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Abstract. This paper presents a novel scheme to diagnose single and double faults for linear analog circuits. The
scheme first proposes a simple transformation procedure to transform the tested linear analog circuit into a discrete
signal flow graph, then constructs “diagnosing evaluators,” which model the faulty components, to form a diagnosis
configuration to diagnose the faults through digital simulation. This saves much computation time. Furthermore, a
simple method to un-power OP’s is also proposed to differentiate equivalent faults. The scheme can diagnose faults
in passive components as well as active faults in OP’s.
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1. Introduction

Analog circuit fault diagnosis was studied early from
1962 [2], and lately became a hot research topic be-
cause of advent of modern, complex integrated analog
circuits and systems. In 1979, Duhamel and Rault pre-
sented a review of available analog testing techniques,
including the nature of faults and fault models, and vari-
ous types of tests and diagnosis [6]. In 1985, a review on
this topic with 178 references was published [1]. Two
basic approaches of analog circuit fault diagnosis are
the simulation-before-test (SBT) and the simulation-
after-test (SAT) methods [1, 5, 18]. The former ap-
proach builds a fault look-up table through simulation
and uses the pattern recognition concept to identify and

locate faults. The later approach simulates the tested
circuit during, or after, the testing time to identify the
faulty parameters [8, 9, 11, 15]. In both approaches,
the complexity involved and computation time required
usually place limit on their applicability. Much re-
search, such as symbolic analysis [7, 16] and sensitivity
computation [12, 17], focused on problems of reduc-
ing the computational cost. Another approach which
treated the signal of the tested circuit in the discrete time
domain was presented [12, 13, 19]. For this approach, a
discrete time domain tool, DRAFT [13], was developed
to map the circuit and faults to the discrete time do-
main through the bilinear transform and the mapped cir-
cuit was then simulated. This saves much computation
time.
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This work presents a fault diagnosis method which
also treats the circuit and signal in the discrete time do-
main but adopts a new fault diagnosis procedure by cre-
ating fault evaluators to compute circuit responses un-
der an appropriate input to locate the fault. The method
also uses a simpler relationship in directly mapping the
tested analog circuit to the digital circuit. It treats both
single and double faults. At the end, it also presents a
“power-off” design-for-diagnosibility scheme to help
to diagnose the fault(s).

2. Mapping of the Analog Circuit
to the Discretized Digital Circuit

A linear analog circuit is usually composed of sub-
circuits which themselves are composed of operational
amplifiers (OP) in three configurations, i.e., OP with
the inverting input, OP with the non-inverting input,
and OP with differential inputs. In a linear circuit, each
sub-circuit may be connected to each other with sev-
eral forward or feedback paths. Hence, in considering
transforming a linear analog circuit to the discretized
digital circuit, we firstly consider the above three
sub-circuits.

Fig. 1 shows a sub-circuit with an OP with an invert-
ing input. In the figure, for each path there may exist
both resistors and capacitors, and V1 and V2 may be
outputs fed from the preceding stage or the succeeding
stage.

For this sub-circuit, the following circuit equations
can be written:


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Fig. 1. General form of the
sub-circuit with the inverting
input.

Let C1 = T
R1

, C3 = T
R3

, C4 = T
R4

, and C5 = T
R5

, where
T is the sampling period of the discretized circuit, then
the above equations can be written as:
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By z-transformation, they can be transformed to be:
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According to Eq. (1), a signal flow graph in the dis-
crete time domain for the sub-circuit can be drawn as
Fig. 2. Comparing Fig. 1 and Fig. 2, we find that R
is substituted by C = T/R and the C is substituted by
C(1 − z−1), and there is a duality relationship between
the parallel and series connection.

For the sub-circuit of an OP with a non-inverting
input as shown in Fig. 3, a similar procedure can be
done to obtain the equivalent transformed signal flow
graph as shown in Fig. 4.
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Fig. 2. Signal flow of the sub-circuit of Fig. 1

Fig. 3. General form of sub-
circuit with the non-inverting
input.

Fig. 4. Signal flow graph of the circuit of Fig. 3

Fig. 5. The sub-circuit of the OP
with both the differential inputs.

Fig. 5 is a more general sub-circuit with differential
inputs, i.e., it is a combination of the sub-circuits of
Fig. 1 and Fig. 3. In a similar manner, the signal flow
graph of this sub-circuit can be derived to be that of
Fig. 6.

In the above sub-circuit circuit, to take into account
the fault effects of the OP, an offset voltage is included

Fig. 6. The transformed signal flow graph of
the circuit of Fig. 5.

at the input. This offset voltage represents the fault
effects caused by a large percent of catastrophic faults
such as transistor “open” and “short” faults and the
non-linear max-current-limit fault of the OP [3]. For the
offset voltage: Fos = m1V1 + m2V2 + m3V3 + m4V4 +
k, m1 ∼ m4 are parameters related with the closed-loop
gain [3].

As stated previously, a linear circuit is composed
of the above three sub-circuits. Its corresponding
transformed signal flow graph in the discrete time do-
main can be obtained with the derived mapping re-
lationships of the original circuit and the signal flow
graphs of the above three sub-circuits. For example,
for the benchmark state variable filter circuit [10] of
Fig. 7, its discrete signal flow graph is obtained to be
that in Fig. 8.

3. Diagnosing Evaluators, Diagnosis
Configuration and Selection of Input Stimulus

The faults diagnosed in this work are single paramet-
ric faults occurring at passive components such as R’s
and C’s and the transistor faults occurring in OP’s. For
the passive component faults, they are modeled as a
variation, which exceed the specified tolerance, on the
values of passive components. The “open” or “short”
of a component are treated as that the value of the com-
ponent is very large or very small respectively. For the

Fig. 7. The benchmark state variable filter circuit [10].
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Fig. 8. The transformed discrete signal flow graph of the
benchmark state variable circuit.

transistor faults occurring within OP’s, an offset volt-
age is put at the input of the OP.

Similar to the conventional diagnosis approach, in
this diagnosis scheme, a test input stimulus is applied
to the input of the circuit-under-test (CUT), the output
response of the CUT is analyzed to find the faulty com-
ponent. However, the analysis of the faulty response is

Fig. 9. (a) The low pass filter circuit. (b) The transformed discrete signal graph of low pass filter
circuit. (c) The reconstructed “diagnosing evaluator” for the component C . (d) The reconstructed
“diagnosing evaluator” for the component C1. (e) The reconstructed “diagnosing evaluator” for
the component C2. (f ) The reconstructed “diagnosing evaluator” for the component FOS.

done in the digital domain with the aid of “diagnosis
evaluators,” which are to be explained as follows:

When there is a parametric fault occurring at one
component, the transformed discretized flow graph of
the CUT will be modified to be a “diagnosis evalua-
tor.” For the modified flow graph of the faulty CUT,
both input stimulus and output response will become
inputs of the flow graph, and the faulty component to
be diagnosed is the output. If the diagnosed component
is the faulty component to be identified, the computed
output of the flow graph under the two stimulus and
response inputs will be a constant which is the value
of the faulty component. If the diagnosed component
is not the faulty component to be identified, the output
of the flow graph will be a non-constant output. For
the computation, the stimulus and response are treated
digitally and the computation is performed digitally in
the discretized domain. Fig. 9(c) shows a “diagnosis
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Fig. 10. The diagnosis configuration for single
fault diagnosis.

evaluator” for the example circuit of Fig. 9(a) where
the passive component C is selected as the diagnosed
component. For all the components to be diagnosed,
“diagnosis evaluators” can be constructed (Fig. 9) and
they are applied the same “discretized” digital stimulus
and response inputs to be computed their outputs. The
output which shows a constant value is the identified
faulty component.

Fig. 10 shows the diagnosis configuration of the
scheme, where all the Z I diagnosis evaluators are
connected in parallel and they are fed with both in-
put stimulus i(t) and the output response h(t), which
are in the digital form converted from A/D’s. For each
Z I evaluator, all components are of fault free values
except Z I which has the faulty value ZIf . With i(t) and
h(t) as the inputs to each Z I evaluator, the evaluator

Fig. 11. (a) The matched convergent output waveform at Z I evaluator, and (b) The unmatched divergent output waveform at other Z
evaluators.

which has the faulty ZI will give the constant faulty
value, ZIf , such as that in Fig. 11(a), and the outputs
of all other evaluators will give non-convergent values,
one example of which is shown in Fig. 11(b).

To reveal a fault in the original circuit, an appropriate
test pattern which activates the fault is required. How-
ever, there are many different faults, which may require
different input stimuli to activate. In this scheme, a sig-
nal of Sinc function, f (x) = sinc(x) = sin(2π f x)

πx , which
has a constant low-pass spectrum, is used as the input
test stimulus. The bandwidth, f , of the function is cho-
sen to be an appropriate value to cover the bandwidth
of CUT. This insures that all the faults of CUT can be
activated by this signal.

4. Diagnosing for Double Faults

This scheme is also able to diagnose multiple faults.
However, multiple faults are more difficult to be di-
agnosed because of the exceedingly large number of
fault combinations and the amount of computation ef-
forts involved. In this section, the diagnosis for double
faults is presented since it needs relatively affordable
computation efforts.

The fault diagnosis configuration for double faults
(Zaf, Zbf) is shown in Fig. 12. In the figure, the diag-
nosing evaluators Za and Zb are the same as those of
the previous section except that for Za evaluator, its
Zb input is not the fault free value but a value of Zbf

which is the computed value from the Zb evaluator, and
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Fig. 12. Computation configuration for diagnosing double faults.

for Zb evaluator, its Za input is not the fault free value
but a value of Zaf which is the computed value from
the Za evaluator. A delay unit is inserted between two
evaluators. The computing is an iterative process. At
the beginning, when the value of Zaf is computed, the
fault free value of Zb is placed at the input of Za eval-
uator. The obtained Zaf is then fed to the input of the
Zb evaluator at the next time unit for Zbf computation.
The obtained Zbf is again put at the Zbf input of the Za

evaluator for the next computation. This process is iter-
ated until stable Zaf and Zbf values are obtained. If the
output waveforms of evaluators do not converge after a
preset iteration run, the double fault-pair selected is not
the fault-pair and another fault-pair will be selected.

For a double fault-pair, there are usually other double
fault-pairs which give the same faulty response. These
fault pairs are equivalent fault-pairs. In the following, a
power-down method using switched-opamp [4] is used
to differentiate the true fault-pair from their equivalent
fault-pairs.

Fig. 13. Configuration for differentiating the true fault pair from its equivalent faults.

A linear analog circuit is composed of several sub-
circuits which are constituted by OPs. When the power
of OPs is shut down, the inputs of OPs are open circuit,
i.e., OPs in the circuit will act as a high impedance.
The circuit becomes a circuit composed of only pas-
sive elements. For example, in the above benchmark
filter circuit example, the CUT becomes an un-powered
passive RC network. The un-powered passive RC net-
work with double faults can be applied with the same
input stimulus to obtain its output response. The input
stimulus and output response are then A/D transformed
and applied to the similar evaluator configuration but
with evaluators of different equivalent fault-pairs as in
Fig. 13. The true fault-pair will cause the output of the
comparator to be zero. In this way, the true fault pair is
identified.

Table 1. The diagnosed single faults and results.

Faults Diagnosis result

R1 open(R1 = 100M) R1 = 100M

R1 short(R1 = 10) R1 = 10

R2 open(R2 = 100M) R2 = 100M

R2 short(R2 = 10) R2 = 10

C open C ≈ 0

C short C ≈ ∞
R1 = 7.5M(+50%) R1 = 7.5M

R2 = 7.5M(−25%) R2 = 7.5M

C = 7.5p(−25%) C = 7.5p

OP fault: Fos = 0.15V Fos = 0.15V

R1 = 7.5M(+50%) (R1 = 7.5M,R2 = 7.5M) or

R2 = 7.5M(−25%) (R2 = 5M,C = 15p) or

(R1 = 10M,C = 7.5p)

• •
• •
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5. Examples

5.1. A Low Pass Filter

A low pass filter of Fig. 9 is used to demonstrate the
proposed diagnosis method. For this circuit, C = 10 pF,
R1 = 5 M�, R2 = 10 M�, and input stimulus is 0.1
Sinc(40 kHz) since the cut-off frequency of the filter is
10 kHz. The circuit is transformed to the discrete signal
flow graph and the diagnosis evaluators for each com-
ponent are constructed by the method described in the
previous section. The faults dealt with are those listed

Fig. 14. Simulated waveforms of single fault R2 at the output of (a) evaluator C , (b) evaluator R1, (c) evaluator R2.

in Table 1 and the corresponding diagnosed results after
computation are also compiled.

Fig. 14 shows the simulated waveforms at the out-
put of evaluators C, R1 and R2 respectively for the sin-
gle fault (R2). The waveforms in Fig. 14 (a) and (b)
do not exhibit constant curves but (c) gives a constant
value of 7.5M, indicating that R2 is the faulty element
with a faulty value of 7.5M. Fig. 15 shows the simu-
lated waveforms at the output of diagnosing evaluators
(R1,R2) respectively for the double fault (R1,R2). Ini-
tially, the waveforms vary with time but eventually be-
come constant values of 7.5M respectively, indicating
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Fig. 15. Simulated waveforms of double fault (R1,R2) at output of evaluator (R1,R2) (a) R1 and (b) R2.

that the double faults with faulty values of 7.5M re-
spectively are diagnosed.

In the above example, the computation time spent for
the iteration process to obtain convergent waveforms
was only 0.15 msec when the sample rate of A/D was
100 kHz.

Also, the power-down method of the previous sec-
tion to differentiate the equivalent double fault-pairs
was applied to identify the true fault-pair. Fig. 16 shows
the waveforms at two evaluators of an equivalent dou-
ble fault-pair with those at the evaluators of the true
fault-pair. The equivalent fault-pair outputs have non-
zero curves but the true fault-pair shows a zero output.
Clearly, the true fault-pair is identified.

In all above discussions, all components are assumed
to be good, i.e., they have well-defined values except
the faulty components. In practice, all components may

Fig. 16. Waveforms at two evaluators of two different equivalent
fault pairs as compared with that of the true double fault-pair (R1,R2).

have small tolerances on their component values. In that
case, the outputs of evaluators will not converge into a
constant but vary within a small range. In computation,
a small tolerance range can be firstly preset as the range
of convergence. Once the computation result falls into
this preset tolerance range, the curves can be consid-
ered to have reached constant. For example, if there
are a 5% variation on R1, i.e. 5.25M and C , i.e. 10.5 pf
when the 50% soft fault on R2, i.e. 7.5M, is diagnosed,
the simulated waveforms at outputs of C, R1 and R2

evaluators are those shown in Fig. 17. The waveform
in Fig. 17(c) varies in a small range as compared to that
of Fig. 14(c). The average value of R2 is 7.17M, where
there is only a 4.4% error as compared to true faulty
value of R2 = 7.5M.

5.2. The Benchmark State Variable Filter
Circuit Example [10]

The benchmark state variable filter circuit of Fig. 7 is
used as another example to demonstrate the proposed
diagnosis method.

For this circuit, C1 = 20 nF, C2 = 20 nF, R1 − R5 =
10 k�, R6 = 3 k�, R7 = 7 k�, and the input stimu-
lus was 0.1Sinc (10 kHz) for the central frequency
of band-pass output of this filter is 795 Hz. The cir-
cuit is transformed to the discrete signal flow graph
as shown in Fig. 8. All evaluators for each compo-
nent are constructed by the method described as above.
The single faults to be diagnosed are components with
10% variation in their values as shown in Table 2
with the diagnosed result through computation. Table 3
shows the double faults and the diagnosed results.
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Table 2. The diagnosed single faults and results.

Fault Diagnosis result

C1 = 22n(+10%) C1 = 22n or R3 = 11k

C2 = 22n(+10%) C2 = 22n or R4 = 11k

R1 = 11k(+10%) R1 = 11k

R2 = 11k(+10%) R2 = 11k

R3 = 11k(+10%) C1 = 22n or R3 = 11k

R4 = 11k(+10%) C2 = 22n or R4 = 11k

R5 = 11k(+10%) R5 = 11k

R6 = 3.3k(+10%) R6 = 3.3k or R7 = 6.364k

R7 = 7.7k(+10%) R7 = 7.7k or R6 = 2.727k

Fig. 17. Simulated waveforms of single fault R2(50%) with R1(5%) and C(5%) at the output of (a) evaluator C , (b) evaluator R1,
(c) evaluator R2.

In tables, the diagnosed equivalent faults and the equiv-
alent fault pairs are also listed with the diagnosed values
of each faulty component respectively. It can be seen
that every fault is diagnosed and the diagnosed faulty
values are the same as the injected faulty values. The
iteration processes of all the faults converged within
2.5 msec when the sample rate of A/D was 100 kHz.
For almost each single fault and double fault, there are
equivalent faults and many equivalent fault-pairs re-
spectively. If the power-down differentiation method
is applied to identify the true faults, the obtained diag-
nosed faults are shown in Table 4. All the true single
faults and most of the double fault-pairs are identified.
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Table 3. The diagnosed double faults and equivalent fault pairs.

Fault Diagnosis result (Equivalent fault pairs)

C1 = 22n,C2 = 22n (C1 = 22n,C2 = 22n)(C1 = 22n,R4 = 11k)(C2 = 22n,R3 = 11k)(R3 = 11k,R4 = 11k)

C1 = 22n,R1 = 11k (C1 = 22n,R1 = 11k)(R1 = 11k,R3 = 11k)

C1 = 22n,R2 = 11k (C1 = 22n,R2 = 11k)(C1 = 20n,R6 = 2.872k)(C1 = 20n,R7 = 7.313k)

(C2 = 18.18n,R5 = 11k)(C2 = 20n,R6 = 2.872k)(C2 = 20n,R7 = 7.313k)

(R1 = 10k,R6 = 2.872k)(R1 = 10k,R7 = 7.313k)(R2 = 11k,R3 = 11k)

(R2 = 10k,R6 = 2.872k)(R2 = 10k,R7 = 7.313k)(R3 = 10k,R6 = 2.872k)

(R3 = 10k,R7 = 7.313k)(R4 = 9.091k,R4 = 11k)(R4 = 10k,R6 = 2.872k)

(R4 = 10k,R7 = 7.313k)(R5 = 10k,R6 = 2.872k)(R5 = 10k,R7 = 7.313k)

(R6 = 2.872k,R7 = 7k)

C1 = 22n,R3 = 11k (C1 = 24.2n,C2 = 20n)(C1 = 24.2n,R1 = 10k)(C1 = 20n,R3 = 12.1k)

(C1 = 24.2n,R4 = 10k)(C1 = 24.2n,R5 = 10k)(C1 = 24.2n,R6 = 3k)

(C1 = 24.2n,R7 = 7k)(C2 = 20n,R3 = 12.1k)(R1 = 10k,R3 = 12.1k)

(R2 = 10k,R3 = 12.1k)(R2 = 8.264k,R6 = 2.73k)(R2 = 8.264k,R6 = 7.7k)

(R3 = 12.1k,R4 = 10k)(R3 = 12.1k,R5 = 10k)(R3 = 12.1k,R6 = 3k)

(R3 = 12.1k,R7 = 7k)

C1 = 22n,R4 = 11k (C1 = 22n,C2 = 22n)(C1 = 22n,R4 = 11k)(C2 = 22n,R3 = 11k)(R3 = 11k,R4 = 11k)

C1 = 22n,R5 = 11k (C1 = 22n,R5 = 11k)(R3 = 11k,R5 = 11k)

C1 = 22n,R6 = 3.3k (C1 = 18.274n,R2 = 8.306k)(C1 = 22n,R6 = 3.3k)(C1 = 22n,R7 = 6.364k)

(R2 = 8.306k,R6 = 9.137k)(R2 = 9.1k,R6 = 3.146k)(R2 = 9.1k,R7 = 6.676k)

(R3 = 11k,R6 = 3.3k)(R3 = 11k,R7 = 6.364k)

C1 = 22n,R7 = 7.7k (C1 = 27.37n,R2 = 12.44k)(C1 = 22n,R6 = 2.73k)(C1 = 22n,R7 = 7.7k)

(R2 = 12.44k,R6 = 13.686k)(R2 = 9.1k,R6 = 2.607k)(R2 = 9.1k,R7 = 8.06k)

(R3 = 11k,R6 = 2.73k)(R3 = 11k,R7 = 7.7k)

C2 = 22n,R1 = 11k (C1 = 18.335n,R2 = 8.333k)(C1 = 22n,R6 = 3.294k)(C1 = 22n,R7 = 6.375k)

(C2 = 22n,R1 = 11k)(R1 = 11k,R4 = 11k)(R2 = 8.333k,R3 = 9.167k)

(R2 = 9.091k,R6 = 3.14k)(R2 = 9.091k,R7 = 6.69k)(R3 = 11k,R6 = 3.294k)

C2 = 22n,R2 = 11k (C1 = 18.335n,R2 = 8.333k)(C1 = 22n,R6 = 3.294k)(C1 = 22n,R7 = 6.375k)

(C2 = 22n,R1 = 11k)(R1 = 11k,R4 = 11k)(R2 = 8.333k,R3 = 9.167k)

(R2 = 9.091k,R6 = 3.14k)(R2 = 9.091k,R7 = 6.69k)(R3 = 11k,R6 = 3.294k)

(R3 = 11k,R7 = 6.375k)

• •
• •
• •
• •
• •
• •

For some fault-pair, either they could not be identi-
fied or unable to be diagnosed at all such as fault-
pair (C1,R3), (C2,R4), and (R6,R7). There is only
multiplication relation between C1 and R3 in

circuit transfer function. In other word, C1 and R3 are
linear-dependent diagnosing variables. The same as C2,
R4 and R6, R7, they are linear-dependent diagnosing
variables.
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Table 4. Identified results of equivalent faults.

Fault Diagnosis result Fault Diagnosis result

C1 = 22n(+10%) C1 = 22n R4 = 11k(+10%) R4 = 11k

C2 = 22n(+10%) C2 = 22n R5 = 11k(+10%) R5 = 11k

R1 = 11k(+10%) R1 = 11k R6 = 3.3k(+10%) R6 = 3.3k

R2 = 11k(+10%) R2 = 11k R7 = 7.7k(+10%) R7 = 7.7k

R3 = 11k(+10%) R3 = 11k

C1 = 22n,C2 = 22n (C1 = 22n,C2 = 22n) R1 = 11k,R5 = 11k (R1 = 11k,R5 = 11k)

C1 = 22n,R1 = 11k (C1 = 22n,R1 = 11k) R1 = 11k,R6 = 3.3k (R1 = 11k,R6 = 3.3k)

C1 = 22n,R2 = 11k (C1 = 22n,R2 = 11k) R1 = 11k,R7 = 7.7k (R1 = 11k,R7 = 7.7k)

C1 = 22n,R3 = 11k Failure R2 = 11k,R3 = 11k (R2 = 11k,R3 = 11k)

C1 = 22n,R4 = 11k (C1 = 22n,R4 = 11k) R2 = 11k,R4 = 11k (R2 = 11k,R4 = 11k)
(C2 = 22n,R3 = 11k)

C1 = 22n,R5 = 11k (C1 = 22n,R5 = 11k) R2 = 11k,R5 = 11k (R2 = 11k,R5 = 11k)

C1 = 22n,R6 = 3.3k (C1 = 22n,R6 = 3.3k) R2 = 11k,R6 = 3.3k (R2 = 11k,R6 = 3.3k)

C1 = 22n,R7 = 7.7k (C1 = 22n,R7 = 7.7k) R2 = 11k,R7 = 7.7k (R2 = 11k,R7 = 7.7k)

C2 = 22n,R1 = 11k (C2 = 22n,R1 = 11k) R3 = 11k,R4 = 11k (R3 = 11k,R4 = 11k)

C2 = 22n,R2 = 11k (C2 = 22n,R2 = 11k) R3 = 11k,R5 = 11k (R3 = 11k,R5 = 11k)

C2 = 22n,R3 = 11k (C1 = 22n,R4 = 11k) R3 = 11k,R6 = 3.3k (R3 = 11k,R6 = 3.3k)
(C2 = 22n,R3 = 11k)

C2 = 22n,R4 = 11k Failure R3 = 11k,R7 = 7.7k (R3 = 11k,R7 = 7.7k)

C2 = 22n,R5 = 11k (C2 = 22n,R5 = 11k) R4 = 11k,R5 = 11k (R4 = 11k,R5 = 11k)

C2 = 22n,R6 = 3.3k (C2 = 22n,R6 = 3.3k) R4 = 11k,R6 = 3.3k (R4 = 11k,R6 = 3.3k)

C2 = 22n,R7 = 7.7k (C2 = 22n,R7 = 7.7k) R4 = 11k,R7 = 7.7k (R4 = 11k,R7 = 7.7k)

R1 = 11k,R2 = 11k (R1 = 11k,R2 = 11k) R5 = 11k,R6 = 3.3k (R5 = 11k,R6 = 3.3k)

R1 = 11k,R3 = 11k (R1 = 11k,R3 = 11k) R5 = 11k,R7 = 7.7k (R5 = 11k,R7 = 7.7k)

R1 = 11k,R4 = 11k (R1 = 11k,R4 = 11k) R6 = 3.3k,R7 = 7.7k Failure

6. Conclusion

In this paper, we have proposed an efficient method
for diagnosing single and double faults for the linear
analog circuit. The method first transforms the CUT
into the equivalent discrete time signal flow graph and
then constructs “diagnosing evaluators” which models
the effect of the faulty components to form a diagnosis
configuration to diagnose the circuit. It then computes
for the faulty components by treating the blocks in the
diagnosis configuration as digital blocks and performs
the computation in the digital domain. This saves the
computation time significantly as compared with the
computation time if done in the analog domain. To dif-
ferentiate equivalent faults, it offers a simple technique
to un-power OP’s and treats the CUT as a passive cir-
cuit to identify the true faulty components. The method
can diagnose the faults in the passive components as
well as hard faults in OP’s. The method has been

applied to diagnose the faults of a benchmark filter
circuit and very good results have been obtained. In
addition, the transformation method for transforming
the linear analog circuits into discretized time domain
signal flow graph is very simple and is able to be ap-
plied to other discrete time applications when the sim-
ilar transform is needed.

References

1. J.W. Bandler and A.E. Salama, “Fault Diagnosis of Analog Cir-
cuits,” Proc. IEEE, Vol. 73, No. 8, pp. 1279–1325, 1985.

2. R.S. Berkowitz, “Conditions for Network Element Value Solv-
ability,” IEEE Trans. Circ. Syst, Vol. 9, pp. 25–29, 1962.

3. Y.J. Chang, C.L. Lee, J.E. Chen, and C.C. Su, “A Behavior-
Level Fault Model for the Closed Loop Operational Amplifier,”
Journal of Information Science and Engineering, Vol. 19, No. 5,
pp. 751–766, September 2000.

4. J. Crols and M. Steyaert, “Switched-Opamp: An Approach to
Realize Full CMOS Switched-Capacitor Circuits at Very Low



494 Lin et al.

Power Supply Voltages,” IEEE Journal of Solid-State Circuits,
Vol. 29, No. 8, pp. 936–942, August 1994.

5. R.A. Decarlo and L. Rapisarda, “Fault Diagnosis Under a Lim-
ited Fault Assumption and Limited Test Point Availability,” Cir-
cuits, Systems, and Signal Processing, Vol. 7, No. 4, 1988.

6. P. Duhamel and J.C. Rault, “Automatic Test Generation Tech-
niques for Analog Circuits and Systems: A Review,” IEEE Trans.
Circ. Syst., Vol CAS-26, No. 7, pp. 411–439, July 1979.

7. G. Fedi, A. Liberatore, A. Luchetta, S. Manetti, and M.C.
Piceirilli, “Symbolic Approach to the Fault Location in Ana-
log Circuits,” in Proc. IEEE Int’l Sym. on Circ. and Syst., 1996,
pp. 810–813.

8. A.A. Hatzopoulos and J.M. Kontoleon, “Efficient Fault Diag-
nosis in Analogy Circuits Using a Branch Decomposition Ap-
proach,” IEEE Proc. Electron. Circ. Syst., Vol. 134, pp. 143–
157, August 1987.

9. A.T. Johnson, “Efficient Fault Analysis in Linear Analog
Circuits,” IEEE Trans. Circ. Syst., Vol. CAS-26, pp. 475–484,
July 1979.

10. B. Kaminska, K. Arabi, I. Bell, P. Goteti, J. L. Huertau, B. Kim,
A. Rueda, and M. Soma, “Analog and Mixed-Signal Benchmark
Circuits—First Release,” in Proc. IEEE Int’l Test Conf., 1997,
pp. 183–190.

11. R.W. Liu (ed.), Select Papers on Analog Fault Diagnosis,
New York: IEEE Press, 1987.

12. N. Nagi, A. Chatterjee, and J.A. Abraham, “DRAFTS: Dis-
cretized Analog Circuit Fault Simulator,” in Proc. ACM/IEEE
Design Automation Conf., 1993, pp. 509–514.

13. N. Nagi, A. Chatterjee, and J.A. Abraham, “MIXER: Mixed-
Signal Fault Simulator,” in Proc. IEEE Int’l. Conf. on Computer
Design, 1993, pp. 568–571.

14. A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Pro-
cessing, Englewood, NJ: Prentice Hall, 1989.

15. A.E. Salama and F.Z. Amer, “Paramater Identification Approach
to Fault Diagnosis of Switched Capacitor Circuits,” IEEE Proc.
Electron. Circ. Syst., Vol. 139, pp. 467–472, February 1991.

16. M. Slamani and B. Kaminska, “Analog Circuit Fault Diagnosis
Based on Sensitivity Computation and Functional Test,” IEEE
Design and Test of Computers, Vol. 9, No. 1, pp. 30–39, March
1992.

17. M. Slamani and B. Kaminska, “Multifrequency Testability Anal-
ysis for Analog Circuits,” in Proc. IEEE VLSI Test Symp., 1994,
pp. 54–59.

18. Z. You, E.S. Sinencio, and J.P. de Gyvez, “Analog System-Level
Fault Diagnosis Based on a Symbolic Method in the Frequency
Domain,” IEEE Trans. Instrum. Meas., Vol. 44, No. 1, pp. 28–35,
February 1995.

19. H.H. Zheng, A. Balivada, and J.A. Abraham, “A Novel
Test Generation Approach for Parametric Faults in Linear

Analog Circuits,” in Proc. IEEE VLSI Test Symp., 1996, pp. 470–
475.

Jun-Weir Lin was born in Taiwan 1973. He received his M.S. de-
gree in Electronic Engineering from National Chiao-Tung Univer-
sity, Hsin-Chu, Taiwan. He is currently working towards his Ph.D.
degree at NCTU. His research interests including mixed-signal di-
agnosis and design test integration of mixed-signal circuits.

Chung-Len Lee received BS degree in electrical engineering from
National Taiwan University, Taiwan, R.O.C., in 1968. He obtained his
M.S. and Ph.D. Degree in Electrical Engineering, Carnegie-Mellon
University, U.S.A., in 1971 and 1975 respectively. From 1975, he
has been a professor of Electronic Engineering at National Chiao-
Tung University in Taiwan, and was the director of Semiconductor
Research Center of the university in the period of 1980–1983. From
1989 to present, he is the director of the Training Center for Submi-
cron Professionals of the university and supervised more than 100
M.S. and Ph.D. students to complete their thesis work that result in
more than 200 journal and conference papers published. Presently,
he leads a joint project on researching thin film transistors with two
other faculties, and leading a joint project to develop a VLSI testing
course for universities across the Taiwan with six other university
professors. His research interests are in the area of semiconductor
processes, material and devices, integrated circuit design, VLSI test-
ing, and integrated optics. He is a senior member of IEEE and mem-
ber of editorial board, Journal of Electronic Testing, Theory, and
Application.

Chauchin Su received BS and MS degree in electrical engineering
from National Chiao-Tung University, Hsin-Chu, Taiwan, R.O.C.,
in 1979 and 1981 respectively. He obtained his Ph.D. Degree in
electrical and computer engineering from University of Wisconsin
at Madison, Madison, Wisconsin, U.S.A., in 1990. Then joined the
Department of Electrical Engineering, National Central University,
Chung-Li, Taiwan, R.O.C. His research interests are in the areas of
mixed analog and digital system testing and design for testability.
He is also involved in the baseband circuit design for wireless com-
munication systems.

Jwu-E Chen received BS, MS, and Ph.D. degrees in electronic en-
gineering from National Chiao-Tung University, Taiwan, in 1984,
1986 and 1990, respectively. Presently, he is an associate professor
of Electrical Engineering at Chung-Hwa University, Taiwan. His re-
search interests are in reliability, fault tolerance and test quality of
circuits.


