Efficient coverage analysis metric for HDL design

validation

C.-N.Liu and J.-Y.Jou

Abstract: Simulation is still the primary approach for the functional verification of register-
transfer level circuit descriptions written in hardware description language (HDL). The major
problem of the simulation approach is to choose a good metric to gauge the quality of the test
patterns. The finite state machine (FSM) coverage test can find most of the design errors in a FSM.
However, it is impractical for large designs because of the state explosion problem. In the paper, a
higher-level FSM model is proposed to replace the conventional FSM model in
the coverage test. The state transition graph can be significantly reduced in the model so that
the complexity of the test sets becomes acceptable, even for large designs. This higher-level FSM
model, called the semantic finite state machine (SFSM) model, can be easily extracted from the
original HDL code automatically with little computation overhead. The advantages of using this
model instead of the conventional FSM model in HDL design validation are thoroughly discussed.

The implementation results show that it is indeed a promising functional coverage metric.

1 Introduction

Due to the increasing complexity of modern circuit design,
verification has become the major bottleneck of the entire
design process [1]. Most verification efforts are often put
on verifying the correctness of the initial register-transfer
level (RTL) descriptions written in hardware description
language (HDL). Manufacturing test is well-developed for
testing real chips, however, the test is aimed at finding
physical faults in the manufactured circuits and not suitable
for verifying the functions of RTL designs written in HDL.
Some formal verification techniques can verify the equiva-
lence of a design across several different design levels [2],
but they cannot verify the correctness of the initial HDL
descriptions. Formal techniques for language containment
and property checking [2] are making some progress on
solving this verification problem. However, there is hardly
any evidence that these techniques could offer comprehen-
sive verification across a wide variety of designs. Thus, it
appears that the simulation method will continue to play an
important role in the verification process.

The major problem of the simulation approach is to
choose a good metric to gauge the quality of the test
patterns. One popular metric of verifying the design
written in HDL is the code coverage metric used in soft-
ware testing [3-5]. In most commercial tools, the HDL
coverage metrics also include the software coverage
metrics, for example, line coverage or path coverage.
There are also a lot of other coverage metrics proposed
for HDL, e.g. block coverage, event coverage, etc. [4-6].

© IEE, 2001

IEE Proceedings online no. 20010203

DOI: 10.1049/ip-cdt:20010203

Paper first received 20th January and in revised form 12th December 2000

The authors are with the Department of Electronics Engineering, National
Chiao Tung University, Taiwan, R.O.C.
E-mail: jimmy@EDA.ee.nctu.edu.tw, jyjou@bestmap.ee.nctu.edu.tw

IEE Proc.-Comput. Digit. Tech, Vol. 148, No. 1, January 2001

Most of them are based on traversing the language struc-
tures completely. This can verify the correctness of each
atomic action written in the HDL programs. However,
besides the atomic actions, it is also important for the
sequence of actions to be verified for performing the
desired functions. It is difficult for these methods to find
bugs related to the sequence of actions.

Although many different code coverage metrics have
been proposed there is still not a single metric similar to
the stuck-at fault model in the manufacturing test being
popularly accepted as complete and reliable. Another
approach is to verify the functionality by hardware
concepts, such as the finite state machine (FSM) model.
The FSM model is a well-studied model for describing a
synchronous sequential machine. To verify the function-
ality of a FSM, a popular approach is to apply input
patterns to traverse the whole state transition graph
(STG) completely during the simulation process. It is
often called the FSM coverage test [4, 5]. Because it
traverses all the design space, it surely can find most of
the design errors in a FSM. However, the sizes of the STGs
for modern designs are often too large to be traversed
completely. Using this approach to verify the behaviour of
a FSM becomes impractical.

Since traversing the STG of a FSM exhaustively is
considered as a confident method to verify the functionality
of the FSM, this method can be practical if the STG can be
reduced to a reasonable size. To reduce the state space, two
abstraction techniques [7] are often used: controller extrac-
tion and many-to-one mapping. Controller extraction sepa-
rates the datapath from the control circuits and verifies the
remaining control parts. Because most design errors occur
in the control logic [8], abstracting the numerous registers
in the datapath can significantly reduce the tested state
space without degrading the verification quality. Techni-
ques have been proposed [8—11] for abstracting the data-
path and extracting the controller in a design. All of them
have good results on state space reduction such that the
verification time for complex designs can be reduced.

Although the state space reduction is significant using
the controller extraction technique, one may obtain further
reduction by performing a many-to-one mapping on the
resultant STGs. Many-to-one mapping means to map some
states with similar properties in the original FSM into one
state in the new FSM. In other words, it models FSMs at a
higher level of abstraction. After this mapping, the sizes of
the new FSMs are always smaller than or equal to the
original ones. By carefully choosing the merged states, one
can still have good test quality with fewer test cases.
Although some techniques have been proposed to model
FSMs at a much higher level of abstraction, such as the
HLSM in [12] and the EFSM in [13], their mapping rules
may not be suitable for verifying the functions of an HDL
design. HLSM is proposed for performing job scheduling
in the high-level synthesis. Therefore actions that are to be
executed in the same functional unit are put into one state
in the HLSM. However, if we traverse the HLSM model of
an HDL design completely, errors between the actions in
the same state may not be found because only one path is
executed while passing this state. EFSM is proposed for
verifying the functionality of an HDL design. It can cover
every statement in an HDL design, which is the basic
requirement in functional verification. However, its
mapping rules are based on the state and input values. It
is difficult to handle some FSMs such as the counters.

To meet the requirement of HDL functional verification,
we propose another higher-level FSM model in this paper.
This semantic finite state machine (SFSM) model can keep
the FSM structure to verify the sequence of actions and use
the semantic content of HDL descriptions to reduce the
number of tested states dramatically. Therefore the benefits
of both software coverage test (e.g. line coverage test) and
hardware coverage test (e.g. STG coverage test) can be
kept by using this model for verifying the functionality of
an HDL design. In addition, because the mapping rules of
this FSM model are based on the performed actions instead
of the state and input values, one can have state reduction
in more cases including the counters. By demonstrating
with some examples, the advantages of using this model
instead of the conventional FSM model in HDL functional
verification can be clearly shown.

2 Semantic finite state machine model

Consider an 8-bit counter with synchronous load and reset
functions. The behaviour of this counter is described in
Verilog HDL [14] as shown in Fig. 1. Because the HDL
can express the behaviours at higher level of abstraction,
one can describe the counting behaviour by using a simple
statement such as count=count+ 1 instead of using a
case statement with 2% branches. Furthermore, because the

module counter (clk, reset, load, in, count);
input clk, reset, load;

input [7:0] in;

output [7:0] count;

reg [7:0] count;

always @(posedge clk) begin
if (reset) count =0;
else if (load) count =1in;
else if (count= =255) count=0;
else count=count+ 1;
end
endmodule

Fig. 1 Counter example written in Verilog HDL

2

HDL-based synthesisers have been in production use for
many years, it is reasonable to assume that they are so
robust that they hardly produce any ‘buggy’ circuits for
datapath operators such as the plus operator. Therefore it is
a better practice to simulate the descriptions of the same
behaviour only once instead of verifying the same beha-
viour repeatedly in a large number of different states. This
practice can greatly reduce the verification time without
sacrificing any quality assurance.

Our proposed semantic finite state machine (SFSM)
model is developed based on the foregoing observation.
We group explicit states with the same behaviour into one
semantic state. The transitions between the explicit states
in the same semantic state will be eliminated, and the
transitions between different semantic states will be kept to
make sure the FSM has the correct sequence of actions.
Therefore the SFSM model is a reduced subset of the
conventional FSM model. By using this modelling techni-
que verification time can be dramatically reduced and the
correctness of the sequence between actions can still be
guaranteed. In the following Sections the SFSM model is
clearly defined and explained.

2.1 SFSM model definition

Definition 1: A semantic finite state machine M is defined
as the 7-tuple {S, ¥/ I, O, U, A, T}, where

S is a set of semantic states

V' is a set of state variables in the original FSM

I is a set of input symbols

O is a set of output symbols

U is a set of update functions for the state variables such
that U:Sx VxI—V

A is a set of action functions for the outputs such that
ASxVxI— 0

T is a transition relation such that 7:S x V' x [— S.

Definition 2: An update function is a block statement
consisting of assignments, logic operations, and arithmetic
operations only. The left-hand-side variable of this function
is restricted to state variables. The right-hand-side variables
of this function will be expanded recursively until they are
constants, primary inputs, or state variables of the FSM.

Definition 3: An action function is defined similarly as the
update function except the left-hand-side variable of this
function is restricted to primary outputs only.

To explain the SFSM more clearly, we use a graph to
represent it. The vertices of this graph correspond to the
semantic states in the SFSM model. In each semantic state
s, there is an update function u, € U which updates the state
variables of the original FSM. There is a directed arc ¢
labelled as f(v, i)/a, from vertex p to vertex ¢ in the graph
if there is a transition of T((p, v, i) — ¢). The function f(v, i)
is called the enabling condition of this transition. The
action function a, € 4 updates the outputs of the original
FSM while this transition occurs. We call this graph the
semantic state transition graph (SSTGQG). The following
Section gives an example of SSTG.

2.2 Example of SSTG

As an example we show in Fig. 2 the SSTG of the counter
shown in Fig. 1. There are only three different behaviours
in this counter. Therefore there are three semantic states in
the SSTG. All the possible enable conditions are listed on
the right of Fig. 2 with an unique label. The enabling
condition of each transition is referenced with this label.

IEE Proc.-Comput. Digit. Tech, Vol. 148, No. 1, January 2001

C1 :reset
C2 : (‘reset) load
ca c2 C3 : (‘reset)(! load)(count==255)
Cc

Cl C4 : (Ireset)(! load)(count!=255)
c4 C4

Fig. 2 SSTG of counter example shown in Fig. 1

Because there are no other outputs except the state variable
count, the action function of each transition is not shown
in Fig. 2.

3 Automatic SSTG generation from HDL

The key idea of the SFSM model is obtained by the
observation on HDL writing styles. Therefore we develop
a simple algorithm to automatically extract the SSTG from
the HDL. The extraction is done in five steps as follows:

3.1 Step 1: Generate the statement tree of the
HDL FSM

The first step is to parse the HDL structure of the
synchronous section of the FSM, which is the HDL code
that describes the next-state and output equations of this
FSM, to build the statement tree. The statement tree is
clearly defined in definition 4. To explain the statement tree
more clearly, we show a statement tree including the update
functions in Fig. 3 for the FSM shown in Fig. 1.

Definition 4: A statement tree is a rooted, directed graph
with vertex set N containing two types of vertices. A
nonterminal vertex n has one or more children child(-
n) € N. A mutually exclusive condition, which is composed
of constants, the primary inputs, or the state variables of
the FSM, will be attached on each edge from # to each
child(n). A terminal vertex t, which represents the terminal
block in the HDL code, has no children but a set of update
functions U, and action functions 4,.

While building the statement trees, we may find that
some variables are not assigned in several program
branches. During simulation, those variables will keep
their original values in the unassigned branches, which
acts like a self-assignment x = x. Therefore for the incom-
pletely specified cases we automatically add self-assign-
ments in the unassigned branches for those variables to
represent the behaviours more clearly. In other words, each
variable appearing in the statement tree will have its own

reset==1 reset==0
count=0
load==1 load==0
count=in
count==255 count!=255

count=0

| count=count+1 |

Fig. 3 Statement tree for FSM shown in Fig. 1

IEE Proc.-Comput. Digit. Tech, Vol. 148, No. 1, January 2001

update function or action function in the terminal vertices
of this tree.

3.2 Step 2: Build the semantic states in the
SFSM model

Definition 5: Two update functions or two action functions
¥, z are equivalent iff for each statement in y, there is a
corresponding statement with the same left-hand-side vari-
able existing in z and those two statements are identical.

While the statement tree of the HDL code is built the
semantic states in SFSM model can be obtained directly
from this tree. According to the definition of SFSM, we
group the terminal nodes with the equivalent update
functions into one semantic state. After checking all
terminal nodes in the statement tree, all the semantic
states can be built. The semantic state to which each
terminal node belongs will be recorded in the data structure
of the terminal node.

3.3 Step 3: Calculate the enabling condition of
each transition

The product of the conditions on the path from the root to
the terminal node is the enabling condition which enables
the transition from some other semantic states to this target
semantic state. In other words, each enabling condition
represents a transition going to the particular semantic state
corresponding to this terminal node. After traversing the
tree structure of the statement tree, all possible enabling
conditions can be calculated. These enabling conditions
will be recorded in a hash table, condition table, with their
associated terminal nodes.

3.4 Step 4: Build the transitions between
semantic states in the SFSM model

Definition 4: An enabling condition e is contradictory to a
semantic state s iff Ju € u, such that e-u = ¢.

For each semantic state, we can check each item in the
condition table to find the enabling condition of each
terminal node. Each terminal node will belong to a seman-
tic state, thus we can find the target state of this transition
through this terminal node. However, some transitions do
not exist because of condition contradiction. For example,
if the update functions of the current semantic state change
the state variables to SO, and a transition going out from
this state requires the state variables to be S1, this transi-
tion is absolutely impossible. After eliminating these
contradictory transitions of each semantic state, a reach-
ability analysis is performed on the SSTG to remove the
states unreachable from the reset state. After all this, the
final SSTG of this HDL FSM can be obtained.

4 Comparison with existing coverage metrics

4.1 Comparison with line coverage metric

Consider the simple FSM written in Verilog HDL shown in
Fig. 4. It detects whether the serial input signal has a 101
sequence. If a 101 sequence is detected it sets the output
found to 1. If the default action in line 18, which sets the
output found to 0, is missing then this design will have
faulty behaviour in some cases, explained as follows. First,
the FSM is reset to its initial state SO. If we set the input
serial to be {1, 1, 0, 1} for the next four consecutive clock
cycles it will reach 100% line coverage for both faulty and
fault-free designs. Applying these input patterns the output
found has the same sequence, {0, 0, 0, 1} in both faulty
and fault-free designs. That means this design error is not

3

1. module fsm (found, serial, clk, reset);
2. output found;

3. input serial, clk, reset;

4. reg found;

5. reg [1:0] current_state, next_state;
6. parameter [1:0]

7. S0=0,

8. Sl=1,

9. S2=2;

10.

11. always @)/ reset or serial or current_state) begin
12. if (reset) begin

13. next_state = SO;

14. found =0;

15. end

16. else begin

17. next_state = current_state;

18. found = 0;

19. case (current_state)

20. S0:begin

21. if(serial = = 1) next_state = S2
22. end

23. S2:begin

24. if (serial = =0) next_state =S1;
25. else next_state = S2;

26. end

27. S1:begin

28. next_state = S0;

29. if (serial= =1) found=1;
30. end

31. endcase

32. end

33. end

34,

35. always @(posedge clk) current_state = next_state;
36. endmodule

Fig. 4 HDL FSM written in Verilog HDL

detected by these input patterns although the line coverage
is 100%.

If we test this design based on the SSTG shown in Fig. 5,
we have to set the input signals tobe {R,0,1,1,0,1,1,0,0; 1,
R, 1, 0, R} (R means reset=1, 0 means serial=0, 1
means serial = 1) for the next 14 clock cycles to traverse
the whole SSTG from the initial state SO. According to
these input patterns, the sequence of the output found is {0,
0,0,0,0,1,0,0,0,0,0,0,0, 0} in the fault-free design
and {0,0,0,0,0,1, 1, 1,1, 1, 1, 1, 1, 1} in the faulty
design. Obviously we can find the undetected error in line
coverage test according to our SFSM coverage test.

4.2 Comparison with FSM coverage metric

Consider the counter shown in Fig. 1. In the conventional
STG, there are 256 states and 66 047 transitions in it.
However, as shown in Fig. 2, there are only three states and
11 transitions in the SSTG. If we want to satisfy 100%

: state variables

: found

:current_ state

:reset

: (! reset) (cs=S0)(serial=0)
: (! reset) (cs=S0)(serial=1)
: (! reset) (cs=S1)(serial=0)
1 (! reset) (cs=S1)(serial=1)
: (! reset) (cs=S2)(serial=0)
F=0 1 (! reset) (cs=S2)(serial=1)

Fig. 5 Final SSTG of HDL FSM shown in Fig. 4

4

FSM coverage in the conventional STG, it will take at least
66 047 clock cycles in simulation. In our SFSM model,
only 13 clock cycles are needed to reach 100% SSTG
coverage. Therefore the verification time can be dramati-
cally reduced.

5 Implementation and experimental results

According to the steps described in Section 3, we have
implemented the SSTG extraction tool SExt in C++
language. To conduct experiments we applied SExt to
five FSM designs. The design statistics are given in
Table 1. The column ‘Lines’ gives the number of lines of
the original HDL code. Columns PIs and POs are the
numbers of bits of primary inputs and primary outputs,
respectively. Column SRegs gives the number of bits of all
state registers.

The design bjk is the controlling FSM of a blackjack
game machine [15]. According to the value of each card, it
can decide to continue drawing a card, to hold cards, or go
bust. The design count8 is the 8-bit counter described in
Section 2. The design count32 is similar to count8, but the
number of bits is increased from 8 to 32. The design alarm
[15] is a digital alarm clock operating on a 12-hour basis
with separate AM/PM control. The values of the current
time and the alarm time can be set from separate control
pins. The design rankf is an 8 x 8 presorted rank filter. It
keeps the last eight 8-bit data and puts them in a register
array according to their ranks. We observe the correspond-
ing data at the output by sending the desired rank to the
input Sel.

In Table 2 we show the experimental results of applying
SExt to those five designs, which are obtained on a
300 MHz UltraSparc II. The results give a good compar-
ison between the sizes of the conventional STG and our
SSTG. Even for the cases that the STGs are extremely
large, such as the design count32 and rankf, the sizes of the
SSTGs remain reasonable to be handled. Furthermore,
according to the last column in Table 2, the computation
time of SExt is quite small for all cases. It shows that the
SSTG extraction process introduces almost no computation
overhead.

Table 1: Design statistics

Design Lines Pls POs SRegs
bjk 163 9 8

count8 14 11 8 8
alarm 102 32 29 17
count32 14 35 32 32
rankf 553 13 8 88

Table 2: Experimental results of SSTG extraction

Design STG STG SSTG SSTG CPU time,
states edges states edges s

bjk 16 39 16 39 0.07

count8 256 66047 3 11 0.01

alarm 86400 ~ 864007 7 37 0.05

count32 2% A 264 3 1 0.01

rankf ~ 288 ~ 2176 65 4099 2.11

IEE Proc.-Comput. Digit. Tech, Vol. 148, No. 1, January 2001

case (current_state)

SO:

o0 0000

S1:

L NN

(%]
N

Fig. 6 State-by-state writing style

In Table 2 we find that the reduction on graph size is
significant except the design bjk. In this case, the HDL
descriptions for the states in FSMs have been expanded as
shown in Fig. 6. Because the main idea of the SFSM model
is to keep the semantic states not be expanded into explicit
states, not to merge several explicit states into one semantic
state, the benefits of using the SFSM model in this case is
thus not obvious. However, we also find that the sizes of
the SFSMs are never larger than those of the conventional
FSMs. In the worst case that designers describe every state
in the FSMs by using state-by-state style, our SFSM model
will have the same number of states and transitions as those
in the conventional FSM model. The experimental results
have shown that the sizes of our SFSM model are always
less than or equal to the sizes of the conventional FSM
model for those cases.

Another interesting observation can be obtained from
the examples count8 and count32. When the number of
bits of the counter increases, the number of states in the
conventional STG grows exponentially, but the number of
states in the SSTG remains the same. This is due to the fact
that our SFSM model is built on a higher level of abstrac-
tion. The influences of bit numbers have been eliminated.

With the same designs we use another experiment to
compare the line coverage metric against our SSTG cover-
age metric. The experimental results are shown in Table 3.
For each design we generate test patterns in three different
ways. The row ‘directed for SFSM’ gives the results with
the carefully generated test patterns, which are generated
such that the SFSM of each design is completely traversed.
The design rankf has a large SSTG so that it requires a lot
of patterns to traverse the SSTG exhaustively. Due to
limited computation resource we stop the generation
when the number of patterns exceeds 10 000. The row
‘directed for LCM’ gives the results with the carefully
generated test patterns, which are generated such that the
line coverage of each design achieves 100%. The row
‘random’ gives the results with random test patterns. For
each random test set we continue generating patterns from
a random seed until 100% line coverage is achieved or the
number of patterns has exceeded 10 000. For each kind of

IEE Proc.-Comput. Digit. Tech, Vol. 148, No. 1, January 2001

Table 3: Comparing coverage metrics

Statistics\Design bjk count8 alarm count32 rankf

Directed #Pat 111 13 54 13 10000
for LCM 100% 100% 100% 100% 100%
SFSM SCM 100% 100% 100% 100% 100%

TCM 100% 100% 100% 100% 87%

Directed #Pat 49 4 10 4 71

for LCM 100% 100% 100% 100% 100%

LCM SCM 100% 100% 100% 100% 71%
TCM 67% 36% 27% 36% 1.7%

#Pat 10000 2205 10000 10000 10000

Random LCM 94% 100% 97% 75% 79%
SCM 94% 100% 86% 100% 63%
TCM 95% 91% 68% 82% 3.9%

test pattern the number of patterns generated is given in the
row ‘#Pat’ and the percentage of line coverage is given in
the row ‘LCM’. The rows ‘SCM’ and ‘TCM’ give the state
coverage and transition coverage in the SFSM model,
defined in definitions 7 and 8.

Definition 7: State coverage metric (SCM) is defined as

number of semantic states visited

SCM =
total number of reachable semantic states

Definition 8: Transition coverage metric (TCM) is defined
as

number of transitions traversed in SSTG

TCM

~ total number of reachable transitions in SSTG

According to the results shown in Table 3, the line
coverage always achieves 100% when the SCM and the
TCM reach 100%. That means our SSTG test can comple-
tely cover the line coverage test, which is considered to be
the basic requirement for HDL functional verification. In
addition, from the data in the ‘directed for LCM’ row, we
find that the TCM of each design is still low when line
coverage achieves 100%. That means many transitions
between actions are not traversed in the line coverage
test. Some errors in the sequence between actions may
still occur.

Furthermore, the numbers of patterns needed in the
directed tests are always less than the numbers in the
random tests. The coverage of random patterns is also
lower than that of directed patterns. Therefore, in terms of
achieving 100% coverage metric, we find the directed
patterns to be superior to the random patterns for FSM
designs. Even for the designs with large STGs such as
count32 and rankf, we can still test them to achieve high
coverage with a reasonable number of patterns.

6 Conclusions and future work

We have proposed a higher-level FSM model for HDL
design validation. The STG can be significantly reduced in
our model so that the FSM coverage test becomes accep-
table even for large designs. The implementation results
show that this higher-level FSM model, called semantic
finite state machine (SFSM) model, can be efficiently
extracted from the original HDL code automatically and
is a promising functional coverage metric.

In the worst case that designers describe the FSMs in
state-by-state style, the benefits of using current SFSM
model may not be obvious because the main idea of the
SFSM model is to keep the semantic states not expanded
into explicit states, not to merge several explicit states into
one semantic state. However, the state explosion problem
should not occur for the man-made cases because it is very
uncommon for designers to write an HDL program with
state-by-state style for FSMs with hundreds of states. In the
future, we will try to develop some merging operations to
enhance the SFSM model such that we can handle the
machine-generated HDL codes with state-by-state writing
style. We may also try to build an automatic test bench
generation system based on this coverage test. We believe
that the functional verification of HDL descriptions can be
greatly simplified with this automatic generator.

7 Acknowledgments

This work was supported in part by NOVAS Software Inc.
and R.O.C. National Science Council under grant NSC89-
2218-E-009-060. Their support is greatly appreciated.

8 References

1 EVANS, A., SIBURT, G., VRCKOVNIK, G. BROWN, T,
DUFRESNE, M., HALL, G., HO, T., and LIU, Y.: ‘Functional verifica-
tion of large ASICs’. Presented at the 35th DAC, June 1998

10

11

12

13

14
15

VIS home page: http://www-cad.eecs.berkeley.edu/~vis

BEIZER, B.: ‘Software testing techniques’ (Van Nostrand Reinhold,
New York, 1990)

DRAKO, D., and COHEN, P.: ‘HDL verification coverage’, Integr. Syst.
Design Mag., 1998 (http://www.isdmag.com/Editorial/1998/ Code-
Coverage9806.html)

JOU, J.-Y., and LIU, C.-N.: ‘Coverage analysis techniques for HDL
design validation’. Presented at the 6th Asia Pacific conference on Chip
design languages (APCHDL99), October 1999

WANG, T.-H., and TAN, C.G.: ‘Practical code coverage for verilog’.
Proceedings of 1995 IEEE International Verilog HDL Conference. /EEE
Comput. Soc. Press, Los Alamitos, CA, USA, pp. 99-104

GUPTA, A., MALIK, S., and ASHAR, P: ‘Toward formalizing a
validation methodology using simulation coverage’. Presented at the
34th DAC, June 1997

MOUNDANOS, D., ABRAHAM, A., and HOSKOTE, V.: ‘Abstraction
techniques for validation coverage analysis and test generation’, /[EEE
Trans., 1998, C-47, (1), pp. 2-14

HO, C., and HOROWITZ, M.A.: ‘Validation coverage analysis for
complex digital designs’. Presented at the international conference on
Computer aided design, November 1996

LIU, C.-N., and JOU, J.-Y.: ‘A FSM extractor for HDL description at
RTL level’. Presented at the 5th Asia-Pacific conference on Hardware
description languages, July 1998, Seoul, Korea

LIU, C.-N., and JOU, J.-Y.: ‘An Automatic Controller extractor for HDL
descriptions at RTL, IEEE Design Test Comput., 2000, 17, (3), pp. 72—
77

KUEHLMANN, A., and BERGAMASCHI, R.A.: ‘High-level state
machine specification and synthesis’. Presented at the international
conference on Computer design, October 1992

CHENG, K.-T., and KRISHNAKUMAR, A.S.: ‘Automatic functional
test generation using the extend finite state machine model’. Proceedings
of the 30th Design Automation Conference, 1993, Baltimore, MD, USA,
pp. 86-91

THOMAS, D.E., and MOORBY, PR.: ‘The Verilog hardware descrip-
tion language’ (Kluwer, Boston, MA, 1990)

SMITH, D.J.: ‘HDL chip design’ (Doone, Madison, AL, USA, June
1996)

IEE Proc.-Comput. Digit. Tech, Vol. 148, No. 1, January 2001

	Abstract
	1 Introduction
	2 Semantic finite state machine model
	3 Automatic SSTG generation from HDL
	4 Comparison with existing coverage metics
	5 Implementation and experimental results
	6 Conclusions and future work
	7 Acknowledgments
	8 References

