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This work investigates a class of lattice dynamical systems originated from cellular neural net-
works. In the vector field of this class, each component of the state vector and the output vector
is related through a sigmoidal nonlinear output function. For two types of sigmoidal output
functions, Liapunov functions have been constructed in the literatures. Complete stability has
been studied for these systems using LaSalle’s invariant principle on the Liapunov functions.
The purpose of this presentation is two folds. The first one is to construct Liapunov functions
for more general sigmoidal output functions. The second is to extend the interaction param-
eters into a more general class, using an approach by Fiedler and Gedeon. This presentation
also emphasizes the complete stability when the equilibrium is not isolated for the standard
cellular neural networks.

1. Introduction

Consider the following class of cellular neural
networks

dx

dt
= F(x) := −x + Ay + b

y = f(x) := (f1(x1), f2(x2), . . . , fn(xn)) .
(1)

Herein, x = (x1, x2, . . . , xn) ∈ Rn is the state vec-
tor and y = (y1, y2, . . . , yn) ∈ Rn is called the
output vector. Each component of the state vector
and the output vector is related through a sigmoidal
nonlinear function fi, namely, yi = fi(xi). A is an
n × n matrix and b is a constant vector. In cellu-
lar neural network models, A is generated from the
feedback operator, b consists of the terms from the
control operator and an independent current source
(bias, threshold).

Equation (1) is actually a recast or a general-
ization of a cellular neural network (CNN) proposed
by Chua and Yang in 1988. In their model, a CNN

of any dimension with finitely many cells can be re-
cast in the form (1). To be more explicit on the
equations we are interested in, let us describe this
model on a two-dimensional lattice with cells sitting
on a k1 × k2 lattice Tk := {(i, j) ∈ Z2|1 ≤ i ≤ k1,
1 ≤ j ≤ k2}. The circuit equation of a cell is given
as

dxi,j
dt

= −xi,j +
∑

(k,`)∈Nr(i,j)
A(i, j; k, `)f(xk,`)

+ bi,j , (i, j) ∈ Tk , (2)

where Nr(i, j) represents the r-neighborhood of
the cell at (i, j). The real numbers A(i, j; k, `),
(i, j) ∈ Tk, (k, `) ∈ Nr(i, j) constitute the tem-
plate for CNN; this template describes the connec-
tion weights between cells. For (i, j) ∈ {(i, 1),
(1, j), (k1, j), (i, k2)|1 ≤ i ≤ k1, 1 ≤ j ≤ k2},
the xi,j term in (2) has to be specified according to
the imposed boundary condition. For details, please
see [Chua, 1998; Lin & Shih, 1999]. If we rearrange
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170 C.-W. Shih

the coordinates {xi,j}, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2 into
{xi}, 1 ≤ i ≤ n, n = k1×k2, it can be seen that (2)
has the form (1).

Let d(x) =
∑n
i=1 x

2
i , that is, the square of dis-

tance from x to the origin of Rn. If every fi is
bounded, it can be computed that for every ρ > 0
large enough, the vector field (1) on the level surface
d(x) = ρ points inward. Hence, (1) is a dissipative
system if every fi is bounded. Therefore, there ex-
ists a global attractor. For the notions of dissipative
dynamical system and the global attractor, cf. [Hale
et al., 1984; Hale & Raugel, 1991]. One of the sim-
plest kinds of such global attractors is the one that
consists of all the equilibria and the unstable man-
ifolds of the unstable equilibria. The heteroclinic
orbits connecting the equilibria lie on these mani-
folds. Such a structure of global attractor leads to
the notion of complete stability. By complete sta-
bility, we mean that every solution of a dynamical
system tends to a stationary solution as time goes
to positive infinity. Such a property is also called
convergence, cf. [Fiedler & Gedeon, 1998]. In ad-
dition, a system is called quasi-convergent if every
orbit of the system converges at least to the set of
equilibria.

The complete stability for (2) with a two-sided
saturated output function (see the following de-
scription) has been studied in [Chua & Yang, 1988;
Lin & Shih, 1999]. The basic assumption is the
symmetry condition of the circuit parameters:

A(i, j; k, `) = A(k, `; i, j), for all (i, j) ∈ Tk,

(k, `) ∈ Nr(i, j) . (3)

With this assumption, if (2) is imposed with cer-
tain discrete-type boundary conditions, A is always
symmetric, as (2) is reformulated into the form
(1). In this presentation, we shall adopt the gen-
eralization in [Fiedler & Gedeon, 1998] and con-
sider a larger class of interaction parameters A.
Their formulations are described as follows. Let
A = [Aik] be an n× n matrix with either Aik = 0
or AikAki 6= 0 for i, k = 1, 2, . . . , n. There cor-
responds an undirected graph Υ whose vertex k is
joined to the vertex i by the edge eik if and only
if Aik 6= 0 and Aki 6= 0. A cycle C in the graph
Υ is a collection of edges ei1i2, ei2i3 , . . . , ei`i1 with
` ≥ 3. The interaction parameters A considered in
this investigation are the ones satisfying

(H1) AikAki > 0, if Ai,k 6= 0 ,

(H2) ΠCAik = ΠCAki, along every cycle C ,
(4)

where Π denotes the product. It is straightforward
to verify that symmetric A satisfies (H1) and (H2).
Denote by Nn the set of positive integers from 1
to n.

The sigmoidal output functions that will be in-
vestigated in this presentation contain the following
three basic types:

(I) fi(ξ) = f(ξ) := (1/2)(|ξ + 1| − |ξ − 1|) for
i ∈Nn.

(II) fi is bounded, differentiable and f ′i(ξ) > 0 for
any ξ ∈ R and i ∈ Nn.

(III) fi is continuous on R, f ′i(ξ) > 0 if ξ ∈ (−1, 1),
fi(ξ) = 1 if ξ ≥ 1, and fi(ξ) = −1 if ξ ≤ −1,
for each i ∈ Nn.

Typical figures for these functions are depicted
in Figs. 1–3. The results in [Chua & Yang, 1988;
Lin & Shih, 1999] concerned (2) with the sigmoidal
function of type (I). Notice that for type (I), f(ξ)
is piecewise linear and it has two saturated parts
ξ ≥ 1, ξ ≤ −1 with two corners at ξ = −1 and

Fig. 1. Sigmoidal output function of type (I).

Fig. 2. Sigmoidal output functions of type (II).
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Fig. 3. Sigmoidal output functions of type (III).

ξ = 1. However, it is Lipschitz. On the other hand,
it has been shown in [Wu & Chua, 1997] that (1)
is completely stable if A is symmetric, every equi-
librium is isolated and fi satisfies (II). Fiedler and
Gedeon [1998] studied a more general system with
the sigmoidal functions of type (II).

The function of type (III) can be regarded as a
generalization of type (I) or a mixture of the types
(I) and (II). Note that for fi of type (III), we do
not require differentiability of fi at −1, 1. Smooth
sigmoidal functions of this type include the regu-
larization of the type (I) function at the corners
ξ = −1, 1.

All the aforementioned results on complete
stability (convergence) and quasi-convergence are
based on applying the LaSalle’s invariant princi-
ple to their respective Liapunov functions. Such
functions are originated from the studies of neural
networks, cf. [Cohen & Grossberg, 1983]. Let us
review this principle and introduce some necessary
notations which will be used throughout this paper.
These details can be found in [Hale, 1980].

Suppose the vector field F in (1) is locally Lip-
chitzian. Let V be a scalar function defined and
continuous on Rn and φ(t, x) be the flow map of
(1). To determine if V decreases along the orbit of
(1), we can consider

V̇ (x) := lim sup
h→0+

1

h
[V (φ(h, x))− V (x)] . (5)

If V is locally Lipschitz continuous, (5) is equal to

lim sup
h→0+

1

h
[V (x + hF(x)) − V (x)] . (6)

If ∂V/∂x exists and is continuous, then (5) is also
equal to

∂V (x)

∂x
F(x) . (7)

Suppose V is bounded in Rn and V̇ (x) ≤ 0 for all
x ∈ Rn. Let

S = {x ∈ Rn : V̇ (x) = 0} (8)

and let I be the largest invariant set of (1) in S.
LaSalle’s invariant principle says that if φ(t, x) is
bounded for t ≥ 0, then the ω-limit set of φ(t, x)
belongs to I. Accordingly, if there exists a Lia-
punov function for (1) with one of these sigmoidal
functions, then it remains to study the set S and
the dynamics on it. For fi of type (II), S con-
sists only of equilibria. Thus, the ω-limit set for
each orbit consists of equilibria only. Therefore, the
quasi-convergence of the system is confirmed. The
complete stability can be further concluded if every
equilibrium is isolated. For fi of type (I) or (III), S
is a much bigger set. This is due to the saturations
in fi. To conclude the complete stability or quasi-
convergence, we have to analyze the flow restricted
to S and exclude the possibility such as existence of
limit cycle or heteroclinic orbit in S. For the case of
type (I) sigmoidal function, it can be further shown
that the ω-limit set of every orbit is a singleton, even
if the equilibrium is not isolated. The following the-
orems and corollary summarize the main results in
this presentation.

Proposition 1.1. Assume that A satisfies (H1)
and (H2). There exist Liapunov functions for (1)
with sigmoidal output functions of types (I), (II) and
(III) respectively.

The Liapunov functions we shall construct are
functions V : Rn → R which are nonincreasing
along the orbits of (1). The dependence of these
Liapunov functions on the state variable x are all
through the respective output functions. Therefore,
that the Liapunov function is strictly decreasing
along all nonequilibrium orbits of (1) holds only for
the sigmoidal output functions of type (II). Though
this strict decrease does not hold for the sigmoidal
functions of types (I) and (III), the following con-
vergence can still be obtained through analyzing the
vector field in (1).

Theorem 1.2. Assume that A satisfies (H1)
and (H2). Equation (1) with sigmoidal output
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172 C.-W. Shih

functions of type (II) or type (III) is quasi-
convergent.

Corollary 1.3. Assume that A satisfies (H1) and
(H2). If the set of equilibria is finite, then (1) with
sigmoidal output functions of type (II) or type (III)
is completely stable (convergent).

Theorem 1.4. Assume that A satisfies (H1) and
(H2). Equation (1) with the sigmoidal output func-
tion of type (I) is completely stable (convergent),
even if the equilibrium is not isolated (thus the set
of equilibria is infinite).

We shall construct the Liapunov function as
well as describe S for the sigmoidal functions of
types (II), (III) and (I) in Secs. 2–4 respectively.
Notably, type (I) function is actually contained in
the class of type (III) functions. Theorems 1.2
is justified by verifying the respective proposition
(Propositions 2.1 and 3.1) for each type of output
function. Theorem 1.4 is confirmed from the Propo-
sition 4.1.

2. Sigmoidal Functions of Type (II)

For the sigmoidal output functions of type (II), each
fi has an inverse f−1

i , owing to f ′i(ξ) > 0 for all
ξ ∈ R. If A is symmetric, the Liapunov function
proposed by Wu and Chua [1997] for (1) with out-
put functions of type (II) takes the form

V (x)=−1

2
〈y, Ay+2b〉+

n∑
i=1

∫ yi

fi(0)
f−1
i (ξ)dξ , (9)

where y = (y1, y2, . . . , yn) and yi = fi(xi), as in
(1).

For more general A satisfying (H1) and (H2),
we present the following generalization. Let vi, vk
satisfy Aik/Aki = exp(vi − vk) for these i, k with
i 6= k and Aik 6= 0. Set vi = 0 if Aik = 0. Define,
for i, k ∈ Nn,

si := exp(−vi) , pik :=
1

2
siAik . (10)

Note that pik = pki for i, k ∈ Nn. Set P = [pik],
the n × n matrix with entries pik, and set S =
diag(s1, s2, . . . , sn), the diagonal matrix with di-
agonal entries s1, s2, . . . , sn. The above formula-
tion of the parameters is adopted from [Fiedler &
Gedeon, 1998]. We modify the Liapunov function

therein to accommodate Eq. (1) as follows.

V (x) =
n∑
i=1

si

∫ yi

fi(0)
f−1
i (ξ)dξ−〈y, Py+Sb〉 . (11)

Indeed,

∂V (x)

∂x
F(x)

=
n∑
i=1

sif
′
i(xi)

[
xi − bi −

n∑
k=1

pik + pki
si

yk

]
Fi(x)

=
n∑
i=1

sif
′
i(xi)

[
xi − bi −

n∑
k=1

Aikyk

]
Fi(x)

= −
n∑
i=1

sif
′
i(xi)Fi(x)2

≤ 0 .

Notably, V̇ (x) = 0 if and only if Fi(x) = 0 for
all i, since f ′i(ξ) > 0 for all ξ ∈ R. Thus, S consists
of equilibria only. Therefore, we have the following
result.

Proposition 2.1. The ω-limit set for every orbit of
(1) with sigmoidal functions of type (II) consists of
equilibria only.

This proposition confirms Theorem 1.2 for the
sigmoidal functions of type (II).

3. Sigmoidal Functions of Type (III)

In this section, we study (1) with sigmoidal func-
tions fi of type (III). According to the configura-
tion for the functions of type (III), the real line can
be partitioned as R = (−∞, −1]∪ (−1, 1)∪ [1, ∞).
The phase space Rn for the dynamical system gen-
erated by (1) can thus be partitioned into 3n re-
gions. We use the following labeling and notations
to describe these regions. The setting here is ba-
sically the same as in [Lin & Shih, 1999]. Let
A = {−1, 0, 1}. Denote by ANn the set of all func-
tions α : Nn → A. For each α = {αi} ∈ ANn ,
set

Ωα := {x = {xi} ∈ Rn|xi ≥ 1 if αi = 1; xi ≤ −1

if αi = −1; |xi| < 1 if αi = 0} . (12)

Then, ⋃
α∈ANn

Ωα = Rn .
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Complete Stability for a Class of Cellular Neural Networks 173

Let Λe = {{αi} ∈ ANn|αi = 1 or −1}, Λm =
{{αi} ∈ ANn|αi = 0 for some i ∈ Nn and αj 6= 0
for some j ∈ Nn}. Thus, we can arrange these 3n

regions into three categories. Ωα is called an exte-
rior region if α ∈ Λe, a mixed region if α ∈ Λm and
an interior region if αi = 0 for all i ∈ Nn. Obvi-
ously, there is only one interior region which will be
denoted by Ω0. For any two α, α ∈ ANn, we shall
say Ωα is more interior than Ωα, if |αi| < |αi| for
some i ∈ Nn and αj = αj for the other j ∈ Nn.

Consequently, the equilibria for (1) can be clas-
sified into three types, according to their locations.
A stationary solution (equilibrium) x = {xi} is
called, saturated if x lies in an exterior region, mixed
if x lies in a mixed region, and interior if x lies in
the interior region.

Let us describe how each of these equilibria
exists. For an α ∈ Λe, suppose

xi =
n∑
k=1

Aikαk + bi (13)

and xi ≥ 1 if αi = 1, xi ≤ −1 if αi = −1. Then
x = {xi} is an equilibrium in the exterior region Ωα.
Notice that the equilibrium in each exterior region,
if exists, is unique. Consider, for i ∈ Nn,

xi −
n∑
k=1

Aikfk(xk) = bi . (14)

If this system of equations is satisfied for x = x
with |xi| < 1 for all i ∈ Nn, then x = {xi} is an
equilibrium in the interior region Ω0.

Consider a mixed region Ωα, α ∈ Λm. Let
J0 = {i ∈ Nn : αi = 0} and J1 = Nn\J0. To find
an equilibrium in Ωα, we first solve the following
system of equations for xi, i ∈ J0,

xi −
∑
k∈J0

Aikfk(xk) =
∑
k∈J1

Aikαk + bi . (15)

If there exists a solution {xi}i∈J0 = {xi}i∈J0 for this
system with |xi| < 1, i ∈ J0, we substitute them
into the right-hand side of (16).

xi =
∑
k∈J1

Aikαk +
∑
k∈J0

Aikfk(xk) + bi , (16)

where i ∈ J1. If xi ≥ 1 for i with αi = 1 and
xi ≤ −1 for i with αi = −1, then x = {xi} is an
equilibrium of (1) in Ωα.

The saturated equilibrium in each exterior re-
gion is unique if it exists. If a solution x in (14)

exists uniquely with |xi| < 1 for all i ∈ Nn, then x
is the unique (hence isolated) equilibrium in the in-
terior region. Moreover, the uniqueness of a mixed
equilibrium in Ωα, α ∈ Λm, is determined from the
uniqueness of solution in (15).

If there exists a solution {xi}i∈J0 = {xi}i∈J0 for
(15) with |xi| < 1, i ∈ J0, let Iα denote a subset in
Ωα with

Iα = {x ∈ Rn|xi = xi, i ∈ J0, xi ≥ 1

if αi = 1, xi ≤ −1 if αi = −1} . (17)

Let φ(t, x) be the flow map of (1). Then the flow
on Iα has the following dynamic property: φ(t, x)
with x ∈ Iα does not leave Iα before it enters into
the other region which is more interior than Ωα, in
forward time.

Recall the definitions of si, P, S defined in (10).
We consider the following function

V (x) =
n∑
i=1

si

∫ yi

fi(0)
gi(ξ)dξ − 〈y, Py + Sb〉 , (18)

where yi = fi(xi), gi(ξ) = f−1
i (ξ), for ξ ∈ [−1, 1],

gi(ξ) = 1, if ξ ≥ 1, gi(ξ) = −1, if ξ ≤ −1. If each fi
is differentiable on R, then

d

dxi

∫ yi

fi(0)
gi(ξ)dξ = f ′i(xi)f(xi) ,

where f is exactly the sigmoidal function of type (I).
Consequently,

∂V (x)

∂x
F(x) = −

n∑
i=1

sif
′
i(xi)[−f(xi)

+ (Ay)i + bi]Fi(x) . (19)

Equation (19) is less than or equal to zero since
si > 0, f ′i(xi) ≥ 0 for any xi, f

′
i(xi) = 0 if |xi| ≥ 1,

and [−f(xi) + (Ay)i + bi] = Fi(x) if |xi| ≤ 1. The
latter equality follows from the definition of f , that
is, f(xi) = xi if |xi| ≤ 1.

If some fi is not differentiable, we elaborate on
an alternative computation. Firstly,

lim sup
h→0+

1

h

[∫ fi(xi+hFi(x))

fi(0)
gi(ξ)dξ −

∫ fi(xi)

fi(0)
gi(ξ)dξ

]

= f(xi) lim sup
h→0+

Qi(h, x) ,

where Qi(h, x) := (1/h)[fi(xi + hFi(x)) − fi(xi)]
and, again, f is the sigmoidal function of type (I).
Using the property of fi, computations show that

Fi(x) lim sup
h→0+

Qi(h, x) ≥ 0 .
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174 C.-W. Shih

Moreover, limh→0+ Qi(h, x) = 0 if |xi| > 1. Note
that, again, [f(xi)−(Ay)i−bi] = −Fi(x) if |xi| ≤ 1.
With V defined in (18), it follows that

lim sup
h→0+

1

h
[V (x + hF(x)) − V (x)]

= lim sup
h→0+

{
n∑
i=1

siQi(h, x)[f(xi)− (Ay)i − bi]
}

≤
n∑
i=1

lim sup
h→0+

{siQi(h, x)[f(xi)− (Ay)i − bi]}

≤ 0 . (20)

Therefore, V is indeed a Liapunov function. Since
each term in (20) is less than or equal to zero, it
follows that

lim sup
h→0+

1

h
[V (x + hF(x)) − V (x)] = 0

if and only if

lim sup
h→0+

{Qi(h, x)[f(xi)− (Ay)i − bi]} = 0 ,

for all i ∈ Nn. Thus, V remains constant along ev-
ery orbit lying in S whose closure can be described
as follows:

S = (∪α∈ΛeΩα) ∪ (∪Iα) ∪ E0 , (21)

where ∪α∈ΛeΩα is the union of all exterior regions,
E0 is the set of equilibria in the interior region, and
∪Iα is the union of some subsets in mixed regions,
whenever they exist (see (17)). We have taken the
closure of S in (21) since the boundary points in
each region may not be in S. By boundary points
of Ωα or Iα, we mean the points x ∈ Ωα, α ∈ Λe

or x ∈ Iα, α ∈ Λm with |xi| = |αi| = 1 for some
i ∈ Nn. However, all the equilibria are in S. To
verify the complete stability of (1), it suffices to in-
vestigate the dynamics in S. Let us call each of
these Ωα, Iα and E0 in (21) a component of S (they
are actually subsets of S).

If the equilibrium in each region is unique,
hence isolated, then the components of S are dis-
joint. Since the Liapunov function is decreasing
along an orbit off S, the ω-limit set for an orbit
of (1) has to be the maximal invariant set of some
component of S, which is an equilibrium. Thus,
the maximal invariant set in S consists of equilib-

ria only. For general cases, we have the following
result.

Proposition 3.1. The ω-limit set for every orbit
of (1) with sigmoidal functions of type (III) consists
of equilibrium only.

This proposition is justified by the analysis of
the vector field in (1) and its associated dynamics
restricted to the components of S. Herein, we only
sketch the basic ideas. The detailed verifications re-
semble the ones in [Lin & Shih, 1999]. First, let us
note the dynamic properties on these components.
On an exterior region Ωα, the dynamical system is
nonhomogeneous linear and uncoupled. If there is
an equilibrium in Ωα, it is unique in Ωα and it at-
tracts every point in Ωα. In fact, if this equilibrium
is interior in Ωα, then it is a sink. If there is no equi-
librium in Ωα, then every orbit originating from Ωα

enters into a region which is more interior than Ωα.
Moreover, the α-limit set for an orbit passing Ωα is
either empty or belongs to a more interior region.
The situation is similar for Iα in a mixed region Ωα,
α ∈ Λm. If there is an equilibrium in Iα, then it at-
tracts every point in Iα. If there does not exist an
equilibrium in Iα, then every orbit originating from
Iα enters into a region Ωα which is more interior
than Ωα. Furthermore, the α-limit set for an or-
bit passing Iα is either empty or belongs to a more
interior region. Note that every point in E0 is an
equilibrium. Consider an arbitrary orbit γ : φ(t, x)
of (1). ω(γ), the ω-limit set of γ is bounded, in-
variant and contained in S. Let x∗ ∈ ω(γ). If x∗

is not an equilibrium, then φ(t, x∗) does not exist
as t → −∞, according to the above discussions on
the dynamics in each component of S. This contra-
dicts to the property of ω(γ). Thus, x∗ has to be
an equilibrium.

4. Sigmoidal Function of Type (I)

We consider (1) with sigmoidal function f of
type (I) in this section. The isolated condition for
each equilibrium can be completely characterized
by the interaction parameters A (i.e. independent
of f), if type (I) output function f is considered in
(1). In addition, since type (I) function belongs to
the set of type (III) functions, Proposition 3.1 con-
firms the quasi-convergence for the system. Herein,
it will be demonstrated that the complete stability
can be further concluded even if the equilibria ex-
ist as a continuum. We shall outline these results
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and lay emphasis on the local structure of the phase
space near a continuum of equilibria.

Firstly, we describe the existence for the three
types of equilibria. The existence of a saturated
equilibrium is exactly the same as (13). An interior
equilibrium of (1) x exists if x = x satisfies

xi −
n∑
k=1

Aikxk = bi , (22)

with |xi| < 1 for all i ∈ Nn. The existence for a
mixed equilibrium is as described in Sec. 3 except
that (15) is changed to

xi −
∑
k∈J0

Aikxk =
∑
k∈J1

Aikαk + bi , (23)

as well as (16) is replaced by

xi =
∑
k∈J1

Aikαk +
∑
k∈J0

Aikxk + bi . (24)

We represent the system of linear equations in (22)
by

M0x = b , (25)

and the one in (23) by

Mαw = cα . (26)

Note that Mα is formed from Aik, i, k ∈ J0;
cα depends on Aik, αk, bi for i ∈ J0, k ∈ J1;
w = {xi}i∈J0 . Due to the above arguments, the
equilibrium in a mixed region or the interior region
can appear as a continuum. However, for almost
all parameters, the equilibrium in each region Ωα is
unique and isolated, if it exists. These parameters
can be described as

{Aik, i, k ∈ Nn|det(M0) 6= 0 and

det(Mα) 6= 0 for every α ∈ Λm} ,

where M0 and Mα are given in (25) and (26) respec-
tively. The parameters {Aik, i, k ∈Nn} in this set
are called regular parameters.

The Liapunov function in (18) now takes the
following form for the sigmoidal function of type (I).

V (x) =

〈
y,

1

2
Sy− (Py + Sb)

〉

=
n∑
i=1

{
si

(
1

2
y2
i − biyi

)
−

n∑
k=1

pikyiyk

}
.

If the parameters are regular, then the components
of S are disjoint and (1) is completely stable. If the
parameters are not regular, then some of these com-
ponents are no longer disjoint. Nevertheless, (1) is
quasi-convergent according to Proposition 3.1. The
convergence of dynamics can further be concluded
by showing that the ω-limit set of every orbit con-
sists of a single equilibrium. Herein, we would like
to emphasize this property and present its details.

Proposition 4.1. The ω-limit set for every orbit of
(1) with the sigmoidal function of type (I) consists
of a single equilibrium.

Proof. We shall only prove the case that A is sym-
metric. A transformation as discussed in the next
section converts the matrices A satisfying (H1) and
(H2) into symmetric ones. It will be verified that,
if the parameters are not regular, there is exactly
one equilibrium in the ω-limit set for each orbit of
(1). Assume that there is a connected set of equi-
libria (a continuum of equilibria), denoted by Eα,
in a mixed region Ωα, α ∈ Λm. This occurs ex-
actly when Mα has zero eigenvalue and there exists
x satisfying (24) and (25) (i.e. (23)). If this is the
case and the kernel of Mα has dimension k, then
Eα is the intersection of Ωα and an k-dimensional
hyperplane in Rn. More precisely,

Eα =

x|x =
k∑
j=1

rjvj + c

 ∩Ωα , (27)

where rj ∈ R, c is some constant vector in Rn,
and each vj is an Rn vector with w = vj |J0 sat-
isfying Mαw = 0 for j = 1, 2, . . . , k. Here, vj|J0

represents the restriction of Rn vector vj to its J0

components. Equation (27) follows from the solu-
tion structures of the linear system (25). Notably,
by continuity of solutions satisfying (24) and (26),
the boundary point of the closure (relative to k-
dim. subspace topology) for this intersection is still
an equilibrium of (1), which belongs to Ωα or the re-
gions neighboring Ωα. Now, let us analyze the local
structures of the phase space near an equilibrium
x in the interior of Eα (k-dim. subspace topology).
Assume that |xi| 6= 1 for all i ∈ Nn. Notice that the
vector field F is smooth off {x : |xi| = 1 for some
i ∈ Nn}. Thus, we can consider the linearization
of F at x. Renaming the coordinates, DF(x) has a
matrix representation of the following form:

DF(x) =

[
−I C

0 Mα

]
, (28)
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Fig. 4. Local phase space decomposition around a contin-
uum of equilibria for (1) with sigmoidal output function of
type (I).

where I is the identity matrix of size ` × ` with
` = card(J1). Note that Mα is symmetric, since A
is symmetric. From (27) and (28), it can be verified
that for v with v|J0 ∈ kernel(Mα) and for small
δ, x + δv ∈ W c(x) if and only if x + δv ∈ Eα.
Let W c(x) (resp. Ec) and W su(x) (resp. Esu) be
the center and stable–unstable manifolds (resp. sub-
spaces) for x respectively. The phase space decom-
position at x then has a local structure: there is
a neighborhood U of x in Rn such that Rn =
Ec ⊕ Esu and Eα = (x + Ec) ∩ U = W c(x) ∩ U ,
(x +Esu)∩U = W su(x)∩U , see Fig. 4. This local
structure of phase space holds for every point in the
interior of Eα. If Eα is contained in {x : |xi| = 1 for
some i ∈ Nn}, the linearization at x is not available.
However, by combining a sequence of similar phase
space analysis, each time in a sector of Rn, simi-
lar local phase space structure along Eα can still be
obtained. Analogous arguments can verify the case
for a continuum of equilibrium in the interior region.
Also note that the equilibrium in an exterior region
is unique, if it exists. Therefore, in a neighborhood
of every interior point x of a connected set of equi-
librium, the phase flows do not wander around x.
Furthermore, if the phase flow approaches x, it ap-
proaches in the directions of W s(x). That there is
exactly one equilibrium in the ω-limit set for ev-
ery orbit of (1) can thus be seen from the scenario
of local phase space around Eα. Such a scenario
has been analyzed in various ordinary and partial
differential equations, see [Hale, 1992] and the ref-
erences therein. This completes the proof for this
proposition. �

5. Conclusions

Recently, a study in [Shih & Weng, 2000] has in-
dicated that the matrices satisfying (H1) and (H2),
called cycle-symmetric, can be characterized as ma-
trices which are similar to symmetric matrices by
real diagonal matrices. Restated, if A satisfies (H1)
and (H2), then there exists an invertible diagonal
matrix Q such that QAQ−1 is a symmetric matrix.
With this characterization, all the results in this
presentation can also be obtained by transforming
(1) to a similar system, but with symmetric inter-
action parameters. Let us elaborate on this formu-
lation. Let A = [Aik] be a cycle-symmetric matrix
and let Q be an invertible diagonal matrix such that
QAQ−1 = B with B = [bik], a symmetric matrix.
Denote the diagonal entries of Q by q1, q2, . . . , qn
where every qi is nonzero. Set u = Qx, that is,
ui = qixi for each i. Equations (1) in new variables
becomes

du

dt
= −u + Bf̃(u) + b̃ ,

where f̃(u) = (f̃1(u1), f̃2(u2), . . . , f̃n(un)), f̃i(ui) =
qifi(q

−1
i ui), and b̃ = Qb. Notably, if fi is of

type (II), then f̃i is also of type (II). If fi is of
type (I) or type (III), then f̃i is a rescaling of fi with
analogous sigmoidal configuration. Similar parti-
tioning of phase space as in Secs. 3 and 4 can be
performed to obtain Propositions 3.1 and 4.1.

We remark that in [Wu & Chua, 1997], a trans-
formation was proposed to extend the complete
stability to nonsymmetric A in (1). They con-
sidered matrices A with the property that there
exist diagonal matrices D = diag(d1, d2, . . . , dn)
and T = diag(τ1, τ2, . . . , τn) with diτi > 0 so that
DAT is symmetric. Computations show that such
matrices A are exactly the ones satisfying (H1) and
(H2).
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