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Abstract

We present a theoretical study of the electron energy states in narrow gap semiconductor quantum dots (QDs). For a finite
height hard-wall 3D confinement potential the problem was solved by using of the effective one electronic band Hamiltonian,
the energy and position dependent electron effective mass approximation, and the Ben Daniel-Duke boundary condition. To
solve the 3D Schrodinger equation, we employ a numerical scheme by using the finite difference method and the QR algorithm.
Our results show that the parabolic band approximation is applicable only for relatively thin cylindrical QDs or for the dots with
large radius. We show that the electron wave function localization plays an important role in the dependency of the energy and
the electron effective mass. For the excited states, the non-parabolicity effect has been found to be stronger than it at ground

state. © 2001 Elsevier Science Ltd. All rights reserved.
PACS: 73.61.-1; 73.61.Ey
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1. Introduction

During the recent decade by using modern nanotech-
nologies, it has become possible to model quasi-zero-dimen-
sional semiconductor systems — quantum dots (QDs) in
laboratories [1-3]. The main advantage of these so called
‘artificial atoms’ [4] over those ‘natural’ is a possibility to
control electronic confinement potentials (‘artificial nuclei’)
technologically (by conditions of the dot preparation
processes) and dynamically (by external fields and changing
of the electron number in dots). The electronic state
engineering forms novel directions in semiconductor
electronics: quantum dot optoelectronics [1,3], single elec-
tronic devices [5], and quantum dot computing systems [6].

The theoretical modeling of quantum dot electronic
properties can be done by different schemes. Those are
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pseudopotential and first-principal calculations [7-9],
which consume a very large computer power. While large-
scale QD calculations using complicated Hamiltonians have
become feasible, they are not better than the results calcu-
lated with the input parameters and models. At the same
time, the large-scale calculations are almost useless to
evaluate basic physical tendencies of QD electronic proper-
ties. We should conclude that it is necessary to develop
computational models and numerical methods that can be
used to evaluate electronic properties over a wide range of
QD parameters. With this reason one can use multi-band
envelope function and the effective mass approximations
with single-electron [10—13] and multi-electron descrip-
tions [14—16]. In this class of models one needs an assump-
tion about the electronic confinement potential in the
system. Among other used confinement potential models
(the parabolic lateral potential or the infinite wall potential),
a finite hard wall boundary potential model is the most
realistic. However, in this case the eigenvalue problem
cannot be solved exactly and requires some reliable
numerical methods to compute the energy states and wave
functions. Different computational methods have been
proposed within multi-electron descriptions. Unfortunately,
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most of practical estimations of the electron energy states
were done only within the simple parabolic approxi-
mation for the electron effective mass [14—16]. The
effective mass is taken as an arbitrary (has to be
adjusted) parameter that can be quite different from the
electronic band edge effective mass [17,18]. It can
produce an error in the electron energy estimations, and
this error is much larger than that one with the energy
corrections form multi-electron descriptions, lattice-
mismatch-induced strains, and piezo-electric fields
[15,19]. Therefore, the validity of the constant effective
mass approximation needs a special evaluation for small
QDs of narrow gap semiconductors.

In this study we present a computational technique that
used to obtain the energy states and the corresponding wave
functions of an electron confined by an InAs QD embedded
in GaAs matrix. To demonstrate the efficiency of the
proposed simulation technique we treat the problem within
the effective one electronic band Hamiltonian, the energy
and position dependent electron effective mass (non-
parabolic) approximation, and the Ben Daniel-Duke
boundary conditions. The validity of this approximation
for semiconductor quantum heterostructures was discussed
in literature in details [20,21]. A hard-wall (of finite height)
3D confinement potential is induced by real discontinuity of
the conduction band at the edge of the dot. The dot has a disk
shape with radius R, and thickness z,. We choose an iso-
tropic effective mass description in this study, but its
generalization to the anisotropic model (along R and z
directions with a conservation the system symmetry) can
be developed similarly. Furthermore, a good control of the
dot shape and content in the experimental situation for
the self-assembled narrow gap semiconductor QDs was
developed recently (see, for instance Ref. [22]). From this
reason we believe that the disk shape and step-like confine-
ment potential are reasonable first order approximations in
the calculation of QD energy states. In addition, in this work
we concentrate on an effect of the effective mass non-
parabolicity. From this reason we do not consider stresses
or piezo-electric fields (this can be performed in future
studies). To solve the 3D Schrodinger equation we employ
a numerical scheme by using the finite difference method
[23], the balanced and shifted QR algorithm [24-26], and
the inverse iteration method [27].

Our main result is that in small cylindrical QDs of narrow
gap semiconductors, one can use the parabolic approxi-
mation only for relatively thin (small z5) QDs or for dots
with large R,. The electron wave function penetration into
the confinement barrier region in the z direction leads to a
weakening of the effects of non-parabolicity. We show that
the electron wave function localization plays an important
role in the dependency of the energy and the electron
effective mass. Furthermore, we also have found the non-
parabolicity effect for the excited states are much stronger
than it at ground state.

In Section 2, we present a description of the model and

method of our calculation. Section 3 is devoted to the
discussion of the calculation results. Conclusions are
drawn in Section 4.

2. Model and method of calculation

We consider 3D QD structures in the one-band envelope-
function formalism in which the effective Hamiltonian is
given by [20,21]:
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where V. stands for the spatial gradient, m(E, r) is the
electron effective mass that depends on both the energy
and position. The expression of the m(E, r) is given by:
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where V(r) is the confinement potential, E,(r) and A(r)
denote, respectively, the position dependent band gap and
the spin-orbit splitting in the valence bands, and P is the
momentum matrix element. The approximation above is
traditionally used in calculation of quantum well energy
states and it well describes the electronic properties of the
2D heterostructures. This is a case when the non-para-
bolicity effects should be taken into account [20]. We
apply here this approximation to calculate energy states of
the 3D QDs of a narrow gap semiconductor.

For systems with a sharp discontinuity of the conduction
band at the interface between the QD (material 1) and the
crystal matrix (material 2), the hard-wall confinement
potential can be presented as:

r € material 1

0,
V(r) = o 3)
Vp, r € material 2

Integrating the Schrodinger equation with Hamiltonian
(1) along the direction perpendicular to the interface, we
obtain the Ben Daniel-Duke boundary conditions for the
wave function ¥(r)

Wmalen'al l(rs) = 1pmaterial Z(rs)

e @
mvn 1p(rs) = const,

where r denotes the position on the interface. These bound-
ary conditions are dependent on the electron energy and
originate from the parameter difference between different
materials.We consider a disk-shaped QD with the radius
R, and the thickness z; in the cylindrical coordinates (R,
¢, 7). The origin of the system lies at the center of the
disk and the z-axis is chosen along the rotation axis. Since
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the system is cylindrically symmetric, the wave function can
be represented as:

WY(r) = D(R, z) exp(il), 5)

where [ =0,*1,%2,... is the electron orbital quantum
number and the problem remains 2D in (R, z) coordinates:
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and the boundary conditions (4) become of the form
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The electron energy states here are complicated functions
of the dot parameters and the electron angular momentum.
We can obtain the solution by means of a numerical
approach to solve the Schrodinger Eq. (6) together with
the boundary conditions (7).

Due to the energy dependence on the effective electron
mass the calculation should consist of some iteration loops
to reach a ‘self-consistent’ energy solution. A feedback
nonlinear iteration scheme is proposed here: (i) set initial
energy E =0, (ii)) compute effective mass m, (iii) solve
Schrédinger equation for energy E, (iv) update the newer
energy E and back to (ii). The iteration will be terminated
when a specified stopping criterion on energy is reached. To
obtain a complete numerical solution of the 3D Schrodinger
equation in step (iii), a finite difference method [23] with
non-uniform mesh technique is firstly applied to discretize
the Schrodinger Eq. (6). The discretized Schrodinger
equation with the boundary conditions (7) leads to an
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Fig. 1. (a) The ground state {1,0} energies (as a function of the dot
size) for the non-parabolic (solid lines) and parabolic (dash lines)
approximation, respectively. Horizontal dot line shows the top
energy of the well (E =V, = 0.77 eV). Dash-dot line indicates
the non-parabolic approximation results for the infinite well
model (vy — 00). (b) Ratio of effective masses in non-parabolic
my(E) and parabolic m,, approximations as a function on the dot
radius (zg = 2.5 ) for the ground state {1,0}.

eigenvalue problem
AX = AX, (®)

where A is the matrix rising from discretized Schrédinger
equation with the boundary conditions, X and A are the
corresponding eigenvectors (wave functions) and the eigen-
values (energy levels) of the matrix A. In general, the matrix
A is a non-symmetric and sparse matrix, the eigenvalues of
such matrix can be very sensitive to small changes in the
matrix elements. In order to reduce the sensitivity of eigen-
values, we perform a balancing algorithm [24] to matrix A.
Then the next strategy for finding the eigenvalues of the
balanced matrix A is transferring it into a simpler matrix
form, Hessenberg form, with a sequence of Householder
transformations [24]. The eigenvalues of the Hessenberg
matrix are directly computed with the shifted QR method
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Fig. 2. Plot of the parameter w versus the dot size.

[24,26]. When the eigenvalues are found, we solve the
corresponding eigenvectors with the inverse iteration
method [27]. The fundamental idea of this method is to
solve the following linear system

(A—{Dy=bh,

where b is a trial vector and ¢ is one of the computed
eigenvalues of matrix A. The solution y is right the candi-
date eigenvector corresponding to £.

The problem of finding all eigenvalues of a non-
symmetric matrix A can be quite unstable with respect to
perturbations in the coefficients of A. Some traditional
methods, such as the power method, the Lanczos algorithm,
etc. [28], could be used for solving the eigenvalues of a
symmetric matrix. However, the QR method used here is
the best-suited general method for the calculations of all
eigenvalues of a non-symmetric matrix [25]. From our
calculation experience and a mathematical fact that the
effective electron mass depends on energy monotonically,
the convergence criteria on energies (the maximum norm
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Fig. 3. The first excited state {1,1} energy of the dot.

error is less than (1077 eV) can be fast reached by taking
only 8—10 feedback non-linear iterative loops.

3. Calculation results

The energy spectrum of the dot consists of a set of
discrete levels numerated by the set of numbers {n,!/},
where 7 is the nth solution of the problem with fixed /. In
calculations of the electron energy spectra for narrow gap
InAs cylindrical QDs in GaAs matrix we choose the semi-
conductor band structure parameters for InAs: the energy
gap E;, = 0.42 eV, the spin-orbit splitting A; = 0.48 eV,
the value of the non-parabolicity parameter Ej, =
3m0P%/ﬁ2 =22.2¢eV, and my is the free electron effective
mass. For GaAs we choose: Ey, = 1.52 €V, A, = 0.34 eV,
and E,, =24.2eV. The band offset is taken as V, =
0.77 eV.

In Fig. 1(a), we show the calculated ground state {1,0}
energy depending on the dot size. The non-parabolic correc-
tion leads to a decrease in the state energy. The difference
between parabolic (when m;(E) = m;y, i = 1,2 — the band
edge electronic effective mass) and non-parabolic approxi-
mation results gains ~0.05 eV for Ry = 3 nm. This differ-
ence can exceed known electron—electron interaction
corrections [14-16]. As shown in Fig. 1(b), a ratio of
effective masses in non-parabolic and parabolic approxi-
mations as a function on the dot radius is presented. The
actual effective mass m;(E) in this figure was calculated by
substituting the state energy into Eq. (2).

For dots of relatively large radius (R, > 20 nm) and lower
ground state energy we can neglect the non-parabolicity
effects. At the same time, dots of a small height
(zo ~ 1.5 nm) demonstrate a suppression of the non-para-
bolicity effect in spite of the increase of the state energy.
This unusual effect is a direct result that the electron
effective mass depends energy as well as position and the
electron wave functions are tunneling into the barrier along
the z direction. To clarity this result we compare ‘electronic
weights’ inside and outside the dot by the following ratio:

| ar' (R o)
rEmaterial 1

w = .
| ar' PR )
rEmaterial 2

The w parameter depends on the dot size is presented in
Fig. 2. For QDs of small heights, the electron wave function
spreads out of the dot (w ~ 1) and the energy level proper-
ties are controlled by band parameters of GaAs matrix. In
this situation, an actual electron effective mass is a weak
function of the electron energy (as for GaAs). For QDs with
relatively large heights, the electron state energy is
controlled by InAs band parameters and is affected by the
non-parabolicity effect.

Fig. 3 shows the first {1,1} excited energy states of the
dot. As it can be seen from the figure, the non-parabolic
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approximation leads to large corrections in this case. A
difference between parabolic and non-parabolic estimations
can gain 0.1 eV.

4. Conclusions

In conclusions, we have studied theoretically electron
energy states of cylindrical hard wall QDs with respect to
various sizes by using the one-band envelope-function
formalism and the non-parabolic approximation. The
studied model was solved with the finite difference and
QR methods to obtain the all energies and wave functions.

It has been found that the widely used parabolic electron
band approximation leads to a large discrepancy in the
calculation results for electron energy states in small
cylindrical QDs. This approximation can be used only for
QDs of large radius or small height. The penetration of the
electron wave function into barrier region in the z direction
(as a result of the finite hard wall confinement potential)
plays an important role for reducing the effective mass
dependence on the energy. For the excited states, the non-
parabolicity effect is much stronger than it is at the ground
state and can exceed electron—electron interaction correc-
tions known from literature. The analysis presented here is
useful to clarify principal dependencies of QD energy states
on semiconductor material band parameters and QDs sizes.
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