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In this paper, we propose a genetics-based knowledge integration approach to inte-
grate multiple rule sets into a central rule set. The proposed approach consists of two
phases: knowledge encoding and knowledge integrating. In the encoding phase, each
knowledge input is translated and expressed as a rule set, and then encoded as a bit string.
The combined bit strings form an initial knowledge population, which is then ready for
integrating. In the knowledge integration phase, a genetic algorithm generates an optimal
or nearly optimal rule set from these initial knowledge inputs. Furthermore, a
rule-refinement scheme is proposed to refine inference rules via interaction with the en-
vironment. Experiments on diagnosing brain tumors were carried out to compare the ac-
curacy of a rule set generated by the proposed approach with that of initial rule sets de-
rived from different groups of experts or induced by means of various machine learning
techniques. Results show that the rule set derived using the proposed approach is much
more accurate than each initial rule set on its own.

Keywords: brain tumor, expert system, genetic algorithm, knowledge integration,

knowledge refinement

1. INTRODUCTION

Recently, Wang et al. proposed several GA-based knowledge integration strategies
to automatically integrate multiple rule sets in a distributed-knowledge environment [7,
10-13]. Also, a self-integrating knowledge-based brain tumor diagnostic system based on
these strategies was successfully developed [9]. In this paper, we propose a genet-
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ics-based knowledge integration and refinement approach which operates at the rule-set
level to effectively integrate multiple rule sets into one centralized knowledge base. The
proposed approach takes less processing time than do those in [7]. It does not need to
apply any domain-specific genetic operators to solve misclassification and contradiction
problems. Instead, it used a refinement approach to effectively solve them. Also, domain
experts need not intervene in the integration process since the work is done by com-
puters.

Experiments on diagnosing brain tumors will be described. Results show that the
knowledge base derived using our approach is much more accurate than each initial rule
set on its own.

The remainder of this paper is organized as follows. The genetics-based know-
ledge-integration approach is proposed in Section 2. A rule-refinement scheme is pro-
posed in Section 3. Experiments on diagnosing brain tumors are reported in Section 4.
Conclusions are given in Section 5.

2. GENETICS-BASED KNOWLEDGE INTEGRATION

Here, we assume that all knowledge sources are represented by rules since almost
all knowledge derived using knowledge-acquisition tools or induced using machine-
learning methods may easily be translated into or represented by rules.

The proposed approach uses the genetic algorithm to maintain a population of ini-
tial rule sets and automatically searches for the best integrated rule set. It consists of two
phases: encoding and integration. The encoding phase transforms each rule set into a
bit-string structure. The integration phase chooses bit-string rule sets for “mating” and
gradually creates good offspring rule sets. The offspring rule sets then undergo recursive
“evolution” until an optimal or nearly optimal rule set is found. The proposed algorithm
is presented below.

Knowledge Integration Algorithm:
Input: m rule sets from different knowledge sources and a set of test instances.
Output: one integrated rule set that performs well.

Knowledge Encoding Phase:
Step 1: Collect multiple rule sets from multiple experts or using various machine

learning methods.
Step 2: Transform each rule set into an intermediary representation.
Step 3: Encode the intermediary representation as a bit string that will act as an

individual in the initial population.
Knowledge Integrating Phase:

Step 4: Evaluate the fitness value of each rule set using an evaluation function
and a set of test instances.

Step 5: Select “good” rule sets upon which to perform the following genetic op-
erations:
a: Dynamic crossover on parent rule sets to generate offspring rule sets;
b: Mutation on parent rule sets to generate offspring rule sets;
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Step 6: Evaluate the fitness value of each rule set using an evaluation function
and a set of test instances.

Step 7: If the termination criterion (such as a given number of generations, a
given processing time, or convergence of fitness values) has been
reached, then GO TO STEP 8; otherwise, GO TO STEP 5.

Step 8: Select the best rule set from the population as the final knowledge base.

These two phases are described in detail in the following sections.

2.1 Knowledge Encoding

Since rule sets from different knowledge sources may differ in size and rule set
sizes may not be known beforehand, we encode knowledge as classifier systems with
genetic operations, and credit assignment is applied at the rule-set level do [4, 7]. Vari-
able-length bit strings are then used to represent rule sets. We first construct an interme-
diary representation to retain the syntactic and semantic constraints of each classification
rule. Each intermediary representation is composed of N feature tests and one class pat-
tern, where N is the number of features. Each feature test is then encoded into a
fixed-length binary string, the length of which is equal to the number of possible feature
test values. Thus, each bit represents a possible value. Similarly, the class pattern is en-
coded into a fixed-length binary string with each bit representing a possible class.

Example 1: Assume that brain tumors are to be diagnosed; two classes {Adenoma, Men-
ingioma} will be distinguished using three features {Location, Calcification, Edema}.
Assume that Feature Location has three possible values {brain surface, sellar, brain
stem}, that Feature Calcification has four possible values {no, marginal, vascular-like,
lumpy}, and that Feature Edema has three possible values {no, < 2 cm, < 0.5
hemisphere}. Also assume that a rule set RSi from a knowledge source has only the fol-
lowing two rules:

R1 : If (Location = sellar) and (Calcification = no) then Class is Adenoma;
R2 : If (Location = brain surface) and (Edema < 2 cm) then Class is Meningioma.

After translation, the intermediary representations of these rules are then be con-
structed as follows:

R′
1 : If (Location = sellar) and (Calcification = no) and (Edema = no or Edema < 2

cm or Edema < 0.5 hemisphere ), then Class is Adenoma;

R′
2 : If (Location = brain surface) and (Calcification = no or Calcification = mar-

ginal or Calcification = vascular like or Calcification = lumpy) and (Edema <
2 cm) then Class is Meningioma.

The underlined tests are dummy tests. Also, R1 and R2 are logically equivalent to

1
'R and 2

'R .
Using the intermediary form, we encode each feature test into a fixed-length binary
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string. For example, the set of legal values for feature Location is {brain surface, sellar,
brain stem}; three bits are then used to represent this feature. The bit string 101 repre-
sents the test for Location, which is “brain surface” or “brain stem”. As a result, the
above rules are, respectively, encoded as follows:

Location Calcification Edema Class Location Calcification Edema Class

1
'R 010 1000 111 10 2

'R 100 1111 010 01

Finally, rule set RSi is encoded into the string “010100011110100111101001”.

2.2 Knowledge Integration

The proposed genetic knowledge-integration algorithm requires that a population
of individuals must be initialized during the evolution process. In our approach, the ini-
tial set of bit strings for rule sets comes from the multiple knowledge sources. Each rule
set represents one individual in the initial population.

In order to develop a “good” knowledge base from an initial population of rule sets,
the accuracy and complexity of the resulting knowledge structure are used to evaluate the
derived rule sets. Accuracy is evaluated using training instances as follows:

objectstrainingofnumbertotalthe
RSbypredictedcorrectlyobjectstestofnumbertotalthe

RSAccuracy i
i =)( ,

where RSi is the i-th resulting rule set. The complexity of a resulting rule set (RSi) is
evaluated using the ratio of rule increase, defined as follows:

Complexity RS
Number of rules within the integrated rule set RS

Number of rules within initial RS m
i

i

jj
m

( )
[ ( )] /

=
=∑ 1

,

where RSj is the j-th initial rule set and m is the number of initial rule sets. Accuracy and
complexity are combined to represent the fitness value of the rule set. The evaluation
function for a rule set RSi is defined as follows:

Fitness RS
Accuracy RS

Complexity RS
i

i

i

( )
( )

[ ( )]
= α

,

where α is a control parameter, representing a trade-off between accuracy and complex-
ity. If the α value is small, the fitness function then focuses on the classification accuracy.
On the contrary, if the α value is large, the fitness function is then dominated by the
complexity.

During evolution, dynamic crossover and mutation operators are applied to the
population of rule sets for knowledge integration. Dynamic crossover operators select
crossover points differently from the way in which crossover operators are selected in the
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simple genetic algorithm. The original crossover operator chooses the same points for
both parent chromosomes, but the dynamic crossover operator does not need to use the
same point positions for both parent chromosomes. Dynamic crossover points may occur
within rule strings or at rule boundaries. The only requirement for dynamic crossover
points is that they “match up semantically”. That means that, if one parent is cut at a rule
boundary, then the other parent must also be cut at a rule boundary. Similarly, if one par-
ent is cut at a point p bits to the left of a rule boundary, then the other parent must also be
cut at a point p bits to the left of some other rule boundary. The parents then generate
offspring rule sets in search of the best integrated rule set. An example of a dynamic
crossover operation is given below.

Example 2: Assume that two parent rule sets, RS1 and RS2, respectively, contain n and m
rules with four features (F1, F2, F3, and F4). Feature F1 has three possible values; features
F2, F3, and F4 all have two possible values. Three classes are to be determined. If cross-
over point cp1 is the seventh bit to the left of r2i in RS1, then crossover point cp2 in RS2

must be the seventh bit to the left of a certain rule r2j. Thus, the crossover operator gener-
ates two offspring rule sets, O1 and O2, as shown in Fig. 1.
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Fig. 1. An example of a crossover operation.

The mutation operator is the same as the standard one in the simple genetic algo-
rithm. It randomly changes some elements in a selected rule set to help the integration
process escape from local-optimum “traps”.

3. KNOWLEDGE REFINEMENT

A knowledge base consisting of multiple integrated knowledge sources is often
only a prototype, with unsatisfactory classification accuracy. During the inference proc-
ess, an input event wrongly classified by the current knowledge base causes a fault. The
faulty rules in a knowledge base must be refined to improve the effectiveness of the
knowledge base system [1]. In this section, the refinement scheme uses the knowl-
edge-integration procedure as the basis for refining the knowledge.
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The refinement scheme refines the knowledge base whenever the expert identifies
a fault and provides a correct answer for the wrongly solved event. This event-solution
pair is, thus, used as a training case for the refinement process to alter the knowledge
base. It is, thus, appended to the training set for evaluation of the fitness function. Also, it
is encoded as a bit string and appended to the current best rule set, thus enabling the
search to starts at a good position. The new population size is the same as the one ob-
tained using the knowledge-integration approach. The new training set including the
wrongly classified event, is then presented to the refinement mechanism so that rule sets
can be evaluated for a new population. The refinement process works until the exception
event can be correctly classified by the knowledge base, making the new knowledge base
more accurate than the old one. The proposed knowledge-refinement algorithm men-
tioned above is presented below.

Knowledge Refinement Algorithm:

Input: A current knowledge base, a current training set, and an input event wrongly
classified by the current knowledge base.

Output: One refined rule set.

Step 1: Execute the knowledge-encoding phase and generate an initial knowledge
population.

Step 2: Execute the knowledge-integration phase to generate the best rule set ac-
cording to the current population.

Step 3: Execute the inference process according to the input events.
Step 4: Execute the knowledge-refinement phase whenever an input event wrongly

classified by the current knowledge base causes a fault. The refinement
process is made up of the following substeps:
a: Interpret a fault and provide the correct answer for the wrongly solved

event from experts.
b:Encode the event-solution pair as a bit string and append it to the current

knowledge base as a new individual in the population.
c: Add the event-solution pair to the current training set to form a new set.
d:Execute Step 2.

4. EXPERIMENTAL RESULTS

The brain tumor diagnostic problem [8, 9] was used to test the performance of the
proposed two-phase genetic knowledge-integration approach. The 504 cases used in
these experiments were obtained from Veterans General Hospital (VGH) in Taipei, Tai-
wan. Each case was expressed in terms of 12 features and a pathology. The goal was to
identify one of six possible classes of brain tumors, including Pituitary Adenoma, Men-
ingioma, Medulloblastoma, Glioblastoma, Astrocytoma, and Anaplastic Protoplasmic
Astrocytoma, which are frequently found in Taiwan.

The 504 cases were first divided into two groups, a training set and a test set. The
training set was used to evaluate the fitness values of rule sets during the integration and
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refinement processes; the test set provided as input events which could be used to test the
resulting rule set, and the percentage of correct predictions was recorded. In each run,
70% of the brain tumor cases (353 cases) were selected at random for training, and the
remaining 30% of the cases (151 cases) were used for testing. Ten initial rule sets were
obtained from different groups of experts at VGH or derived using machine learning
methods [2, 3, 6]. Each rule was encoded into a bit string 105 bits long. The accuracy of
the ten initial rule sets was measured using the test instances. The results are shown in
Table 1.

Table 1. The accuracy of the ten initial rule sets.

Rule Sets Accuracy No. of rules Rule Sets Accuracy No. of rules

Rule Set 1 60.03% 52 Rule Set 6 77.89% 56
Rule Set 2 79.81% 56 Rule Set 7 68.53% 52
Rule Set 3 73.24% 56 Rule Set 8 72.83% 53
Rule Set 4 64.74% 53 Rule Set 9 76.24% 56
Rule Set 5 58.67% 52 Rule Set 10 70.19% 53

Although the ten initial rule sets were not accurate enough, they nevertheless could
serve as a set of locally-optimal solutions that indicated useful information in the search
space. Beginning with these rule sets, the proposed genetic knowledge-integration ap-
proach could then more rapidly reach the (nearly) optimal global solution than it could if
it had nothing to refer to.

In the experiments, the crossover and mutation ratios were set at 0.9 and 0.04 re-
spectively. Here, α was set at 0.125. The selection strategy used in both phases was the
fitness-proportionate-selection strategy (FPS) [5]. The fitness proportionate selection
strategy was used to select pairs of individuals in the population to generate new indi-
viduals. Among the new individuals and the original individuals in the population, those
with high fitness values were passed to the new generation. The knowledge-integration
algorithm achieved an accuracy rate of 84.76% after 2000 execution generations
(11238.2 seconds). The size and the complexity of the resulting knowledge base were
respectively, 86 and 1.595. Note that the accuracy rate was higher than that for any initial
rule set shown in Table 1. Fig. 2 shows the relationship between the number of genera-
tions and the fitness value of the best rule set for the proposed approach.

As the number of generations increased, the resulting fitness value also increased,
finally converging to about 83. Although the resulting rule set achieved an accuracy rate
of 84.76%, 23 cases were nevertheless misclassified by this knowledge base. Thus, rules
in the knowledge base must be refined to improve the effectiveness of the knowledge
base. Experimental results, including accuracy, number of rules in the resulting rule set,
and the refinement time, for different generations in the knowledge refinement are shown
in Table 2.

The experimental results show that the knowledge refinement process can effec-
tively improve accuracy although it requires some CPU time.
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Fig. 2. Relationship between the fitness values of the best rule set and generations for the brain
tumor domain.

Table 2. The experimental results for the knowledge refinement.

Rule Sets Accuracy No. of rules CPU Time (second)

Initial refinement 84.76% 86 -
Refinement (10 generations) 89.23% 88 5.6
Refinement (50 generations) 96.01% 89 280.4

Refinement (100 generations) 97.32% 90 561.9

5. CONCLUSIONS AND DISCUSSION

In this paper, we have proposed a genetics-based knowledge-integration approach
to effectively integrate multiple rule sets. The experimental results show that the rule set
derived using our proposed approach has the following advantages over conventional
knowledge-integration systems:

1. Only a small amount of computation time is needed compared to that required by
human expert knowledge integration.

2. A large number of rule sets can be effectively integrated.
3. Domain experts need not intervene in the integration process.
4. It is objective since human experts are not involved in the integration process.

Furthermore, a knowledge refinement scheme based on the proposed knowledge-
integration approach has been proposed rule refinement during the inference process.
The experimental results show that the proposed refinement scheme can effectively im-
prove the derived initial knowledge base. The proposed knowledge-integration approach
and refinement scheme have been applied to the brain tumor domain and have yielded
superior accuracy.
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Although the work presented here shows good results, it is only a beginning. Much
work still has remains to be done in this field.
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