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Virtual Hopf Precursor of Period-Doubling Route in 
Directly Modulated Semiconductor Lasers 

Yao Huang Kao, Member, ZEEE, and Hung Tser Lin 

Abstract-In this paper the noise effects on the period-dou- 
bling route in deeply modulated laser diodes were investigated. 
The dynamics were studied by employing the single-mode rate 
equations with consideration of Langevin noise. It was identi- 
fied that the period-doubling event in laser diodes had a virtual 
Hopf precursor and was enhanced by the existed Langevin 
noise. 

I. INTRODUCTION 
ONLINEAR dynamical behaviors have been enthu- N siastically investigated in a wide variety of physical 

systems following the discovery of scaling constants in 
the routes to chaos [ 1 1 .  At least three scenarios of routes 
to chaos have been successfully applied to those systems. 
They are the Feigenbaum, intermittency, and quasi-peri- 
odic routes, and are related to the period doubling (PD), 
saddle node, and Hopf bifurcations, respectively. The 
routes to chaos in semiconductor lasers have also been 
intensively studied not only because of theoretical inter- 
est, but also for practical purposes, especially in the area 
of analog modulation in fiber communication [2]. A sol- 
itary single-mode semiconductor laser cannot exhibit cha- 
otic behavior because it is fully described by only two 
independent quantities: the photon density and carrier 
density. The adding of an additional degree of freedom, 
i.e., modulation, light injection, or delay feedback, is 
necessary to allow for the chaotic instability to occur. The 
aspect of period-doubling route of a laser diode under di- 
rect current modulation is the focus of this paper. 

Strong current modulation in semiconductor laser 
diodes has recently received much attention, especially in 
the area of high-speed short pulse generation and micro- 
wave analog fiber-optic transmission [3]-[ 181. The output 
of photon density under such a circumstance clearly ex- 
hibits a number of nonlinear phenomena, i.e., harmonic 
distortion, pulsation, bistability , quasi-periodic and PD 
routes to chaos, etc. A set of nonlinear rate equations gov- 
erning the interrelationship between carrier density and 
photon density have been commonly applied to forecast 
the relaxation oscillation and bistability [6], [ 191. The in- 
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fluences of the nonlinear gain suppression factor, the 
spontaneous emission factor, and the Auger recombina- 
tion factor upon the PD phenomenon have also been nu- 
merically examined in the rate equations [ lo]-[ 131. The 
analytic method utilized for predicting the onset point of 
a PD route has also been previously presented [14], [15]. 
Despite great efforts, the important role of noise on the 
dynamics of the routes to chaos is not yet exploited in 
detail. The output of a CW diode laser actually exhibits a 
large-amplitude fluctuation with frequencies around the 
relaxation oscillation resonance [9], [ 161. These fluctua- 
tions, denoted as Langevin noise, arise from the quantum 
nature of spontaneous emission and cannot be eliminated 
in real diode lasers. The effect of the noise sources should 
be taken into account for the sake of more realistically 
modeling the dynamical behaviors of laser diodes. In an 
earlier work [20], the ability of noise to enhance the oc- 
currence of PD has been numerically confirmed. Here, it 
is further indicated that the noise can act as an important 
precursor for the occurrence of the PD. This phenomenon 
is confirmed to be a virtual Hopf bifurcation [21]. Exper- 
iments are also performed on a 1.5-pm InGaAsP DFB 
laser. The strength of high-frequency power for the onset 
point is forecasted with an extra consideration of parasitic 
effects. This study will improve our understanding of the 
period doubling. 

The paper is organized as follows. The rate equations 
are introduced in Section I1 with the consideration of Lan- 
gevin noise as well as a fast searching algorithm for the 
steady-state solutions. A numerical bifurcation diagram in 
controlled parameter space is presented in Section 111, 
from which a global picture of instability boundaries can 
be obtained. The explanations of virtual Hopf bifurcation 
by Floquet theory are also presented. The experimental 
demonstration of noise-enhancing period-doubling, para- 
sitic effect, and the phenomena of virtual Hopf precursor 
are described in Section IV. Concluding remarks are sum- 
marized in Section V. 

11. THE STOCHASTIC RATE EQUATIONS 
With the inclusion of the nonlinear gain suppression ef- 

fect, the single-mode rate equations for the photon density 
S and carrier density n can be written as [6], [ 121 
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s rpn equations then become [20] 
= rA(i  - E , l I ~ ) ( n  - no)s - - + - + F , ( ~ ) / v  

dS - 

N - 6  dr r,, 7, 

N - -  (1 - , P ) P )  + F:, (8) 
(2) dr T ,  1 - 6  

where e is the electron charge; Vis the active volume; r, 
and r,, are the, respective, electron and photon lifetimes; 
A is the gain constant; no is the carrier density for trans- 
parency; I' is the confinement factor; p is the spontaneous 
emission factor; and E , , /  is the nonlinear gain suppression 
factor. The driving current containing dc and ac terms can 
be expressed as I ( t )  = I d c  + lac sin (27rft) with driving 
frequency f. F, and F,, are Langevin noise sources with 
zero means that, respectively, arise from spontaneous 
emission and from the discrete nature of the carrier gen- 
eration and recombination. Under the Markovian assump- 
tions, the Langevin noises satisfy the general relations 
[221 

(3) 

(4) 

(5) 

where V,l and V, are the respective variances of F, and F,,. 
And yo is the correlation coefficient and approaches unity 
under the single-mode operation condition. The variances 
are expressed as follows: 

( F , ~  ( t )  F,, ( t  '1) = ~ f 6  ( t  - r '1 

( F , ( r )  F , ( r ' ) )  = V:6(t - r ' )  

W,,W F , ( W  = yoV,,V,6(i - r ' )  

V i  = I / e  + n V / 7 ,  + A(l  + c, , /)(n + no)SV 

Vf = SV/r,, + rA(1 + e , , /S) (n  + no)SV 

+ I'APnV/r, 

V,,V, = - {I'ApnV/re + r A ( i  + E , , s ) ( ~  + no)sv}. 
Basically, the behavior of rate equations is similar to that 
in a parallel underdamped oscillator under the small-sig- 
nal operation [ 191. Thus some of the inherent properties 
of the lasers can be realized from the relaxation-oscilla- 
tion frequency f, and the damping factor q given by 

s( = r7 , , ( Idc  - Ith) / f?v  

Generally, the order of the damping factor is around 0. I 
for InGaAsP laser and can be taken as the underdamping 
case. The peak width in the frequency response Afis about 
2qfr. It means that the line shape of the noise bump at the 
dc case can be easily predicted from these two factors. 

The photon density and carrier density in (1) and (2) 
are further normalized for numerical purposes by defining 
P = S/So and N = n / n t h  with constant So and r(7,,/r,)nth 

and the threshold carrier density n t h  = T,I th/eV. The rate 

where F,', = Fn/(nth V ) ,  F,: = Fy/(So V ) ,  the constants 6 
= no/nth and E = cnISo. The fourth-order Runge-Kutta 
algorithm with time step 6t and the FFT processor are 
employed here for finding the time evolution and fre- 
quency spectrum of the output photon density, from which 
the influences on the bistability and PD can be identified. 
The time interval At is chosen here to be At = T/128, 
where T is the period of the driving current. This ascer- 
tains that the noise spectrum is approximately white within 
2fwhich is of interest in the simulation. The computations 
have been detailed in [20] with an error of less than ap- 
proximately 1 dB. 

For the sake of comparison, the typical values of pa- 
rameters are chosen as r,, = 6 ps, r ,  = 3 ns, p = 5 x 

and 6 = 0.692 as identical to [lo] and [12]. The 
normalized dc bias and ac modulated currents are defined 
as Ib = Id , / I th  and m = I a c / l t h ;  m is also denoted as the 
modulation index. The modulation frequency f and the 
modulation index m are varied during the simulation with 
Ib at a fixed value. The relaxation oscillation frequencyf,, 
approximately equal to 1.5 12 GHz in the observed case, 
can serve as a guidepost during searching for the various 
dynamical behaviors within the interesting frequency 
range. 

The transitions are generally able to be identified from 
the quantitative change of the time evolution, phase por- 
trait ( P ,  N) and its Fourier spectra. Besides that, transi- 
tions located in the periodically forced systems, as in the 
observed case, can also be identified from the stroboscop- 
ically sampled data (P(1) ,  N ( 1 ) )  at t = 217r/w, where 1 is 
an integer. For instance, a limited cycle in the phase space 
is only equivalent to a fixed point. The transitions of a 
limit cycle can, therefore, be inferred from the variations 
of the corresponding fixed point. This reduces the solu- 
tions to a two-dimensional set. From the set an iterative 
map PE can be defined as P E ( P ( f ) ,  N ( 1 ) )  = (P(1 + I ) ,  
N(l + 1)). A fixed point thus has the property of P E ( P ( l ) ,  
N ( 1 ) )  = ( P ( l ) ,  N ( 1 ) )  and is denoted as (P*(l) ,  N * ( l ) ) .  In 
computations, both the stable and unstable fixed points 
can be found by iterating from an initial guess X o  using 
the relation of 

where H ( X )  = X - P E ( X ) ,  DH is the Jacobian of func- 
tion H ,  and the superscript i indicates the iteration count 
[23]. Not only the onset point of instability but also the 
type of local bifurcation can be determined from the ei- 
genvalue of the Jacobian DPE(X*),  i.e., Floquet multi- 
pliers. The results are detailed in the following sections. 
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111. NUMERICAL RESULTS 

A .  Thresholds of Period Doubling 

The possible transitions related to the less damping case 
with E = 0 (q G 0.0469) and without Langevin noise in 
(8) and (9) are first examined for the sake of realizing the 
rich variety of dynamical behavior primarily originating 
from nonlinear instability. The dynamical behaviors of 
output photon density include multiple and submultiple 
spiking, a period-doubling route to chaos, and hysteresis, 
whereas the self-pulsation phenomenon is not observed. 
The transition boundaries in terms of driving frequency 
and modulation index are depicted in Fig. 1 for a typical 
case with a dc bias current of Ih = 1.5. A global view of 
possible transitions in the rate equations (8), (9) is pro- 
vided here through means of this figure. The relevant fea- 
tures of the transitions are detailed in [24]. The overall 
output photon density becomes spiky if the ac current is 
increased to reach the minimum of the current swing ap- 
proach to the threshold current level, i.e., m = 0.5. The 
output contains multiple spikes for f < f r  and submultiple 
spikes for f > fr. The threshold PD, of period doubling 
with frequency variation from fr to 2f, actually possesses 
the minimum required ac current and is conjectured to be 
the most expected transition in the real experiment. The 
threshold HS, / 2  of hysteresis, meanwhile, overlaps with 
the PD,.  Two types of period doubling can be therefore 
observed. Both of them contain half-subharmonic com- 
ponents in the frequency spectrum and cannot be solely 
differentiated from the spectra. One is the normal type of 
period doubling and is unrelated to the hysteresis. The 
height of the two adjacent spikes of the output waveform 
is shown in Fig. 2(a) to be different, and is denoted as 
type I. It can be found with parameters away from the 
overlap section of curve H C , I ~ .  The other is shown in 
Fig. 2(b) to reveal only one spike within two external pe- 
riods, and is denoted as type 11. Type-I1 period doubling 
often occurs accompanied by hysteresis and can be found 
in Fig. 1 with the parameters on the overlapped section 
of curves PDI and H S , l 2 .  The variations of PD, under 
different combinations of E and noise are focused on in 
the following. 

The variations of the U-shaped threshold at the heavier 
damped case with E = 0.01 (q = 0.0908) are next ex- 
amined as used in InGaAsP laser diode, and with a noise 
effect. The U-shaped threshold of PD is detailed in Fig. 
3 to be lifted upward for E = 0.01. A stronger ac current 
is indicated by this occurrence to be required for attaining 
the period doubling. The phenomenon of hysteresis, 
meanwhile, disappears, i.e., the type I1 PD is not ob- 
served. 

The noise effect on PD is subsequently examined on the 
basis of the above results. The laser output is well known 
to actually reveal a noise bump whose peak frequency is 
centered around the relaxation oscillation frequency with- 
out ac current as shown in Fig. 4(a). The linewidth 
(HMFW) of the bump is roughly determined by Af = 
2qfr( ~ 2 7 5  MHz). The fluctuation then increases in  am- 

J 
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Modulation Frequency (GHz) 

01  

Fig. I .  Two-dimensional state diagram with modulation index and mod- 
ulation frequency as controlled variables at fixed dc bias f,, = 1 . 5 .  Curve 
HS,,, is the boundary o f  hysteresis jump o f  the mth spiking state; the section 
with broken line denotes the downward jump. Curves PD,,, and PF,,, are the 
boundaries of period doubling and period-four o f  the rnth spiking state. 
respectively. 

- 1  

Tlme (ns) 

(b) 

evolution w i t h f =  2.34 GHz and m = 0.75 .  
Fig. 2 .  (a) Time evolution with f = 1.6 GHz and m = 0.85 .  (b) Time 

plitude and its peak frequency shifts gradually towardf/2, 
e.g., the subharmonic of the modulation frequency, as the 
modulation index increases to a certain level (m  = 0.5 
and 0.75 in Fig. 4(b) and (c)). Note that the width of the 
bump has no obvious change. The laser diodes could be 
taken as a tunable amplifier with Langevin noise as a wide- 
band small ac signal. The tunability of the bump is con- 
trolled by the amplitude of an external ac current. The PD 
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Modulation Frequency (GM) 

Fig. 3 .  U-shaped state diagram with (a) t = 0.0, (b) t = 0.01, and ( c )  t 
= 0.01 and Langevin noise. 

0 1 2 3 5 

Frequency (Hz) x1o9 

Fig. 4 .  The Fourier spectra atf = 2 GHz,  I,, = 1.5 and (a) m = 0, (b) tn 
= 0.5.  and (c) m = 0.75. 

behavior is then consequently observed. The reduced 
threshold for PD with noise involved is shown in the com- 
parison of curves b and c in Fig. 3.  The most significant 
reduction occurs atf z 2fr. When the external force is set 
to two times the relaxation oscillation, we realize that the 
noise bump instantly pulled towardf/2 and enhances the 
emergence of period doubling. No obvious change in the 
threshold is found with frequency around the middle re- 
gion since the effect of pulling ceases as the subharmonic 
f / 2  is far away from the relaxation frequency. 

B. Noise Precursor 
The Floquet theory is employed here for examining the 

intensity spectrum [21]  so as to further explore the fea- 
tures of bifurcation of the ac-pumped laser diode. Equa- 
tions (8) and (9) can be rewritten for the sake of brevity 
as 

X = F ( X  m)  + (, X E  RN (10) 

where modulation index m is the observed controlled pa- 
rameter, and t is white noise 

( ( ( t ) )  = 0 (E;(t)E;(f + 7)) = K j j S ( t )  ( 1 1 )  

K;, is the noise strength. X0 is allowed to be a periodic 
solution of the noise-free system with XO(t  + T )  = XO(r). 
For small deviations vd = X - X,, ( I O )  can be linearized 
about X0 so as to obtain 

vld = PF(X0;  m)l vld + E (12)  

where Jacobian DF is the matrix of periodic functions 

(DQ = - ax, aFi I x = xo 

Equation (12 )  is linear with periodic coefficients and an 
exact solution can be obtained using the Floquet theory. 
The external noise functions as a factor in kicking the sys- 
tem away from the limit cycle. The fixed point X* can be 
first computed and then the Floquet multipliers p can be 
obtained from the eigenvalues of the Jacobin DP, ( X * ) .  
The period in the coefficients is normalized for the sake 
of convenience to have 27r period; the solution cp in (12) 
then satisfies the property of 

(14) 

The stability of the basic solution X0 can then be identified 
from the criterion with p lying inside the unit circle, i .e.,  
lpl I 1. An instability occurs with p crossing outside the 
unit circle. The period-doubling bifurcation occurs when 
a single p is crossing the unit circle at - 1 and the Hopf 
bifurcation occurs when a pair of p and p* are moving 
across a circle. Moreover, the noise precursor of the in- 
tensity spectrum has been indicated to have a closed re- 
lation with p value [21 ] .  If p = e - f '  e" = ( 1  - € ' )e i0 ,  the 
size and shape of the precursor are determined by E' and 
the noise strength K as defined in ( 1  1 ) ;  their position is, 
meanwhile, determined by the angle 0, i.e., peak high 
proportional to K / E ' ,  peak width proportional to E ' ,  and 
peak frequency shift proportional to 0. The noise spec- 
trum can therefore be characterized from the site of Flo- 
quet multiplier within the unit circle plane. 

The calculated locus of Floquet multiplier at Z, = 1.5 
is shown in Fig. 5 with a varying modulation index m 
under three different pumping frequencies off = 1.5,  2 ,  
and 3 GHz. The Floquet multiplier pairs pp* are initially 
located near by 0 f O "  forf = 1.5 GHz, near by 8 G 

90" and 270" forf = 2 GHz, and near by f 180" atf = 
3 GHz. The critical modulation index m,. defined with the 
complex pair of multiplier p merging at E'  - I are a re- 
spective m,, z 0.645, 0.725,  and 0.005 forf = 1.5,  2 ,  
and 3 GHz. Below the critical index the multiplier appears 
as a complex pair, the shape of noise bump maintains a 
fixed width same as that without modulation. Above the 
critical index the complex pair merge and split into two 
negative real numbers and one of them approaches toward 
- 1. In such a case, the spectrum becomes narrower and 
narrower as the excitation reaches closer and closer to the 
onset point of period doubling. Moreover, at f = 3 GHz 
pm is located near - 1 + E initially, and PD easily occurs. 
This is another reason why the onset point of PD shown 
in Fig. 3 is to be nearly the lowest one at f = 3 GHz. 
Note that the above transition process is referred to as 
virtual Hopf bifurcation, because the complex conjugate 
pair lies initially very close to the unit circle, a situation 
that generally occurs just before the onset of a Hopf bi- 
furcation. However, instead of exiting the unit circle, the 
multipliers move along the circle 1 p I = 1 - E ' ,  until they 

cp(t + T )  = pcp(0. 
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90’ 

270‘ 

(a) 

90’ 

270’ 

(b) 

90’ 

( C )  

Fig. 5 .  The calculated locus of Floquet multiplier scanning the modulation 
index rn with I,, = 1.5 and (a ) f  = 1.5 GHz,  (b)f = 2 GHz, and ( c ) f  = 
3 GHz. 

meet on the negative real axis. At all events, the Langevin 
noise forms a noise precursor in the spectrum and can en- 
hance the threshold of period doubling. 

IV. MEASUREMENT RESULTS 
The predicted thresholds are also compared with the ex- 

perimental results of a commercially available ridge-guide 
DFB laser. The laser diode used in the observed experi- 
ment is an InGaAsP-InP DFB ridge waveguide type with 
a wavelength at I .55 pm (STC LYC-M2-11). Its thresh- 

old current Zth at 20°C is 36.5 mA. The relaxation oscil- 
lation frequencyf, varies between 1 and 4 GHz for bias 
current Zdc between 37 and 60 mA. Obtaining the proper 
values of the coefficients in (1 )  and ( 2 )  and the parasitic 
effects are essential for the sake of comparison with the 
real experiments. In the observed case the major contri- 
butions in the parasitic parameters, below 3 GHz, come 
from the resistance R,, in series with the active region and 
the shunt capacitance C,, between the metal contact [ 181. 
The values are as follows: no = 1.0 x 1024/m3, V = 0.2 
x 5 x 250pm’, I’ = 0.3 ,  A = 3.2 x m3/s, 7/, = 

1 ps, 7 ,  = 2.27 ns, f i  = 2 x E , , /  = 6.7 x m3 
with a bias current of 39 mA. The time constant R,vC,v is 
approximately equal to 140 ps with -3 dB frequency at 
1.137 GHz. These two elements function as a low-pass 
filter for shunting a part of the RF current going into the 
active region if the excitation frequency exceeds the cor- 
ner one. These parameters have been satisfactorily con- 
firmed by verifying the second-harmonic distortions [ IS]. 
The thresholds of PD are examined in the following by 
thorough usage of these parameters and are put into com- 
parison with the experimental results. 

The first onset of PD with a bias Zdc = 39 mA near the 
threshold is thus investigated here. The corresponding re- 
laxation oscillation frequency isfr = 1.3558 GHz and the 
damping factor 7 is about equal to 0.259. The strength of 
ac current is expressed in terms of dBm for the sake of 
convenience. With the diode connected through a bias-T 
to the 5 0 4  RF signal generator, the amplitude Zac related 
to dBm can be expressed as I,, (mA) z 12.65 x 
10dBm/20 under the approximation with dynamical resistor 
of laser diode much less than 50 Q .  The measured thresh- 
old in the RF power and frequency space as a V shape 
(curve b) ,  rather than a U shape (curve a) is shown in Fig. 
6.  Parasitic effects R,, C,v should notably be taken into ac- 
count, as compared to the real experiment. The threshold 
current in real experiment should therefore be larger 
than that predicted above. The relationship between 
and Zac in (1) can be expressed as = Zac [( 1 + R,s/50)2 
+ (2~fR,C, )~ l ’”  under the assumption that the imped- 
ance of the active region is significantly less than R,s. The 
required threshold values are accordingly lifted up as il- 
lustrated in curve c of Fig. 6, which seems to be in good 
agreement with the measured value as curve b of Fig. 6. 
Only a small amount of RF power is required for gener- 
ating the PD if the driving frequency is near 2f,, whereas, 
the noise-enhanced effect dies out when the excitation fre- 
quency is too far away from two times of the relaxation 
frequency. This therefore requires stronger RF power to 
reach the thresholds. The exhibition of PD by amplitude 
scanning with a frequency at 2.2 GHz near 2fr is demon- 
strated in Fig. 7(a)-(c) and by frequency scanning with 
fixed RF power are shown in Fig. 7(d)-(f). In frequency 
scanning only Fig. 7(e) with frequency at 1.85 GHz near 
2fr reveals the PD. 

The threshold without noise and parasitic effects in (1 )  
and ( 2 )  is also calculated for the sake of comparison. The 
PD phenomenon is unfortunately not observed with ac 
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Fig. 6. Two-dimensional state diagram describing the onset of PD in the 
RF power and frequency space for I,, = 39 mA. Curve a is the calculated 
result with noise and without R,C, ;  curve b is the measured results; and 
curve c is with noise and R,C, .  

START 50.OMHZ STOP 5.OGHZ START 50.WHz STOP 4.2GHz 

5.odB/Mv 
W O ?  
1.85GHZ 

STM 50.0MHz STOP 5.OGtiz START 50.0YHz STOP 4.2GHz 

Fig. 7. The measured spectra of light output at various driving frequencies 
and RF power with (a)fi = 2.2 GHz and power = - 10.7 dBm. (b)f, = 
2.2 GHz and power = -6.55 dBm, (c ) f ,  = 2.2 GHz and power = 1.9 
dBm, (d)f, = 1.35 GHz and power = + I .9 dBm, (e)f ,  = I .85 GHz and 
power = + 1.9 dBm, and (of, = 3.0 GHz and power = + I  .9 dBm. 

signal strength up to +10 dBm in the whole frequency 
range, whereas the situation totally changes when the 
Langevin noises are taken into account. The onset is iden- 
tified here as the emergence of a half-subharmonic signal 
out of the noise level the same as in the experiment. Only 
an intrinsic noise bump shown in curve a of Fig. 8 exists 
around J.  in the output spectrum without the RF signal. 
The noise level is then increased with the peak frequency 
shifting toward a lower frequency as modulation is in- 

0 0.5 1 1.5 2 2.5 3 3.5 
Frequency (GHz) 

Fig. 8. The calculated Fourier spectra withf, = 1.5 GHz and (a) no RF 
power, (b) RF power = -2 dBm. (c) RF power = 5 dBm, and (d) RF 
power = 5 dBm but without noise perturbation atf ,  = 1.5 GHz. 

creased with frequency f between fr and 2fr. The respec- 
tive cases are shown as curves b and c of Fig. 8 with RF 
power = -2 and +5 dBm, atf = 1.5 GHz. The symptom 
of PD occurs whenever the maximum of the noise bump 
is tuned to approach the subharmonic component fi /2 by 
increasing the ac current, whereas, no subharmonic signal 
is illustrated in curve d when the noise is removed. This 
implies that the occurrence of PD can be indeed enhanced 
by the noise. The moving procedure is evidenced in Fig. 
7(a)-(c). Indeed, the virtual Hopf bifurcation is observed. 

V. CONCLUSION 
The noise effect on the period doubling of a current- 

modulated semiconductor laser was extensively investi- 
gated in this paper. The most remarkable region of period 
doubling with the U-shaped threshold was found in the 
frequency interval between f r  and 2fr. The emergence of 
the first PD was indicated to be enhanced by the presence 
of noise, especially when the excitation frequency was 
approximately two times that of the relaxation frequency. 
The PD was confirmed to have a virtual Hopf precursor. 
The predictions were satisfactorily confirmed by experi- 
ment on an InGaAsP DFB laser at 1.55 pm. It was con- 
cluded that virtual Hopf precursor for period doubling was 
understood to be the persistent property in the current in- 
jection semiconductor laser. All the relevant results in the 
observed work might provide a key of quantitative refer- 
ence for most practical applications. 
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