
1 Introduction

Improved quadratic normal
vector interpolation for
realistic shading

Yuan-Chung Lee,
Chein-Wei Jen

Department of Electronics Engineering, National
Chiao-Tung University, Hsinchu, Taiwan, ROC
E-mail: {yzlee, cwjen}@twins.ee.nctu.edu.tw

Published online: 19 July 2001
c© Springer-Verlag 2001

Interpolation for normal vectors is an im-
portant stage of Phong shading. Linear in-
terpolation cannot represent the geometry
of surfaces adequately in some situations.
Previous quadratic interpolation for normal
vectors generates visual artifacts for arch-
type curves and triangle scan conversion. To
eliminate those artifacts, we propose an im-
proved quadratic interpolation for normal
vectors with little computational overhead.
Perspective-correct version for obtaining
perspective foreshortening is also presented.

Key words: Shading – Quadratic interpola-
tion – Perspective correction

With the rapid progress in VLSI technology and
advanced hardware architecture, the processing ca-
pability applied in 3D graphics has increased quickly
in recent years. Hence, visual realism in real-time
3D rendering can be improved significantly. One
basic and useful approach that improves visual re-
alism is advanced shading technology. A variety of
shading methods have been used to shade surfaces
in conventional polygon-based rendering. Gouraud
shading (Gouraud 1971) suffers from the Mach
band effect and fails to capture detailed lighting
characteristics. Quadratic color interpolation (Lath-
rop et al. 1992) increases the continuity of inten-
sity but cannot simulate accurate highlight spots
or a multi-light environment. Moreover, in specific
situations, quadratic color interpolation may pro-
duce problematic negative color, which should be
replaced with unpleasant clamped values. Phong
shading (Phong 1975) reduces the Mach band ef-
fect greatly, because per-pixel lighting yields more
realistic illumination. However, the linear interpo-
lation scheme for normal vectors still has many
problems (see Foley et al. 1996), such as non-
realistic polygonal silhouette, perspective distortion,
orientation dependence, and unrepresentative ver-
tex normals. Numerous improved algorithms have
been proposed to solve these problems. For exam-
ple, to reduce the computational cost, Duff (1979)
combined normal interpolation and reflection equa-
tions. He also suggested a rotation-independent
method to solve the orientation problem. Bishop
and Weimer (1986) used a second-order Taylor se-
ries approximation to simplify the normalization
operations. Kuijk and Blake (1989) interpolated po-
lar angles instead of normal vectors to eliminate
the normalization operations. To solve the non-
realistic polygonal silhouette problem, geometrical-
modification methods (Catmull and Clark 1978; van
Overveld and Wyvill 1997a; Lee and Jen 2000) re-
fine planar polygon silhouettes to enhance visual
appearance.
Additionally, to solve the problem that normal vec-
tor distribution cannot be represented by linear in-
terpolation, several methods have been proposed.
Shantz and Lien (1987) presented techniques for
shading bicubic patches while rendering curve sur-
faces, but their techniques need the derivatives of
surface functions. Max (1989) ensured C1 interpo-
lation for normal vectors, but his input data must
contain either the second derivatives of surface func-
tions or the total connection lists for each vertex.

The Visual Computer (2001) 17:337–352
Digital Object Identifier (DOI) 10.1007/s003710100111

338 Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading

Nevertheless, those additional requirements are not
available in conventional polygon-based rendering
pipeline. Van Overveld and Wyvill (1997b) proposed
a quadratic normal vector interpolation algorithm
to replace the traditional linear interpolation. Their
algorithm overcomes the inappropriateness of tradi-
tional linear interpolation when a surface has a ser-
pentine profile, i.e., a surface with inflection points.
However, we found that their algorithm produces vi-
sual defects in many situations. Furthermore, their
algorithm is unsuited to standard triangle scan con-
version. In this paper, we propose an improved
quadratic normal vector interpolation to eliminate
the defects. Our algorithm constructs a bi-quadratic
normal function that is suitable for triangle scan con-
version. This improved bi-quadratic normal vector
interpolation can replace traditional linear interpo-
lation of Phong shading to produce more realistic
shading effects. We also discuss perspective distor-
tion for shading operations and propose a correction
method, especially as applies to our interpolation
algorithm.
This paper is organized as follows. Section 2 de-
scribes the algorithm proposed by van Overveld and
Wyvill (1997b) and analyzes the defects arising from
their algorithm. In Sect. 3, an improved algorithm
that can eliminate these defects is proposed and is
compared to the original in terms of visual quality
and computational cost. In Sect. 4, the perspective
correction for shading operations is considered. Fi-
nally, Sect. 5 is the summary.

2 Quadratic interpolation algorithm

In the paper on quadratic interpolation for normal
vectors by van Overveld and Wyvill (1997b), they
claimed that no surface would yield the illumination
distribution generated by traditional linearly interpo-
lated Phong shading. Their claim is correct; however,
their inference contains some flaws. We provide the
revised proof in the Appendix.
They proposed a quadratic interpolation algorithm to
replace traditional linear interpolation. Although this
algorithm still cannot match quadratic curves (to be
proven later), it can handle the serpentine profile of
some cubic curves. They use a quadratic function:

n(s) = c+as +bs2 (1)

with three boundary conditions:

n(0) = n0 (2)
n(1) = n1 (3)
 1∫

0

n(s)ds,∆


 = 0 and minimize

1∫
0

(
n̈(s)

)2
ds

(4)

where s is a parameter from 0 to 1, n0 and n1 are
normal vectors of the two end-points, ∆ is the edge
vector over which normal interpolation takes place,
n̈ denotes second-order differentiation, and (,) de-
notes an inner product.
Conditions (2) and (3) give c = n0 and a = n1 −n0 −
b. The first equation in condition (4) implies that
(b,∆) = 3(n0 +n1,∆). This model requires the sec-
ond equation in condition (4) to impose one addi-
tional constraint. Using variational calculus, the re-
sult is:

b = 3
(n0 +n1,∆)

‖∆‖2
∆. (5)

These boundary conditions complete the derivation
of the quadratic function for normal vectors. The
quadratic interpolation replaces linear interpolation
in polygon scan conversion. Initially, they apply
quadratic interpolation to the boundaries of the poly-
gon. Next, they establish different quadratic func-
tions for each scan-line segment according to the
coordinates and normal vectors of two end points.
Their approach applies to all (not necessarily con-
vex) kinds of polygons. Forward difference can be
used to reduce the interpolation cost.
This algorithm has several drawbacks, however,
which produce visual defects in many situations. We
classify these drawbacks into four types, which are
described in the Sects. 2.1–2.4.

2.1 Inappropriateness to quadratic curves
and some arch-type cubic curves

The algorithm from van Overveld and Wyvill (1997b)
sets the integration of the inner product to zero in
(4). This is appropriate to the serpentine cases of cu-
bic curves. However, for some oblique arch cases
(i.e., without inflection points) of cubic curves or
quadratic curves, the integration of the inner prod-
uct should not be zero. Their quadratic interpolation

Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading 339

1a

1b 2

Fig. 1a,b. Inappropriateness to arch-type curves using the quadratic normal vector interpolation of van Overveld and Wyvill
(1997b). a Linear interpolation matches with the profile of the curve, and a highlight effect does not appear in the middle of
the edge. b Quadratic interpolation does not match with the profile of the curve, and an unwanted highlight effect appears in
the middle of the edge

Fig. 2. Regions of normal vectors that produce excess using the algorithm of van Overveld and Wyvill (1997b). θ0 and θ1 are
the corresponding angles between the perpendicular of the edge and n0, n1

produces defects in these situations, as shown in the
following example.
Consider an edge with two normal vectors at the two
end points as shown in Fig. 1. The normal vectors
are sampled from the oblique arch-type curve and are
coplanar with the curve. L is the incident light vec-
tor. When their quadratic interpolation is applied, the
normal vectors in the middle of the edge will exceed
the convex combinations of two normal vectors at
the two end points, and may produce an unwanted
highlight effect. Linear interpolation is more appro-
priate to this situation. However, according to (5), the
second-order coefficient b differs from zero, except
for the case of mirror-symmetric normal vectors in
the two end points.
Let us examine the kinds of normal vector configura-
tions that result in the excess. For simplification, we
only check the interpolated normal vector at the cen-
ter of the edge. θ0 is the angle between n0 and the per-
pendicular plane of the edge. θ1 is the angle between
n1 and the perpendicular plane of the edge. Figure 2
shows the results of the examination. There are many

kinds of normal vector configurations that generate
an unwanted highlight effect. Moreover, even in the
range without the excess, the quadratic interpolation
of their algorithm sometimes results in a bent normal
vector profile, which does not appear in arch-type
curves.
As we observe for general approximation, linear
interpolation is appropriate to arch-type curves,
while their quadratic interpolation is appropriate to
serpentine-type curves. Although these interpola-
tion methods may not perfectly produce ideal normal
vectors of the underlying curves, they can simulate
the highlight effect plausibly.

2.2 Defects when normal vectors and the
edge vector are not coplanar

Van Overveld and Wyvill assumed the interpolated
curves to be sufficiently planar, so that the normal
vectors are nearly coplanar with the edge vector
along the interpolation direction. However, this as-

340 Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading

3a

3b

4a

4b
Fig. 3a,b. An example showing the defect when normal vectors and the edge vector are not coplanar. The quadratic interpola-
tion takes place a along the x direction and b along the diagonal direction. The interpolated normal vectors at the center of the
polygon are different in a and b
Fig. 4a,b. Subdivision variance of the original quadratic interpolation. a An edge representing a serpentine curve is subdivided
into two segments at the point S near the end point P1. The original quadratic interpolation causes inconsistency with the curve
after subdivision. b Triangle scan conversion involves subdivision

sumption does not usually hold. Consider the serpen-
tine surface approximated by quadrilateral polygon
as shown in Fig. 3. n0 is the same as n2, and n1 is
the same as n3. The normal vectors of the serpen-
tine surface have y coordinate of zero. They only
change in the x direction. If the normal vectors are
interpolated along the x direction, the results will
match with the surface profile. However, polygons
are probably decomposed into triangles before the
rendering process, especially in most hardware ren-
derers. Therefore, normal vectors along the diagonal
direction should first be interpolated to establish the
boundary information. The interpolated normal vec-
tors along the diagonal direction do not have y coor-
dinate of zero because the coefficient vector b in (5)
now parallels the diagonal vector. Hence, defects oc-
cur when normal vectors and the edge vector are not
coplanar. In Fig. 3a and b, the normal vectors at the

center of the polygon are different when interpola-
tion takes place along different directions. Notably,
this defect is not similar to the rotation-dependent
problem indicated by Duff (1979). It occurs even
within a triangle, while linear interpolation does not
have this defect.

2.3 Subdivision variance

Figure 4a illustrates a serpentine curve approximated
by an edge P0 P1 and two normal vectors. Each sub-
divided segment presents a new curve, if the normal
vector at the point S near the end-point P1 is de-
termined by quadratic interpolation and the edge is
subdivided into two segments at S. After applying
quadratic interpolation to these two segments, the re-
sults differ from the original curve, especially in the
shorter segment SP1. The normal vectors in the mid-

Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading 341

5a 5b

Fig. 5. A shading example showing the defects arising from subdivision variance and non-coplanar error. The red lines are the
normal vectors at the vertices. a ideal surface; b original quadratic interpolation

dle of the shorter segment are bent incorrectly toward
the opposite direction.
This kind of subdivision always occurs in triangle
scan conversion. In Fig. 4b, a quadrilateral polygon
is decomposed into two triangles, and each triangle is
scan-converted for rendering. The algorithm first de-
termines the boundary normal vectors of the triangle,
and then performs interpolation along each scan line.
The interpolated normal vectors differ from the nor-
mal vectors in quadrilateral scan conversion because
of subdivision variance. Figure 5 shows the visual
defects after shading. The quadrilateral polygon with
the same profile as Fig. 3 is illuminated by a light in-
cident from the left side.

2.4 2-level setup

Definitions:
1-level setup: Scan-conversion process only requires

a single setup stage to establish inter-
polation coefficients for all polygon
boundaries and scan-line segments.
All current triangle-based graphics
systems belong to this setup.

2-level setup: Scan-conversion process requires the
interpolation coefficients for poly-
gon boundaries to be established ini-
tially. Subsequently, while walking
through boundaries, setup operations

for each scan-line segment (span) are
performed. It is usually used in multi-
side polygon rendering, such as in
Akeley and Jermoluk (1988).

2-level setup systems have more computational con-
sumption than 1-level setup systems. Furthermore,
2-level setup systems require higher precision in-
terpolators to prevent inconsistencies between adja-
cent scan-line segments. Figure 6 shows the preci-
sion problem illustrated by Phong shading. 1-level
and 2-level setup schemes result in Fig. 6a and b,
respectively. Both schemes utilize 11-bit fixed-point
interpolators for each dimension of the normal vec-
tor. The 2-level setup scheme causes shading breaks
between scan-line segments until the precision is up-
graded to 15 bits.
The quadratic interpolation of van Overveld and
Wyvill belongs to the 2-level setup scheme. The co-
efficients of the quadratic function are recomputed
for each scan-line segment. The setup overhead and
precision requirement are not efficient.

3 Improved quadratic normal vector
interpolation

After analyzing the drawbacks of the quadratic in-
terpolation of van Overveld and Wyvill, we come up
with an improved interpolation scheme to eliminate

342 Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading

6a 6b

Fig. 6a,b. Precision simulation with 11-bit interpolators for 1-level and 2-level setup. a 1-level setup scheme generates ideal
result. b 2-level setup scheme results in breaks

these drawbacks. First, an adaptive normal vector in-
terpolation is introduced to cure inappropriateness to
arch-type curves in their algorithm. Next, the inter-
polation is restricted to the plane defined by two nor-
mal vectors of two end points. Finally, bi-quadratic
normal vector interpolation, combined with the pre-
vious techniques, is proposed to achieve better qual-
ity and more efficient computation.

3.1 Adaptive normal vector interpolation

In Sect. 2.1, we indicate that linear interpolation is
generally appropriate to arch-type curves while their
quadratic interpolation is appropriate to serpentine-
type curves. Accordingly, zigzag detection is pro-
posed to determine whether the curve is serpentine or
not.

((n0,∆) ≥ 0)⊕ ((n1,−∆) ≥ 0) (6)

where n0 and n1 are normal vectors of the two end
points, ∆ is the edge vector, ⊕ denotes logical exclu-
sive OR, and (,) denotes the inner product.
Each term detects whether the normal vector points
inward or outward from the perpendicular plane of
the edge. If the two terms have opposing signs, the
original curve must be serpentine-type and has an
inflection point. The adaptive normal vector interpo-
lation is expressed as:

if
{[((n0,∆) ≥ 0)&&(n1,−∆) ≥ 0)]‖[((n0,∆) ≤ 0)

&&(n1,−∆) ≤ 0)]}
apply linear interpolation for normal vectors

else
apply quadratic interpolation for normal vectors

Although the zigzag detection can determine the
type of curves up to the third degree, it may fail in
quartic curves or higher degrees with even inflection
points. However, curves with degrees higher than cu-
bic are seldom used or approximated by a single
polygon. Thus, the zigzag detection remains an effi-
cient method for this adaptive selection.

3.2 Restricting the normal vector
interpolation to be coplanar

To eliminate the defect described in Sect. 2.2, the
normal vector interpolation should be independent of
the direction where interpolation takes place. Let P
be the plane defined by normal vectors of two end
points. Γ is the projection vector of the edge vector
∆ on the plane P. Substituting Γ for ∆ in the bound-
ary condition of (4), the following is obtained:
 1∫

0

n(s)ds,Γ


 = 0 (7)

Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading 343

With the same derivation, the coefficient becomes

b = 3
(n0 +n1,Γ)

‖Γ ‖2
Γ . (8)

All coefficients a, b, and c are in the plane P. Hence,
the interpolated normal vectors are all restricted in
this plane. This substitution makes the results in-
dependent of the interpolation directions in scan
conversion.
If two normal vectors point toward the same direc-
tion, the plane P will not be determined. The triangle
plane normal vector NT can be further used in this
situation. The plane P is now defined by NT and
the normal vector on one of the end points. Another
issue is when to use the triangle plane normal vec-
tor, NT, instead of the vertex normals. This should
be the case when the edge vector is nearly perpen-
dicular to the plane defined by two end point nor-
mal vectors. Moreover, if NT is also the same as
the normal vectors of the two end points, the orig-
inal curve must be a straight line. This condition
is already detected by the zigzag detection. Zero-
order or linear interpolation is applicable to this
condition.

3.3 Bi-quadratic normal vector interpolation

Although the previous two techniques improve
the original quadratic interpolation, they still do
not apply to standard triangle scan conversion.
Hence, bi-quadratic normal vector interpolation
is employed to eliminate the defects described
in Sects. 2.3 and 2.4 occurring in triangle scan
conversion.
The steps of bi-quadratic normal vector interpolation
are as follows.

1. Determine the normal vector at the three mid-
points of the triangle edges. These three normal
vectors are obtained from the improved quadratic
normal vector interpolation with the techniques
described in Sects. 3.1 and 3.2.

2. Define a bi-quadratic function (9) that evaluates
the specified normal vectors at the six sample
points. The six sample points are three vertices
and three midpoints of the triangle edges. The
derivation of coefficients will be described later.

n(x, y) = ax2 +bxy+ cy2 +dx + ey + f (9)

3. Derive the coefficients for forward difference
along the x axis and the triangle edges.

Fig. 7. A triangle with six sample points and their normal
vectors to compose a bi-quadratic function

4. Interpolate normal vectors for each pixel in the
triangle using forward difference.

5. Normalize each normal vector and perform light-
ing operations.

Notably, steps 1 to 3 are carried out in the setup stage
for one triangle, and steps 4 and 5 are per-pixel oper-
ations.
The bi-quadratic function has six vector coefficients
uniquely determined by six sample points. For sim-
plification, one vertex is assigned to the origin of the
bi-quadratic function. Then, all screen coordinates of
other sample points are transformed according to the
assignment. In (9), x and y are screen-coordinate pa-
rameters related to the new origin. The illustration is
shown in Fig. 7.
To evaluate the coefficients, the share terms expres-
sion of quadratic color interpolation (Seiler 1998)
are adopted. However, to reduce the number of di-
vision calculations, they are modified slightly. The
share terms are as follows:

w1 = x1y2

w2 = x2y1

w3 = w1 −w2

T = n0 +n1 −2n5

U = n0 +n2 −2n4

V = n0 +n3 −n4 −n5

G = 2n5 −2n0 − T
H = 2n4 −2n0 −U

Using these share terms for simplification, the coeffi-
cients can be solved as

344 Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading




a = 2(T y2
2+U y2

1−2Vy1y2)

w2
3

b = 4[V(w1+w2)−Ux1y1−Tx2 y2]
w2

3

c = 2(Ux2
1+Tx2

2−2Vx1x2)

w2
3

d = G y2−Hy1
w3

e = Hx1−Gx2
w3

f = n0

The bi-quadratic function is represented by screen
coordinates x and y, instead of other coordinate sys-
tems, such as barycentric coordinates. The reason is
that forward difference for this representation maps
directly to scanline-based conversion on the raster
display. Scanline-based hardware digital differential
analyzer (DDA) can be applied here for scan conver-
sion.
If the results of the zigzag detection in three edges
are all arch-type, the bi-quadratic interpolation will
be simplified to bilinear interpolation. In this situa-
tion, the operations of steps 1 to 4 can be reduced. If
only one edge is arch-type, the normal vector at the
midpoint of the edge will be generated as the average
of the two end point normal vectors in step 1. Sub-
stituting the six sample points into the bi-quadratic
function, the function values are linear along the
edge but quadratic along other directions. Hence, C0

continuity in normal vectors is maintained between
triangles. The situation is analogical when two edges
are arch type and one edge is serpentine type.
The drawback in (9) is that it does not include depth
information about the triangle. Thus, it cannot sim-
ulate perspective foreshortening. This drawback oc-
curs likewise in traditional Phong shading and the
original quadratic interpolation, because interpola-
tion is also performed in the screen coordinates. In
Sect. 4, perspective correction is used to eliminate
this drawback.

3.4 Visual results and computation
comparison

Visual quality comparison

All the above algorithms have been implemented
within the Mesa 3D graphics library (Paul 2000),
a famous OpenGL-like 3D graphics library. We add
a new shading model into Mesa to increase its ca-
pability for Phong shading and bi-quadratic nor-

a

b

c

Fig. 8a–c. A surface with a zigzag profile shaded by dif-
ferent interpolation algorithms for normal vectors. a Tra-
ditional linear interpolation. b Original quadratic interpo-
lation. c Bi-quadratic interpolation

mal vector interpolation. Figure 8 shows the visual
comparison between the original algorithms and bi-
quadratic algorithm. The tested surface has a zigzag
profile, and its vertex normals are computed by av-
eraging the plane normals. The light is incident from

Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading 345

a

c

b

Fig. 9a–c. A bulb model shaded by different interpolation algorithms for normal vectors. a Traditional linear interpolation.
b Original quadratic interpolation. c Bi-quadratic interpolation

the left side of the surface at an infinite distance.
Gouraud shading and Phong shading produce the
same result, namely that the whole surface is painted
incorrectly with a single color. The original quadratic
interpolation for normal vectors also produces incor-
rect illumination in triangle scan conversion, while

bi-quadratic normal vector interpolation matches the
ideal result.
Figure 9 is another example showing the visual
improvement of bi-quadratic normal vector inter-
polation. In triangle scan conversion, the original
quadratic interpolation is even worse than Phong

346 Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading

a

c

b

Fig. 10a–c. Another example shaded by different interpolation algorithms for normal vectors. a Traditional linear interpola-
tion. b Original quadratic interpolation. c Bi-quadratic interpolation

shading. Bi-quadratic normal vector interpolation
outperforms Phong shading in the base part of the
bulb.
Figure 10 shows a more complex scene with dif-
ferent interpolation algorithms. The improvement is
clearly evident for the roofing tiles, the waves, and
the flag.
Although dense tessellation for the original curve
surface may reduce the difference between these
algorithms, this approach requires extra storage
and computational overhead for additional poly-
gons. By applying our algorithm, the number of
necessary polygons can be reduced while keep-
ing identical visual quality. Another point to no-

tice is that the silhouettes of polygons are still not
refined. Geometrical-modification methods men-
tioned in the introduction can be used to refine the
silhouettes.

Computation comparison

First, we compare the setup cost between the origi-
nal quadratic interpolation and bi-quadratic interpo-
lation. Then, we estimate the ratio of computational
overhead in bi-quadratic interpolation to the whole
shading operations, including per-pixel normaliza-
tion and illumination.

Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading 347

The original quadratic interpolation needs to perform
setup operations not only for three edges but also for
each scan line. The number of scan-line segments
in a triangle is assumed to be Y . The total setup
cost for the original quadratic interpolation consists
of (48 + 16 × Y) multiplications, (48 + 16 × Y) ad-
ditions, and (3+Y) divisions. In bi-quadratic inter-
polation, the total setup cost comes from steps 1–3.
Step 1 requires 111 multiplications, 81 additions, 3
divisions, and 3 reciprocal square roots. Steps 2 and
3 require 75 multiplications, 78 additions, and 3 di-
visions. Thus, the total setup cost for bi-quadratic
interpolation consists of 186 multiplications, 158 ad-
ditions, 6 divisions, and 3 reciprocal square roots.
In the current hardware architecture, the ratio of
execution latency among floating-point multipli-
cation, addition, division, and reciprocal square
root is about 1 : 1 : 3 : 3. If the number of scan-
line segments exceeds 7, our approach requires
less computational cost than the original quadratic
interpolation.
The overhead due to our approach is relatively lit-
tle in comparison with other shading operations,
such as per-pixel normalization and illumination.
For example, per-pixel cost for normalization and
illumination of a single light source at an infinite
distance consists of 18 multiplications, 12 addi-
tions, 1 reciprocal square root, and 1 exponential.
When the average pixel number in a triangle is 50,
the overhead of our approach is only about 26.7%
with a consideration of forward difference. If the
pixel number is higher or multiple light sources
are present, the ratio will drop quickly. Table 1
shows the ratio in detail. It is assumed that zigzag
detection does not reduce the number of opera-
tions, so all the triangles need to be applied to
the entire operations of bi-quadratic interpolation.
Furthermore, in considering other rendering ef-
fects, such as texture mapping or anti-aliasing, the
computational overhead of our approach is nearly
negligible.

Number of lights
1 2 4 6 8

Average number
of pixels per triangle

25 45.7% 27.9% 15.6% 10.9% 8.3%
50 26.7% 16.3% 9.1% 6.4% 4.9%

100 17.2% 10.5% 5.9% 4.1% 3.1%

Table 1. The ratio of overhead in bi-
quadratic interpolation to other shading
operations

4 Perspective correction for shading

Since perspective projection does not preserve equi-
spaced points along a line, any interpolation per-
formed in screen coordinates must be perspective
corrected. Otherwise, the foreshortening effect does
not appear. The most visible artifacts occur in texture
mapping, and similar errors also occur in shading.
The errors in shading are usually less noticeable in
still images. However, in animation, the errors may
produce obvious color shifts, especially when the tri-
angle is clipped or rotated.
Rational linear interpolation (Heckbert and More-
ton 1991) and hyperbolic interpolation (Blinn 1992)
have solved perspective foreshortening for linear in-
terpolation across a triangle. That is, define (x, y, z)
as a point in eye coordinates, (x̂, ŷ, ẑ, ŵ) as the point
in homogeneous coordinates after the perspective
projection, and (x̃, ỹ, z̃) as the point in screen coordi-
nates after the w division. The interpolation equation
between two end points is:

u =
u0
ŵ0

+β
(

u1
ŵ1

− u0
ŵ0

)
1
ŵ0

+β
(

1
ŵ1

− 1
ŵ0

) (10)

where β is the interpolation parameter from 0 to 1
in screen coordinates, and u implies any parameter
that is linear in eye coordinates, such as texture pa-
rameters or positions. Therefore, (10) means linear
interpolating u/ŵ and 1/ŵ in screen coordinates and
dividing them to get the correct value.

4.1 Perspective correction for bi-quadratic
normal vector interpolation

Equation (10) cannot be applied directly to quadratic
interpolation. Thus, we extend the derivation of hy-
perbolic interpolation to construct new perspective-
correct equations for bi-quadratic interpolation in tri-
angle scan conversion. Let (x0, y0, z0), (x1, y1, z1),

348 Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading

and (x2, y2, z2) be the three vertices of a triangle in
eye coordinates. All points in the triangle are ex-
pressed as




x = x0 +α1(x1 − x0)+α2(x2 − x0)

y = y0 +α1(y1 − y0)+α2(y2 − y0),

z = z0 +α1(z1 − z0)+α2(z2 − z0)

0 ≤ α1, α2 ≤ 1, and α1 +α2 ≤ 1

Since projection preserves planes, the points in ho-
mogeneous coordinates have the same relationship,
as shown in the following:




x̂ = x̂0 +α1(x̂1 − x̂0)+α2(x̂2 − x̂0)

ŷ = ŷ0 +α1(ŷ1 − ŷ0)+α2(ŷ2 − ŷ0)

ẑ = ẑ0 +α1(ẑ1 − ẑ0)+α2(ẑ2 − ẑ0)

ŵ = ŵ0 +α1(ŵ1 − ŵ0)+α2(ŵ2 − ŵ0)

In screen coordinates, the step sizes are not the same
after the w division. Thus, other interpolation param-
eters, β1 and β2, are imposed.




x̃ = x̃0 +β1(x̃1 − x̃0)+β2(x̃2 − x̃0)

ỹ = ỹ0 +β1(ỹ1 − ỹ0)+β2(ỹ2 − ỹ0),

z̃ = z̃0 +β1(z̃1 − z̃0)+β2(z̃2 − z̃0)

0 ≤ β1, β2 ≤ 1 and β1 +β2 ≤ 1

Consider the equations for the x coordinates. Since

x̃0 = x̂0

ŵ0
, x̃1 = x̂1

ŵ1
, x̃2 = x̂2

ŵ2
,

x̃ = x̂

ŵ

= x̃0ŵ0 +α1(x̃1ŵ1 − x̃0ŵ0)+α2(x̃2ŵ2 − x̃0ŵ0)

ŵ0 +α1(ŵ1 − ŵ0)+α2(ŵ2 − ŵ0)

= x̃0 + α1ŵ1(x̃1 − x̃0)

ŵ0 +α1(ŵ1 − ŵ0)+α2(ŵ2 − ŵ0)

+ α2ŵ2(x̃2 − x̃0)

ŵ0 +α1(ŵ1 − ŵ0)+α2(ŵ2 − ŵ0)

The relations between α1,α2 and β1,β2 are

{
β1 = α1ŵ1

ŵ0+α1(ŵ1−ŵ0)+α2(ŵ2−ŵ0)

β2 = α2ŵ2
ŵ0+α1(ŵ1−ŵ0)+α2(ŵ2−ŵ0)

which are also identical in y and z coordinates.

The relations can be converted to


α1 = β1
1

ŵ1
1

ŵ0
+β1

(
1

ŵ1
− 1

ŵ0

)
+β2

(
1

ŵ2
− 1

ŵ0

)

α2 = β2
1

ŵ2
1

ŵ0
+β1

(
1

ŵ1
− 1

ŵ0

)
+β2

(
1

ŵ2
− 1

ŵ0

)
(11)

In the raster display, the interpolation in screen coor-
dinates is written as{

x̃ = x̃0 +µx

ỹ = ỹ0 +µy

where µx and µy are integer numbers.
Representing µx and µy with β1 and β2, we obtain{
µx = β1(x̃1 − x̃0)+β2(x̃2 − x̃0)

µy = β1(ỹ1 − ỹ0)+β2(ỹ2 − ỹ0)

Or, converting the above equations, we obtain

c = (x̃1 − x̃0)(ỹ2 − ỹ0)− (x̃2 − x̃0)(ỹ1 − ỹ0)


β1 = µx (ỹ2−ỹ0)−µy(x̃2−x̃0)

c

β2 = µy(x̃1−x̃0)−µx (ỹ1−ỹ0)

c

Substituting β1 and β2 into (11), we obtain


α1 =
1
c

(ỹ2−ỹ0)

ŵ1
µx+ 1

c
(x̃0−x̃2)

ŵ1
µy

1
ŵ0

+µx
d(1

ŵ)
dx +µy

d(1
ŵ)

dy

α2 =
1
c

(ỹ0−ỹ1)

ŵ2
µx+ 1

c
(x̃1−x̃0)

ŵ2
µy

1
ŵ0

+µx
d(1

ŵ)
dx +µy

d(1
ŵ)

dy

(12)

where

d
(

1
ŵ

)
dx

=
(

1
ŵ1

− 1
ŵ0

)
(ỹ2 − ỹ0)−

(
1

ŵ2
− 1

ŵ0

)
(ỹ1 − ỹ0)

c

and

d
(

1
ŵ

)
dy

=
(

1
ŵ2

− 1
ŵ0

)
(x̃1 − x̃0)−

(
1

ŵ1
− 1

ŵ0

)
(x̃2 − x̃0)

c
.

The numerators and denominators of α1 and α2 are
linear functions in screen coordinates. In addition,

Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading 349

these denominators are equal to the denominators of
perspective-correct equations for linear interpolation
in triangle scan conversion. The computational over-
head is much reduced because of calculation sharing.
The bi-quadratic function should thus change to the
expression involving α1 and α2, as shown in (13).

n(α1, α2) = aα2
1 +bα1α2 + cα2

2 +dα1 + eα2 + f .

(13)

Therefore, the coefficients become


a = 2n1 +2n0 −4n5

b = 4n3 +4n0 −4n4 −4n5

c = 2n2 +2n0 −4n4

d = 4n5 −n1 −3n0

e = 4n4 −n2 −3n0

f = n0.

Finally, the perspective correction for bi-quadratic
normal vector interpolation can be achieved via (12)
and (13) in triangle scan conversion.

4.2 Perspective correction for light vector
and view vector

The illumination model utilizes the cosine of the
angle between the normal vector and light vec-
tor for diffuse reflection, as well as the cosine of
the angle between the normal vector and halfway
vector for specular reflection. The halfway vector
is the bisector of the light vector and view vec-
tor. For local light sources, the light vectors should
be linearly interpolated across the triangle. Simi-
larly, for a local viewpoint, the view vectors should
also be linearly interpolated across the triangle.
When the view projection is perspective, all light
and view vectors need to be perspective corrected
with (10). The division in (10) is usually approx-
imated by a reciprocal and a multiplication. How-
ever, if there are multiple local light sources, it is
better to interpolate the eye coordinates of pixel
positions with perspective correction, instead of in-
dividual light vectors and view vectors. Their correct
vectors are then produced by subtracting the posi-
tions of light sources or the viewpoint. This will
save several per-pixel multiplications in the division
operations.
Figure 11 is an example showing the improve-
ment with perspective correction. The rectangle,

a

b

Fig. 11a,b. The improvement of perspective correct inter-
polation. a Original version. b Perspective correct version

which approximates a portion of a cylinder sur-
face, begins near the viewpoint and extends to the
far end. The shading effect generates a light band
on the rectangle. Notably, the light band without
perspective correction bends in the center, while
the one with perspective correction is perfectly
straight.

5 Conclusion

We have presented an improved quadratic normal
vector interpolation. Our algorithm eliminates the
shading artifacts in traditional linear interpolation
and original quadratic interpolation. The most sig-
nificant benefit is to avoid dense tessellation of
curve surfaces, which requires large storage capac-
ity and mass computation. The improved quadratic
interpolation requires little computation overhead.
At the beginning of interpolation operations, the
zigzag detection in the algorithm can decide dy-
namically whether to apply linear or quadratic in-
terpolation. Moreover, when the triangle should be
shaded by quadratic interpolation for normal vec-
tors, the improved quadratic interpolation has less

350 Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading

computation complexity than the original quadratic
interpolation for eight or more scan-line segments.
In addition, we have presented a perspective cor-
rection method for our bi-quadratic interpolation.
With our algorithm, the shading effect can be more
realistic.

Acknowledgements. The authors would like to acknowledge the valu-
able suggestions from Wen-Chang Yeh and Kun-Bin Lee as well as the
reviewers. This work was supported by the National Science Council,
Taiwan, R.O.C., under Grant NSC89-2215-E009-052.

Appendix

We use the same assumption and notation herein as
van Overveld and Wyvill (1997b) did. In their pa-
per, they claimed that except for the case of mirror-
symmetric normal vectors at the two opposite end
points of an edge, no curve passing through the
end points is perpendicular to the normals and has
linearly changing tangents. Although their claim is
correct, their inference contains some flaws. First,
they proved that linearly interpolated tangents could
not match a smoothly varying curve, except for the
mirror-symmetric case. Then, they immediately con-
cluded that no surface would yield the normal vec-
tor distribution used by Phong shading, except for
the mirror-symmetric case. However, it is quite obvi-
ous that all quadratic curves have linear tangents, if
the tangents at the end points are calculated directly
from the curves. The inconsistency of Phong shading
is simply because the normal vectors at the vertices
are always forced to unit length.
We correct their inference in the following. First,
we verify that linearly interpolated tangent vectors
are appropriate for all quadratic curves, not only
those that are mirror-symmetric. Then, we prove
that linearly interpolated normal vectors are suited
only to mirror-symmetric cases because the nor-
mal vector length at the vertices is set to a unit
length.
Interpolation is assumed herein to take place in 2D,
as van Overveld and Wyvill did in their paper, so
that a normal vector determines the direction of
a tangent vector uniquely. To facilitate the anal-
ysis, tangent vector interpolation occurs over the
edge from (0, 0) to (1, 0). However, they used an
explicit curve function in their inference. The first-
order derivative of the function is a tangent slope,
instead of a tangent vector. The inference is hence
unable to prove the mistake of linear interpolation.

We use parametric representation here to correct
their inference.
The tangent vectors are denoted as φ(t). The curve
with a smoothly varying profile is represented by

Φ(t) =
t∫

ξ=0

φ(ξ)dξ.

The tangent vectors at the two end points are given
as φ0 and φ1 by first-order differentiation. For linear
interpolation, the tangent vectors along the curve are

φ(t) = φ0 + t(φ1 −φ0).

Since the curve passes through two end points (0, 0)
and (1, 0) with linearly interpolated tangent vectors,
we obtain

Φ(1)−Φ(0) = (1, 0) =
1∫

ξ=0

[φ0 + ξ(φ1 −φ0)]dξ.

After evaluating the integral, the results become

Φ(1)−Φ(0) = (1, 0) = edge vector = 1

2
(φ0 +φ1).

Obviously, the above condition is satisfied by all
quadratic curves. The fact that van Overveld and
Wyvill (1997b) used tangent slope in their inference
already restricts the x coordinate of the tangent vec-
tors to 1. As a result, they only noticed the mirror-
symmetric cases.
Next, we analyze in which condition the linearly
interpolated normal vectors will match a quadratic
curve.
The two normal vectors are perpendicular to the tan-
gent vectors at the two end points. The correspond-
ing inner products of the two vector pairs are zero.

(n0,φ0) = 0 and (n1,φ1) = 0.

Since the linearly interpolated normal vectors match
the curve, we obtain

((1− t)n0 + tn1, (1− t)φ0 + tφ1) = 0, for all t.

After rearrangement,

(1− t)2(n0,φ0)+ t(1− t)(n0,φ1)+ t(1− t)(n1,φ0)

+ t2(n1,φ1) = t(1− t)[(n0,φ1)+ (n1,φ0)] = 0.

Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading 351

Thus, the linearly interpolated normal vectors match
a quadratic curve, if and only if (n0,φ1)+ (n1,φ0)
= 0.
Let the angle between φ0 and φ1 be θ. Therefore, the
above condition can be rewritten as

‖n0‖‖φ1‖ cos
(
θ+π

2

)
+‖n1‖‖φ0‖ cos

(
θ−π

2

)
=0

or

‖n0‖‖φ1‖ cos
(
θ−π

2

)
+‖n1‖‖φ0‖ cos

(
θ+π

2

)
=0

If ‖n0‖ = ‖n1‖ = 1, the only solution is ‖φ0‖ =
‖φ1‖, which implies mirror-symmetric cases for
quadratic curves. Conversely, provided that we can
set ‖n0‖ = ‖φ0‖ and ‖n1‖ = ‖φ1‖, the linearly
interpolated normal vectors will correctly match
a quadratic curve in all situations. However, the ex-
act length of the tangent vector is not easily available
in the shading stage. Furthermore, the vertex nor-
mal vectors in 3D meshes are always generated by
the weighted average of neighboring face normals. It
can be said that linearly interpolated normal vectors
correspond to an existing surface only in mirror-
symmetric cases. Fortunately, the highlight effect in
Phong shading is very similar to the ideal effect in
quadratic surfaces.

References
1. Akeley K, Jermoluk T (1988) High performance polygon

rendering. Comput Graph 22(4):239–246
2. Bishop G, Weimer DM (1986) Fast Phong shading. Comput

Graph 20(4):103–106
3. Blinn J (1992) Jim Blinn’s corner: hyperbolic interpolation.

IEEE Comput Graph Appl 12(4):89–95
4. Catmull E, Clark J (1978) Recursively generated B-spline

surfaces on arbitrary topological meshes. Comput Aided
Des 10(6):350–355

5. Duff T (1979) Smoothly shaded renderings of polyhedral
objects on raster displays. Comput Graph 13(2):270–275

6. Foley J, van Dam A, Feiner S, Hugues J (1996) Computer
graphics principles and practice second edition in C. Addi-
son Wesley, Massachusetts, pp 739–741

7. Gouraud H (1971) Continuous shading of curved surfaces.
IEEE Trans Comput 20(6):623–629

8. Heckbert PS, Moreton HP (1991) Interpolation for polygon
texture mapping and shading. In: Rogers DF, Earnshaw RA
(ed) State of the art in computer graphics: visualization and
modeling. Springer, New York, pp 101–111

9. Kuijk A, Blake EH (1989) Fast Phong sShading via angular
interpolation. Comput Graph Forum 8:315–324

10. Lathrop O, Kirk D, Voorhies D (1992) Quadratic interpola-
tion for shaded image generation. US patent no. 5109481

11. Lee YC, Jen CW (2000) On-line polygon refining using
a low computation subdivision algorithm. In: Martin R,
Wang W (eds) Proceedings of Geometric Modeling and
Processing 2000, Hong Kong. IEEE Computer Society
Press, Los Alamitos, pp 209–219

12. Max N (1989) Smooth appearance for polygonal surfaces.
Visual Comput 5:160–173

13. van Overveld CWAM, Wyvill B (1997a) An algorithm for
polygon subdivision based on vertex normals. In: Van Reeth
F, Vince J (eds) Proceedings of IEEE Computer Graph-
ics International 1997, Belgium. IEEE Computer Society
Press, Los Alamitos, pp 3–12

14. van Overveld CWAM, Wyvill B (1997b) Phong normal in-
terpolation revisited. ACM Trans Graph 16(4):397–419

15. Paul B (2000) The Mesa 3D Graphics Library. Url:
http://www.mesa3d.org/

16. Phong BT (1975) Illumination for computer generated pic-
tures. Commun ACM 18(6):311–317

17. Seiler L (1998) Quadratic interpolation for near-Phong
quality shading. Comput Graph: conference abstracts and
applications 1998, pp 268

18. Shantz M, Lien SL (1987) Shading bicubic patches. Com-
put Graph 21(4):189–196

Photographs of the authors and their biographies are given on
the next page.

352 Y.-C. Lee, C.-W. Jen: Improved quadratic normal vector interpolation for realistic shading

YUAN-CHUNG LEE re-
ceived the B.S. degree in elec-
tronics engineering from Na-
tional Chiao Tung University
in 1997. He is currently pursu-
ing the Ph.D. degree at National
Chiao Tung University. His re-
search interests include real-time
rendering, graphics architecture,
VLSI system, and digital IC de-
sign.

CHEIN-WEI JEN received
the B.S. degree from National
Chiao Tung University, Hsinchu,
Taiwan, in 1970, the M.S. degree
from Stanford University, Stan-
ford, CA, in 1977, and the Ph.D.
degree from National Chiao
Tung University in 1983. He is
currently with the Department
of Electronics Engineering and
the Institute of Electronics, Na-
tional Chiao Tung University, as
a Professor. During 1985-1986,
he was with the University of
Southern California at Los An-

geles as a Visiting Researcher. His current research interests
include VLSI design, digital signal processing, processor archi-
tecture, and design automation. Dr. Jen is a member of the IEEE
and of Phi Tau Phi.

