcell
controller design using the objected-oriented technique is a
semi-formal approach. For instance, Lai and Lee [32] employed
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objected-oriented static and dynamic models to specify and
design a controller. Liu et al. [33] presented an integrated refer-
ence architecture using object-oriented analysis and design
methods to develop a shop-floor control system. These
approaches are easy for modelling and designing a target
system, but lack a formal foundation.

6. Conclusions

In this paper, we present an HSM for the design of a workcell
controller in a manufacturing system. The HSM is a hybrid
specification method, which captures the advantages of both
top-down and bottom-up approaches and helps to transform
statecharts into PLC programs directly. The graphical notations
of IDEF0 and statecharts enhance the requirement apprehension
and facilitate the transformation of the PLC programs. One of
the main ideas is to keep the requirement specifications simple
and easy to implement. The integration of functional and
behavioural specifications provides engineers with a good start-
ing point in designing a workcell controller.

The HSM is illustrated using an example of a workcell
controller. The result is consistent with Petri net analysis.
The relationships between the place invariant and conservative
properties are also demonstrated in this study.

The practical importance of the HSM can be concluded
as follows:

1. It specifies the functional and behavioural requirements of
a system in a diagrammatic form, which has the virtue of
visual description that makes the specification easy to under-
stand.

2. It develops a workcell controller through integrating the
top-down decomposition and the bottom-up composition
approaches.

3. It provides systematic steps to analyse and design the
workcell controller.

4. It provides some transformation rules between statechart
notations and PLC programs.

5. It is consistent with the Petri net approach.

In the future, we plan to enrich the HSM with the capability
to verify in temporal logic, and to apply the HSM to more
complicated systems.
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