Neural Comput & Applic (2001)10:214-230
Ownership and Copyright
© Springer-Verlag London Limited 2001

Neural
Computing
& Applications

A Robust Evolutionary Algorithm for Training Neural

Networks

Jinn-Moon Yang' and Cheng-Yan Kao?

'Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
*Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

A new evolutionary algorithm is introduced for
training both feedforward and recurrent neural net-
works. The proposed approach, called the Family
Competition Evolutionary Algorithm (FCEA), auto-
matically achieves the balance of the solution quality
and convergence speed by integrating multiple
mutations, family competition and adaptive rules.
We experimentally analyse the proposed approach
by showing that its components can cooperate with
one another, and possess good local and global
properties. Following the description of implemen-
tation details, our approach is then applied to sev-
eral benchmark problems, including an artificial ant
problem, parity problems and a two-spiral problem.
Experimental results indicate that the new approach
is able to stably solve these problems, and is very
competitive with the comparative evolutionary algor-
ithms.

Keywords: Adaptive mutations; Evolutionary algor-
ithm; Family competition; Multiple mutations; Neu-
ral networks

1. Introduction

Artificial Neural Networks (ANNs) have been
applied widely in many application domains. In
addition to approximation capabilities for multilayer
networks in numerous functions [1], ANNs avoid
the bias of a designer in shaping system develop-
ment owing to their flexibility, robustness and toler-

Correspondence and offprint requests to: J.-M. Yang, Department
of Biological Science and Technology, National Chiao Tung
University, Hsinchu, Taiwan. E-mail: moon@csie.ntu.edu.tw

ance of noise. Learning the weights of ANNs with
fixed architectures can be formulated as a weight
training process. This process is to minimise an
objective function in order to achieve an optimal
set of connection weights of an ANN which can be
employed to solve the desired problems.

The standard back propagation learning algorithm
[2] and many improved back propagation learning
algorithms [3,4] are the widely used approaches.
They are the gradient descent techniques which often
try to minimise the objective function based on the
total error between the actual output and the target
output of an ANN. This error is used to guide the
search of a back propagation approach in the weight
space. However, the drawbacks with a back propa-
gation algorithm do exist due to its gradient descent
nature. It may get trapped in a local optima of the
objective function, and is inefficient in searching for
a global minimum of an objective function which
is vast, multimodal and non-differentiable [5]. In
addition, the back propagation approach needs to
predetermine the learning parameters. Particularly,
these applications where gradient methods are not
directly applicable. Furthermore, from a theoretical
perspective, gradient methods often produce worse
recurrent networks than non-gradient methods when
an application requires memory retention [6].

An evolutionary algorithm is a non-gradient
method, and is a very promising approach for train-
ing ANNS. It is considered to be able to reduce the
ill effect of the back propagation algorithm, because
it does not require gradient and differentiable infor-
mation. Evolutionary algorithms have been success-
fully applied to train or evolve ANNs in many
application domains [5].

Evolutionary methodologies can be categorised as

A Robust Evolutionary Algorithm for Training Neural Networks

genetic algorithms [7], evolutionary programming
[8] and evolution strategies [9]. Applying genetic
algorithms to train neural networks may be unsatis-
factory because recombination operators incur sev-
eral problems, such as competing conventions [5]
and the epistasis effect [10]. For better performance,
real-coded genetic algorithms [11,12] have been
introduced. However, they generally employ ran-
dom-based mutations, and hence still require lengthy
local searches near a local optima. In contrast, evol-
ution strategies and evolutionary programming
mainly use real-valued representation, and focus on
self-adaptive Gaussian mutations. This type of
mutation has succeeded in continuous optimisation,
and has been widely regarded as a good operator
for local searches [8,9]. Unfortunately, experiments
[13] show that self-adaptive Gaussian mutation
leaves individuals trapped near local optima for
rugged functions.

Because none of these three types of original
evolutionary algorithms is very efficient, many
modifications have been proposed to improve the
solution quality, and to speed up convergence. In
particular, a popular method [14,15] is to incorporate
local search techniques, such as the back propagation
approach, into evolutionary algorithms. Such a
hybrid approach possesses both the global optimality
of the genetic algorithms, and also the convergence
of the local searches. In other words, a hybrid
approach can usually make a better trade-off
between computational cost and the global opti-
mality of the solution. However, for existing hybrid
methods, local search techniques and genetic oper-
ators often work separately during the search pro-
cess.

Another technique is to use multiple genetic oper-
ators [16,17]. This approach works by assigning a
list of parameters to determine the probability of
using each operator. Then, an adaptive mechanism
is applied to change these probabilities to reflect the
performance of the operators. The main disadvantage
of this method is that the mechanism for adapting
the probabilities may mislead evolutionary algor-
ithms toward local optima.

To further improve the above approaches, in this
paper a new method, called the Family Competition
Evolutionary Algorithm (FCEA), is proposed for
training the weights of neural networks. FCEA is a
multi-operator approach which combines three
mutation operators: decreasing-based Gaussian
mutation; self-adaptive Gaussian mutation; and self-
adaptive Cauchy mutation. The performance of these
three mutations heavily depends upon the same fac-
tor, called step size. FCEA incorporates family com-
petition [18] and adaptive rules for controlling step

215

sizes to construct the relationship among these three
mutation operators. Family competition is derived
from (1 + A)-ES [9], and acts as a local search
procedure. Self-adaptive mutation adapts its step
sizes with a stochastic mechanism based on perform-
ance. In contrast, decreasing-based mutation
decreases the step sizes by applying a fixed rate vy
where y < 1.

FCEA markedly differs from previous approaches,
because these mutation operators are sequentially
applied with an equal probability of 1. In addition,
each operator is designed to compensate for the
disadvantages of the others, to balance the search
power of exploration and exploitation. To the best
of our knowledge, FCEA is the first successful
attempt to integrate self-adaptive mutations and
decreasing-based mutations by using family compe-
tition and adaptive rules. Our previous work [19]
has demonstrated that FCEA is competitive with the
back propagation approach, and is more robust than
several well-known evolutionary algorithms for reg-
ular language recognition. In this paper, we modify
the mutations to train both feedforward and recurrent
networks for three complex benchmark problems.
Experimental results show that FCEA is able to
robustly solve these complex problems.

This paper is organised as follows. Section 2
describes the model of artificial neural networks
trained by our FCEA. Section 3 describes FCEA in
detail, and gives motivations and ideas behind vari-
ous design choices. Next, Section 4 investigates
the main characteristics of FCEA. We demonstrate
experimentally how FCEA balances the trade-off
between exploitation and exploration of the search.
In Section 5, FCEA is applied to train a recurrent
network for an artificial ant problem. Sections 6 and
7 present the experimental results of FCEA
employed to train feedforward networks for a two-
spiral problem and N parity problems, where N
ranges from 7 to 10. Conclusions are finally made
in Section 8.

2. Artificial Neural Networks

Figure 1 shows three general three-layer neural
architectures that are able to arbitrarily approximate
functions [1]. Figures 1(a) and (b) depict a fully
connected feedforward network and a fully connec-
ted feedforward network with shortcuts, respectively.
Figure 1(c) shows a fully connected recurrent neural
network with shortcuts. This network can be used
to save contextual information via internal states, so
that it becomes appropriate for tasks which must
store and update contextual information. A shortcut

216

N

h,
‘ X
()

\
S,

—shorteut link == recurrent link

Fig. 1. Three kinds of general three-layer neural networks. (a)
A fully connected feedforward network; (b) a fully connected
feedforward network with shortcuts; and (c) a fully connected
recurrent network with shortcuts.

is a connection link, which is directly connected
from an input node to an output node. In this paper,
our approach is applied to train the feedforward
network shown in Fig. 1(a) for parity problems, the
network shown in Fig. 1(b) with three hidden layers
for a two-spiral problem, and the recurrent network
shown in Fig. 1(c) for an artificial ant problem.

In FCEA, the formulation of training these archi-
tectures in Fig. 1 is similar. Thus, only the architec-
ture shown in Fig. 1(a) is considered when for-
mulating the problem of training the weights of an
ANN. Z, z,, ..., 7, and Y, yy, ..., y,,, are the inputs
with [elements and the outputs with m nodes,
respectively. The output values of the nodes in
the hidden layer and in the output layer can be
formulated as

I

hj:f(WijZi)» l=j=gq ()

and

Ve =f<2 w,kh,>, l<k=m)

respectively, where f is the following sigmoid func-
tion:

fop =0 +e ! 3

w;; denotes the weights between the input nodes and
hidden nodes, w; denotes the weights between the
hidden nodes and output nodes, and ¢ is the number
of hidden nodes.

Our approach is to learn the weights of ANNs
based on evolutionary algorithms. In FCEA, we
optimise the weights (e.g. w; and wy in Fig. 1(a))
to minimise the mean square error over a validation
set containing T patterns:

J.-M. Yang and C.-Y. Kao

Fig. 2. The competing conventions problem. The parents, (a) and
(b), perform the same function and exhibit the same fitness value.
Recombination creates an offspring (c) with two hidden neurons
that perform nearly the same function.

1 T m
F=o g kZ (YI) — O(I))? (4)

where m is the number of output nodes, and Y,(/)
and O,(l,) are the actual and desired outputs of the
output node k for the input pattern /.. The formu-
lation is used as the fitness function of each individ-
ual (an ANN) in FCEA, except for the artificial
ant problem.

Applying recombination operators to train neural
networks creates a particular problem called compet-
ing conventions [5]. Under these circumstances, the
objective function may become a many-to-one func-
tion, because different networks may perform the
same function and exhibit the same fitness value,
as illustrated by two examples shown in Figs 2(a)
and (b). Given two such networks, recombination
creates an offspring with two hidden neurons that
perform nearly the same function. The performance
of the offspring (Fig. 2(c)) is worse than its parents
(i.e. the networks shown in Figs 2(a) and (b)),
because it is unable to perform the function of
the other hidden neuron. The number of competing
conventions grows exponentially with the number
of hidden neurons [5].

3. Family Competition Evolutionary
Algorithm

In this section, we present details of the Family
Competition Evolutionary Algorithm (FCEA) for
training both feedforward and recurrent neural net-
works. The basic structure of the FCEA is as follows
(Fig. 3): N individuals (ANNs) are generated as
the initial population. Then FCEA enters the main
evolutionary loop, consisting of three stages in every
iteration: decreasing-based Gaussian mutation; self-
adaptive Cauchy mutation; and self-adaptive Gaus-
sian mutation. Each stage is realised by generating

A Robust Evolutionary Algorithm for Training Neural Networks

Family Competition FC_adaptive (P, M, L)

Initialise N ANNSs (P

Generate L ANNs from a
“family father” by applying
recombination and mutation A

Apply decreasing-based Gaussian mutation
(M, to FC_adaptive procedure with P and L,

to generate P,(g) with N ANNs
Select the best ANN from
Apply self-adaptive Cauchy mutation M, Repeat for these L ANNs
to FC_adaptive procedure with P (g) cach individuall T
and , to generate P,(g) with N ANNs (an ANN) in P If M is M, or M, then

T adaptive rules are applied to

Apply sclf-adaptive Gaussian mutation M, adapt the step sizes of
to FC_adaptive procedure with P,(g) and mutation opcrators
Lo generate P,,,, with N ANNs

next

Satisfy terminal

R > -
conditions L eturn the offspring population [

(b)
M: Mutation Operator (M, M,, or M,)
L: Family Competition Length (L, or L)
P (g) and P,(g) are quasi-population

’ Output the best solution

@

Fig. 3. Overview of our algorithm: (a) FCEA (b) FC_adaptive
procedure.

a new quasi-population (with N ANNs) as the parent
of the next stage. As shown in Fig. 3, these stages
differ only in the mutations used and in some
parameters. Hence, we use a general procedure,
‘FC_adaptive’, to represent the work done by
these stages.

The FC_adaptive procedure employs three para-
meters (the parent population (P, with N solutions),
mutation operator (M) and family competition length
(L)) to generate a new quasi-population. The main
work of FC_adaptive is to produce offspring, and
then conduct the family competition (Fig. 4). Each
individual in the population sequentially becomes
the ‘family father’. Here we use I' as the ‘family
father’ to describe the procedure of family compe-
tition. With a probability p., this family father and
another ANN (/},) randomly chosen from the rest
of the parent population are used as parents to do
a recombination operation. Then the new offspring
or the family father (if the recombination is not

N NL
[Recombine I and
Mutation
comine 04 | iution 00 1 | gy
f P competition
Recombine 7/ and -
1 with p, Mutation (M))
1 IN
Recgmbl.nel and Mutation (M)
¥ withp, Family
: ! competition
Recombine ¥V and
Mutation
12" with p, utation (1)

N: population size
p,: recombination rate
L: family competition length

Fig. 4. The main steps of the family competition.

217

conducted) is operated on by the mutation to gener-
ate an offspring (C'"). For each family father, such
a procedure is repeated L times. Finally, L ANNs
(C", ..., C') are produced, but only the one (C!-?*")
with the lowest objective value survives. Since we
create L ANNs from one ‘family father’ and perform
a selection, this is a family competition strategy.
We think this is a way not only to avoid the
premature, but also to keep the spirit of local search-
es.

After the family competition, there are N parents
and N children left. Based on different stages, we
employ various ways of obtaining a new quasi-
population with N individuals (ANNSs). For both
Gaussian and Cauchy self-adaptive mutations, in
each of the pairs of father and child, the individual
with a better objective value survives. This is the
so-called ‘family selection’. On the other hand,
‘population selection’ chooses the best N individuals
from all N parents and N children. With a probability
P,,, FCEA applies population selection to speed up
the convergence when the decreasing-based Gaus-
sian mutation is used. For the probability (1-P,,),
family selection is still considered. To reduce the
ill effects of greediness on this selection, the initial
P, is set to 0.05, but it is changed to 0.5 when the
mean step size of self-adaptive Gaussian mutation
is larger than that of decreasing-based Gaussian
mutation. Note that the population selection is simi-
lar to (u+w)-ES in the traditional evolution stra-
tegies. Hence, through the process of selection, the
FC_adaptive procedure forces each solution of the
starting population to have one final offspring. Note
that we create LN offspring in the FC_adaptive
procedure but the size of the new quasi-population
remains the same as N.

For all three mutation operators, we assign differ-
ent parameters to control performance. Such para-
meters must be adjusted through the evolutionary
process. We modify them first when mutations are
applied. Then, after the family competition is com-
plete, parameters are adapted again to better reflect
the performance of the whole FC_adaptive pro-
cedure.

In the rest of this section, we explain the chromo-
some representation and each important component
of the FC_adaptive procedure: recombination oper-
ators, mutation operations, and rules for adapting
step sizes (o, v and).

3.1. Chromosome Representation and
Initialisation

Regarding chromosome representation, we present
each solution of a population as a set of four n-

218

DN G M S G G
|LinkA LinkC | | LinkF |
(a) family parent a

lelcubl\’lbhhb Xzblczbl\’zblllbbl
Link D LinkB |
(b) parent b

loeelve]
| Link E |

Xsbl o5’ l(Vsa‘*“Vsb)Ql Ve
Link E |

xlal o/ |(\’1a+‘«’1b)/2l\lﬁE
| Link A

(c) offspring ¢

Fig. 5. Chromosome representation and recombination operators.
(a) and (b) represent the networks shown in Figs 2(a) and (b),
respectively; (c) is an offspring generated from (a) and (b) in
the self-adaptive Gaussian mutation stage.

dimensional vectors (x, o, v, i), where n is the
number of weights of an ANN. The vector x is the
weights to be optimised; o, v and ¢ are the step-sise
vectors of decreasing-based mutations, self-adaptive
Gaussian mutation, and self-adaptive Cauchy
mutation, respectively. In other words, each solution
x is associated with some parameters for step-sise
control. Figure 5 depicts three chromosome rep-
resentations which represent the respective networks
shown in Fig. 2. In these cases, n is 6. Here, the
initial value of each entry of x is randomly chosen
over [—0.1, 0.1], and the initial values of each
entries of the vectors o, v and ¢ are set to be 0.4,
0.1 and 0.1, respectively. For easy description of
the operators, we use a = (x4, 0% Vv,) to
represent the ‘family father’ and b = (x%, o, V%,
y?) as another parent (for the recombination operator
only). The offspring of each operation is represented
as ¢ = (x%, 0%, v, Yr). We also use the symbol x¢
to denote the jth component of an individual d, Vj
e {1, ..., n}.

3.2. Recombination Operators

FCEA implements two recombination operators to
generate offspring: modified discrete recombination;
and intermediate recombination [9]. With prob-
abilities 0.9 and 0.1, at each stage only one of the
two operators is chosen. Probabilities are set to
obtain good performance according to our experi-
mental experience. Here we again mention that
recombination operators are activated with only a
probability p.. The optimising connection weights
(x) and a step size (o, v or) are recombined in a
recombination operator.

J.-M. Yang and C.-Y. Kao

Modified discrete recombination: the original dis-
crete recombination [9] generates a child that
inherits genes from two parents with equal prob-
ability. Here the two parents of the recombination
operator are the ‘family father’ and another solution
randomly selected. Our experience indicates that
FCEA can be more robust if the child inherits genes
from the ‘family father’ with a higher probability.
Therefore, we modified the operator to be as fol-
lows:

’ &)
x? with probability 0.2

C —
X =

{x‘f with probability 0.8

For a ‘family father’, applying this operator in
the family competition is viewed as a local search
procedure, because this operator is designed to pre-
serve the relationship between a child and its ‘fam-
ily father’.

Intermediate recombination: we define intermediate
recombination as:

X =x+05x—x) and (6)

wi = wd + 0.5 W — w) (7

where w is v, o, or i based on the mutation operator
applied in the family competition. For example,
if self-adaptive Gaussian mutation is used in this
FC_adaptive procedure, x in Eqs (6) and (7) is v.
We follow the work of the evolution strategies
community [20] to employ only intermediate recom-
bination on step-size vectors, that is, o, v and .
To be more precise, x is also recombined when the
intermediate recombination is chosen.

Figure 5 shows a recombination example in the
self-adaptive Gaussian mutation stage. The offspring
(c¢) is generated from the ‘family father’ (a) and
another parent (b) by applying the modified discrete
recombination for the connection weights x and the
intermediate recombination for the step size v. In
other words, the o and ¢ are unchanged in the self-
adaptive Gaussian mutation stage.

3.3. Mutation Operators

Mutations are the main operators of the FCEA.
After recombination, a mutation operator is applied
to the ‘family father’ or the new offspring generated
by a recombination. In FCEA, the mutation is per-
formed independently on each vector element of the
selected individual by adding a random value with
expectation zero:

X = x; + wD(") ®)

where x; is the ith connection weight of ,, x; is the

A Robust Evolutionary Algorithm for Training Neural Networks

ith variable of x’ mutated from x, D(-) is a random
variable, and w is the step size. In this paper, D(:)
is evaluated as N(0, 1) or C(1) if the mutations are,
respectively, Gaussian mutation or Cauchy mutation.

Self-adaptive Gaussian mutation: we adapted
Schwefel’s [21] proposal to use self-adaptive Gaus-
sian mutation in training ANNs. The mutation is
accomplished by first mutating the step size v; and
then the connection weight x;:

ve exp[TN(O, 1) + 7N,(0, 1] ©9)
X = x4 + N0, 1) (10)

7

C
Vi

where N(0, 1) is the standard normal distribution.
N0, 1) is a new value with distribution N(0, 1)
that must be regenerated for each index j. For
FCEA, we follow Béck and Schwefel [20] in setting
rand 7 as (y2n) ! and (y2Vn) !, respectively.

Self-adaptive Cauchy mutation: a random variable
is said to have the Cauchy distribution (~C(1)) if it
has the following density function:

tlr

f(x;t)=m, —o < x <™ (11)

We define self-adaptive Cauchy mutation as follows:
P = Y exp[TN(O, 1) + TN,(0, 1)] (12)
X=X+) (13)

In our experiments, ¢t is 1. Note that self-adaptive
Cauchy mutation is similar to self-adaptive Gaussian
mutation, except that Eq. (10) is replaced by Eq.
(13). That is, they implement the same step-sise
control, but use different means of updating x.
Figure 6 compares the density functions of Gaus-
sian distribution (N(0, 1)) and Cauchy distributions
(C(1)). Clearly, Cauchy mutation is able to make a
larger perturbation than Gaussian mutation. This
implies that Cauchy mutation has a higher prob-

0.4 T T

Noymal Distribution with N(0,1) ——
0.35 Cauchy Distribution with t=1.0 -

03 |
0.25
02}
0.15 1
0.1

0.05

Fig. 6. Density function of Gaussian and Cauchy distributions.

219

ability of escaping from local optima than does
Gaussian mutation. However, the order of local
convergence is identical for Gaussian and spherical
Cauchy distributions, while non-spherical Cauchy
mutations lead to slower local convergence [22].

Decreasing-based Gaussian mutations: our decreas-
ing-based Gaussian mutation uses the step-sise vec-
tor o with a fixed decreasing rate y = 0.97 as fol-
lows:

o = yo© (14)
X = x4+ o°NyO, 1) (15)

J

Previous results [13] have demonstrated that self-
adaptive mutations converge faster than decreasing-
based mutations, but for rugged functions, self-
adaptive mutations are more easily trapped into local
optima than decreasing-based mutations.

It can be seen that step sizes are the same for
all components of x“* in the decreasing-based
mutation, but are different in the self-adaptive
mutations. This means two types of mutations have
different search behaviour. For decreasing-based
mutation, it is like we search for a better child in
a hypersphere centred at the parent. However, for
self-adaptive mutation, the search space becomes a
hyperellipse. Figure 7 illustrates this difference using
two-dimensional contour plots.

Fig.7. (a) and (b) show the difference of search space between
self-adaptive and decreasing-based mutations. Using two-dimen-
sional contour plots, the search space from parents are ellipses
and circles.

3.4. Adaptive Rules

The performance of Gaussian and Cauchy mutations
is largely influenced by the step sizes. FCEA adjusts
the step sizes while mutations are applied (e.g.
Egs (9), (12) and (14)). However, such updates
insufficiently consider the performance of the whole

220

family. Therefore, after the family competition, some
additional rules are implemented:

1. A-decrease-rule: immediately after self-adaptive
mutations, if the objective values of all offspring
are greater than or equal to that of the ‘family
father’, we decrease the step-sise vectors v
(Gaussian) or ¢ (Cauchy) of the parent:

wé = 0.97w¢ (16)

where w* is the step size vector of the parent.
In other words, if there is no improvement after
self-adaptive mutations, we may propose a more
conservative implementation. That is, a smaller
step size tends to result in a better improvement
in the next iteration. This follows the 1/5-success
rule of (1+A)-ES [9].

2. D-increase-rule: it is difficult, however, to decide
the rate vy of decreasing-based mutations. Unlike
self-adaptive mutations, which adjust step sizes
automatically, its step size goes to zero as the
number of iterations increases. Therefore, it is
essential to employ a rule which can enlarge the
step size in some situations. The step size of the
decreasing-based mutation should not be too
small when compared to the step sizes of self-
adaptive mutations. Here, we propose to increase
o if either of the two self-adaptive mutations
generates better offspring. To be more precise,
after a self-adaptive mutation, if the best child
with a step size v is better than its ‘family
father’, the step size of the decreasing-based
mutation is updated as follows:

a5 = max (¥, Bviean) (17)

where V5,.,, is the mean value of the vector v,
and B is 0.2 in our experiments. Note that this
rule is applied in stages of self-adaptive
mutations, but not of decreasing-based mutations.

From the above discussions, the main procedure of
FCEA is implemented as follows:

1. Set the initial step sizes (o, v and), family
competition lengths (L, and L,), and crossover
rate (p.). Let g = 1.

2. Randomly generate an initial population, P(g),
with N networks. Each network is represented as
o, o, v,), Vi e {1, 2, ..., N}.

3. Evaluate the fitness of each network in the popu-
lation P(g).

4. repeat
4.1 {Decreasing-based Gaussian mutation (M,,)}

e Generate a children set, C;, with N networks
by calling FC_Adaptive with parameters:
P(g), M,;, and L, That is, P(g) =
FC_Adaptive(P(g), M., L,).

J.-M. Yang and C.-Y. Kao

e Select the best N networks as a new quasi-
population, P,(g), by population selection
from the union set {P(g) U C, with prob-
ability P, or by family selection with 1
- P,

4.2 {Self-adaptive Cauchy mutation (M,)}: Gen-
erate a new children set, Cp by calling
FC_Adaptive with parameters: P,(g), M. and
L,. Apply family selection to select a new
quasi-population, P,(g), with N networks
from the union set {P,(g) U Cr.

4.3 (Self-adaptive Gaussian mutation (M,)}:
Generate a new children set, Cy, by calling
FC_Adaptive with parameters: P,(g), M, and
L,. Apply family selection to select a new
quasi-population, P,.,,, with N networks from
the union set P,(g) U Cy.

44 et g =g + 1 and P(g) = P,exr

until (termination criterion is met).
Output the best solution and the objective function
value.

On the other hand, the FC_adaptive proceeds
along the following steps:

{ Parameters: P is the working population, M is the
applied mutation (M,,, M, or M_.), and L denotes
the family competition length (L, or L,).}

1. Let C be an empty set (C = 6).
2. for each network a, called family father, in the
population with N networks
2.1 for [= 1 to L {Family Competition}
e Generate an offspring ¢ by using a recombi-
nation (¢ = recombination (a,b)) with prob-
ability p. or by copying the family father a
to ¢ (¢ = a) with probability 1 — p..
e Generate an offspring ¢; by mutating ¢ as
follows:
M, (c) if Mis M,,; {decreasing-based Gaussian mutation}
¢ = {Mg(c) if Mis M,;
MJ(c) ifMisM,

{self-adaptive Gaussian mutation}

{self-adaptive Cauchy mutation}

endfor
2.2 Select the one (c?*") with the lowest objective
value from c,, ..., ¢;. {family selection}

2.3 Apply adaptive rules if M is a self-adaptive
mutation operator (M, or M,)

e Apply A-decrease-rule to decrease the step
sizes (¢ or v) of M. or M, if the objective
value of the family father a is lower than c®**.
That is, w{ = 0.97wf.

e Apply D-increase-rule to increase the step size
(o) of M,, if the objective value of the family

A Robust Evolutionary Algorithm for Training Neural Networks

father a is larger than c*. That is, o7 =
max(a?", BUc,).

2.4 Add the ¢** into the set C.

endfor

Return the set C with N networks.

4. A Study of some Characteristics of
FCEA

In this section, we discuss several characteristics of
FCEA by numerical experiments and mathematical
explanations. First, we experimentally discuss the
effectiveness of using the family competition and
multiple mutations. Next, we explore the importance
of controlling step sizes and of employing adaptive
rules, i.e. A-decrease and D-increase rules.

To analyse FCEA, we study a 2-bit adder [23]
and a parity problem by using feedforward networks,
which are similar to Fig. 1(a). A 4-4-3 network is
employed to solve the 2-bit adder problem. The
fully connected ANN has 35 connection weights
and 16 input patterns. The output pattern is the
result of the sum of the two 2-bits input strings. In
addition, a 4-4-1 network is used for solving the
parity problem. The fully connected ANN has 25
connection weights and 16 input patterns. The output
value is 1 if there is an odd number of 1Is in the
input patterns.

Evolution begins by initialising all the connection
weights x of each network to random values
between -0.1 and 0.1. The initial values of step
sizes for decreasing-based Gaussian mutations, self-
adaptive Gaussian mutation and self-adaptive Cau-
chy mutation are set to 0.4, 0.1 and 0.1, respectively.
Table 1 indicates the settings of FCEA parameters,
such as the family competition length and the cross-
over rate (p.). L, and o are the parameters for the
decreasing-based mutation; L,, v and ¢ are for self-
adaptive mutations. The same parameter settings are
used for all testing problems studied in this work.

In this paper, S, denotes the percentage of an
approach classifying all training data correctly, and
FE denotes the number of average function evalu-

Table 1. Parameter settings and notations.

221

ations of an approach satisfying the terminal con-
ditions. That is, an approach correctly classifies all
training data or exhausts the number of maximum
function evaluations.

4.1. The Effectiveness of the Family
Competition

Because the family competition length is the critical
factor in FCEA, we investigate the influence of L,
and L, FCEA is implemented on the parity and 2-
bit adder problems on various family lengths, i.e.
L, = L, = L, where L ranges from 1 to 9. In other
words, the sums of the total length (i.e. L, + 2L,)
are from 3 to 27 in one generation. FCEA executes
each problem over 50 runs on each length. The
number of maximum function evaluations is
700,000. The S, and FE of FCEA are calculated
based on 50 independent runs. Figure 8(a) shows
that the performance of FCEA is unstable when the
total length is below 9 (L, + 2L, = 9), and FCEA
has the worst performance when both L, and L, are
set to 1. The performance of FCEA becomes stable
while the total length exceeds 15.

Figures 8(b) and 8(a) show that the FE of FCEA
is decreasing and the S, is increasing when the
family competition length (L) is increased from 1
to 4. On the other hand, the FE of FCEA is
increasing, but the S, is stable while both L, and
L, exceed 8. From the above observations, we know
that the family competition length is important for
our FCEA. Therefore, we set L, to 9 and L, to 6
for all testing problems studied in this paper.

4.2. The Effectiveness of Multiple Operators

Using multiple mutations in each iteration is one of
the main features of FCEA. With family selection,
FCEA uses a high selection pressure along with a
diversity-preserving mechanism. With a high selec-
tion pressure, it become necessary to use highly
disruptive search operators, such as the series of
three mutation operators used in FCEA. Using

Step Size Competition Recombination
Length Rate
Decreasing-based Gaussian mutation M, o 0.4 L, 6 De 0.2
Self-adaptive Gaussian mutation M, v 0.1 L, 9
Self-adaptive Cauchy mutation M.] 0.1 L, 9

222

2-bit adder

Convergence Rate (S,)

3 6 9 12 18 21 24 29

15
Total Length

(a) The convergence rates (S,)

J.-M. Yang and C.-Y. Kao

700000

600000

500000 1 2-bit adder

400000 | /

Evaluations (FE)

2 300000

Function

200000 4-bit parity

100000

0

3 6 9 12 15 18 21 24 29
Total Length

(b) The numbers of average function evalua-
tions (FE)

Fig. 8. The percentages (S,) of FCEA classifying all training data correctly and the numbers (FE) of average function evaluations of
FCEA on different family competition lengths. Each problem is tested over 50 runs for each length.

numerical experiments, we will demonstrate that the
three operators cooperate with one another, and
possess good local and global properties.

We compare eight different uses of mutation oper-
ators in Table 2. Each use combines some of the
three operators applied in FCEA: decreasing-based
Gaussian mutation (M,,); self-adaptive Cauchy
mutation (M,); and self-adaptive Gaussian mutation
(M,). For example, the M. approach uses only self-
adaptive Cauchy mutation; the M,, + M, approach
integrates decreasing-based Gaussian mutation and
self-adaptive Cauchy mutation; and FCEA is an
approach integrating M,,, M, and M,. The FCEA,,,
approach is a special case of FCEA without adaptive
rules, i.e. without the A-decrease-rule (Eq. (16)) and
D-increase-rule (Eq.(17)). Except for FCEA,,,, the
others employ adaptive rules. To have a fair com-
parison, we set the family competition length (L) of
all eight approaches to the same value. For example,
if L, =6 and L, = 9 in FCEA, L = 24 for one-
operator approaches (M,,, M. and M,) and L, = L,
= 12 for two-operator approaches (M,, + M., M,,
+ M, and M, + M,).

There are some observations from experimental
results:

1. Generally, strategies with a suitable combination

of multiple mutations (FCEA and M,, + M,)
perform better than unary-operator strategies, in
terms of the solution quality. However, the num-
ber of function evaluations does not increase
much when using multi-operator approaches.
Sometimes, the number even decreases (e.g.
FCEA verses M,,). Overall, FCEA has the best
performance and the number of function evalu-
ations is very competitive.

2. The adaptive rules applied to control step sizes
are useful according to the comparison of
FCEA,,., and FCEA. We made similar obser-
vations when FCEA was applied in global
optimisation [13].

3. Each mutation operator (M,,, M, and M,) has a
different performance. Table 2 shows that self-
adaptive mutations (M, and M,) outperform the
decreasing-based mutation (M,,) on training neu-
ral networks.

4. The approaches combining decreasing-based
mutation with self-adaptive mutation (M,, + M.
or M,, + M,) perform better than that combining
two self-adaptive mutations (M.+M,). These
results can be analysed as follows: Figure 7
indicates that the distribution of the one-step
perturbation of M,, is different from that of M,

Table 2. Comparison of various approaches of FCEA on the 2-bit adder problem and the parity problem. M, M. and

M, represent different mutations used in FCEA.

Problem FCEA FCEA,, M, M, M, My +M, Mg +M, M+M,

2-bits adder s, 96% 82% 0% 0% 40% 44% 72% 26%
FE> 258981 347905 700000 700000 581115 539842 330871 949585

parity S, 100% 96% 0% 70% 60% 94% 90% 80%
FE 112528 147905 700000 386558 507382 210999 269841 332265

45, denotes the percentage of an approach classifying all training data correctly.

°FE denotes the number of average function evaluations.

A Robust Evolutionary Algorithm for Training Neural Networks

or M,. The former approach (M,, + M, or M,,
+ M,) applies decreasing-based mutation with
large initial step sizes as a global search strategy
and the self-adaptive mutations with the family
competition procedure and replacement selection
as local search strategies. Therefore, we suggest
that a global optimisation method should consist
of both global and local search strategies.

4.3. Controlling Step Sizes

Numerical experiments in the previous subsection
have not fully shown the importance of controlling
the step sizes. Here we would like to further discuss
this issue by analysing the mean step sizes and the
mean expected improvement in the whole iterative
process. First, we denote A{O) as the mean value of
the step size of an operator O at the Tth generation:

AL0) = (i (Z wk,-)/n>/N (18)

k=1 ‘i=0

where N is the population size, n represents the
number of weights, and wy; is the step size of the
ith component of the kth individual in the popu-
lation. Thus, w is o for M, and is ¢ for M..
Secondly, we define E{O), the expected improve-
ment of all offspring, by an operator O at the
Tth generation:

EA0) = (E (Z max(0, flay) (19)

k=1 V=1
- f(ckl)))/L>/N

where L is the family competition length and ¢y, is
the /th child generated by the kth ‘family father’ a,.

Figures 9-14 show the curves of A;(O) and E(O)
on the 2-bit adder problem because FCEA, FCEA,,,,

Step Size

RIS S HE

v
Generations

Fig. 9. The average step sizes of various mutations in FCEA.

223

0.001

€ 0.0001 A K%

g

3

2

g

£

B3 0.00001 }

Q

&

"

0.000001 Lot LA L it
N \,,j\\ \,\Q ’»\Q q:\/e "fp ﬁ’,\)e ’\;\Q .‘X\Q ;]Q QQ ‘;\’Q «§\°
Generations

Fig. 10. The average expected improvements of various mutations
in FCEA.

0.1
Ar(My) in FCEA
0.01
8
2. 0001 | .
2 Ar(My) in FCEA ,
0.0001 | Ar(Mg)
0.00001
0.000001
K

O A A D DD DD O DN
FTEFTETPIISFFTLSTSE
Generations

Fig. 11. The average step sizes of decreasing-based Gaussian of
FCEA, FCEA,,., and M,,.

ner

0.1
. Ar(M,) in FCEA,, Ar(Mg)
N
w2
&
w
001 | S\
\3«\;
Ap(M,) in FCEA
0.001

I I I I N N R N N N N N N
AR S 2 S AR O DA AR A ST)

Generations

Fig. 12. The average step sizes of self-adaptive Gaussian
mutation of FCEA, FCEA,,, and M,.

M,, and M, have a greatly different performance
on it. Figures 9 and 10 illustrate the behaviour of
each mutation in FCEA, while Figs 11-14 present
A(0) and E4(O) of M,, and M, in three different
evolutionary processes: M,, or M, itself, FCEA, and
FCEA, .. We do not report M, in Figs 11-14

224

0.1

001 |
E .

g 0.000 | Er(My) in FCEA

g

é 0.0001 Er(Mag)

:§ 0.0000t

kS Er(My) inFCEA ,,

0.000001

0.0000001

S R N P N RN o
SRS P PSP S

Generations

Fig. 13. The average expected improvement of the decreasing-
based Gaussian mutation of FCEA, FCEA,,., and M,,.

ner

0.001

0.0001 Er(M,) in FCE4 E;(M,) in FCE4,,

3 ErM,)
£ o.00001 fP
E3 il
g i
: {
B 0.000001 |° I | M *
g . !
> U N
= e bt N b
TR TT ‘q
0.000000% al
C O 0 0 Q0 0 0 0 O Qo 0 O 0 0 o o o
e S A L SR A L 2 B N - e A A T S = o 5
- N M T O N0 N N N O 0N

Generations

Fig. 14. The average expected improvement of self-adaptive
Gaussian mutation of FCEA, FCEA,,, and M,.

because its behaviour is similar to M,. Some inter-
esting observations are given below.

1. The control of step sizes is important because the
performance of mutations used in FCEA heavily
depend upon step sizes based on Figs 9-14. For
example, Fig. 11 shows that the step sizes of
decreasing-based Gaussian mutations in FCEA,,..
and in M,, approach zero while the number of
the generations exceeds 450. Figure 13 shows
that their respective expected improvement also
approaches zero.

2. Self-adaptive mechanisms and family competition
are applied to adjust step sizes and to retain
children with better function values. From Fig.
9, it can be seen that, in FCEA, the step size of
M. is always smaller than that of M,. Note that
C(1) in Eq. (13) tends to be larger than N(O0, 1)
in Eq. (10). However, it seems that a small
perturbation from the parent decreases the func-
tion value more easily than a large one. For
example, Fig. 12 indicates that AxM,) in
FCEA,,, is larger than that in M,. Figure 14
shows that the respective Ex{(M,) in FCEA,,, is

J.-M. Yang and C.-Y. Kao

smaller than that in M,. Hence, a self-adaptive
mechanism and the family competition cause
children with smaller step sizes to survive after
Cauchy mutation.

3. FCEA performs better than FCEA,,.. due to the
implementation of the D-increasing and
A-decreasing rules. Figure 11 shows that the
average step size, Ar(M,) in FCEA, of the
decreasing-based mutation is controlled by the
D-increasing rule after the 120th generation. In
FCEA,,.,, the average step size is decreased with
a fixed rate and becomes very small because the
D-increasing rule is not applied. Furthermore,
Fig. 12 indicates that the average step size of
M, in FCEA,,, is larger than FCEA, because the
A-decreasing rule is not applied in FCEA,...
Figure 14 shows that Ex{(M,) in FCEA,., is
smaller than that in M,. These observations may
explain the effectiveness of adaptive rules.

4. The mutation operators used in FCEA have a
similar average expected improvement, although
their step sizes are different according to Figs
10 and 9. This implies that each mutation is able
to improve solution quality by adapting its step
sizes in the whole searching process.

In summary, the above discussion has shown that
the main ideas of FCEA, employing multiple
mutation operators in one iteration and coordinating
them by adaptive rules, are very useful.

4.4. Comparison with Related Works

Finally, we compare FCEA with three GENITOR
style genetic algorithms [23], including a bit-string
genetic algorithm (GENITOR), a distributed genetic
algorithm (GENITOR II) and a real-valued genetic
algorithm. GENITOR, proposed by Whitley et al.
[23] to train ANNSs, is one of the most widely used
genetic algorithms. GENITOR encoded weights as
a binary string to solve 2-bit adder problem. This
approach found solutions on 17 out of 30 runs, i.e.
S, = 56%, by using a population of 5000 and two
million function evaluations. GENITOR II [23] used
a combination of adaptive mutation and a distributed
genetic algorithm. It was able to increase the S, to
93% on a 2-bit adder problem. However, its popu-
lation size was also 5000, and the number of func-
tion evaluations also reached two million. A back
propagation method was implemented [23] to solve
the 2-bit adder problem, and its convergence rate
is 90%.

At the same time, Whitley et al. duplicated a real-
valued genetic algorithm, proposed by Montana and
Davis [16]. This algorithm is able to evolve both

A Robust Evolutionary Algorithm for Training Neural Networks

225

Table 3. Comparison of FCEA with three GENITOR style genetic algorithms, including GENITOR, GENITOR 1II and
real-value representation GENITOR on the 2-bit adder problem.

Problem FCEA GENITOR® GENITOR 1II Real-valued GENITOR
2-bits adder NS 96% 56% 93% 90%
FE® 258,981 2,000,000 2,000,000 42,500

a5, denotes the percentage of an approach classifying all training data correctly.

°FE denotes the number of average function evaluations.

¢All results of GENITOR style genetic algorithms are directly summarised from Whitley et al. [23].

the architecture and the weights. In this experiment,
the convergence (S,) is 90% on a 2-bit adder prob-
lem using a population of 50. The number of aver-
age function evaluations was 42,500.

In contrast to these approaches, FCEA needs
258,981 function evaluations, and the S, is up to
96% using small population size, i.e. 30. These
results are summarised in Table 3.

5. The Artificial Ant Problem

In this section, we study an artificial ant problem,
i.e. tracker task ‘John Muir Trail’ [24]. In this
problem, a simulated ant is placed on a two-dimen-
sional toroidal grid that contains a trail of food. The
ant traverses the grid to collect any food encountered
along the trail. This task requires us to train a
neural network (i.e. a simulated ant) that collects
the maximum number of pieces of food during the
given time steps. Figure 15 presents this trail. Each
black box in the trail stands for a food unit. Accord-
ing to the environment of Jefferson et al. [24], the
ant stands on one cell, facing one of the cardinal
directions; it can sense only the cell ahead of it.
After sensing the cell ahead of it, the ant must take

LY
111
I 11
:E T
T
I A
I D
I A O S 0 O O A

Fig. 15. The ‘John Muir Trail’ artificial ant problem. The trail
is a 32 x 32 toroidal grid where the right edge is connected to
left edge. The symbol M denotes a food piece on the trail, and
— denotes the start position and starting facing direction of
an ant.

one of four actions: move forward one step, turn
right 90°, turn left 90°, and no-op (do nothing). In
the optimal trail, there are 89 food cells, 38 no food
cells and 20 turns. Therefore, the number of mini-
mum steps for eating all food is 147 time steps.
To compare with previous research, we follow
the work of Jefferson et al. [24]. That investigation
used not only finite state machines and recurrent
neural networks to represent the problem, but also
a traditional bit-string genetic algorithm to train
the architectures. The recurrent network used for
controlling the simulated ant is the full connection
with shortcuts architecture shown in Fig. 1(c). Each
simulated ant is controlled by a network having two
input nodes and four output nodes. The ‘food’ input
is 1 when the food is present in the cell ahead of
the ant; and the second ‘no-food’ is 1 in the absence
of the food in the cell in front of the ant. Each
output unit corresponds to a unique action: move
forward one step, turn right 90°, turn left 90°, or
no-op. Each input node is connected to each of the
five hidden nodes and to each of the four output
nodes. The five hidden nodes are fully connected in
the hidden layer. Therefore, this architecture is a

S| T B EIE LRI EILY
L
b
r]
— [H 21 et
EAENEJES 16 = L 3 Er E3 A ED ED)
£ il = 5
kS) B £
3] 1 =)
1 k3 Wl AR P pa P 6l
i Talalaelal -
ARG 7
. A
14 5
T 7+ %
s il
T 3
3 AR O
% T
* &
21 &)
Ll IV I Erl
L)
T 51
i %0
T ¥
104+ | * 104 q 1o 10 | 9] EIEIE K

Fig. 16. A travelled solution of the ‘John Muir Trail’ within 195
time steps of a simulated ant controlled by our evolved neural
controller. The number in the cell is the order in which the ant
eats the food. The symbol * in the entry represents a cell
travelled by the ant.

226

J.-M. Yang and C.-Y. Kao

Table 4. Comparison among the genetic algorithm, evolutionary programming and our FCEA on the ‘John Muir Trail’
ant problem. The first number in parentheses is the number of runs finding all 89 food peices, and the second number

is the number of total runs.

Method N FE® Best performance Average performance
Genetic algorithms [24] 65536 6,553,600 89 N/A
Evolutionary programming [25] 100 184,250 82 81.5
FCEA 50 126,000 89 (20/25) 88.68
100 284,000 89 (24/25) 88.96

“N is the population size. N/A denotes the result not available in the literature.

°FE denotes the average numbers of function evaluations.

full connection with shortcuts recurrent neural net-
work; its total number of links with bias input is
72. To compare with previous results, the fitness is
defined as the number of pieces of food eaten within
200 time units.

Figure 16 depicts a typical search behaviour and
the travelled path of a simulated ant that is con-
trolled by our evolved neural network. The number
in the cell is the time step to eat the food. The
symbol * denotes a cell travelled by an ant when
the cell is empty. Figure 16 indicates that the ant
requires 195 time steps to seek all 89 food pieces
in the environment.

Table 4 compares our FCEA, evolutionary pro-
gramming [25], and genetic algorithm [26] on the
artificial ant problem. Jefferson et al. [24] used tra-
ditional genetic algorithms to solve the ‘John Muir
Trail’. That investigation encoded the problem with
448 bits, and used a population of 65,536 to achieve
the task in 100 generations. Their approach required
6,553,600 networks to forage 89 food pieces within
exactly 200 time steps. In contrast to Jefferson
et al.’s solution, our FCEA uses population sizes of
50 and 100, and only requires about 126,000 and
284,000 function evaluations, respectively, to eat 89
food pieces within 195 time steps. Table 4 also
indicates that FCEA performs much better than evol-
utionary programming [25], which uses a population
of 100, and the average number of function evalu-
ations is about 184,250. The best fitness value of
evolutionary programming is 82, and its solution
quality is worse than FCEA.

6. The Two-spiral Problem

In the neural network community, learning to tell
two spirals apart is a benchmark task which is an
extremely hard classification task [3,4,26,27]. The
learning goal is to properly classify all the training

data (97 points on each spiral, as shown in Fig.
17(a)) which lie on two distinct spirals in the x-y
plane. These spirals coil three times around the
origin and around one another. The data of the two-
spiral problem is electronically available from the
Carnegie-Mellon University connectionist bench-
mark collection. We follow the suggestion of Fahl-
man and Lebiere [3] to use 40-20-40 criterion. That
is, an output is considered to be a logical O if it
lies in [0, 0.4], to be a logical 1 if the output lies
in [0.6, 1.0], and indeterminate if it lies in [0.4,
0.6]. In the testing phase, 20,000 points are chosen
regularly from the space (i.e. —10 = x = 10 and
—10 = y = 10), and the output of the system is
defined as in the training phase.

Lang and Withbrock [26] used a 2-5-5-5-1 net-
work with shortcut connections. Each node is con-
nected to all nodes in all subsequent layers. With
one additional bias connection for each node, there-
fore, there is a total of 138 trainable weights in the
network. They employed the standard back propa-
gation approach to train this network, and considered
the task to be completed when each of the 194
points in the training set responded to within 0.4 of
its target output value.

We follow the work of Lang and Withbrock [26]
to solve the two-spiral problem by using the 2-5-5-
5-1 network. Equation (4) is employed as the fitness
function, and the population size is 30. A training
input pattern is classified correctly if the tolerance
of |Yi(I,) — O,(1)| is below 0.4, where 1 = k = m
and 1 = ¢t = T. In this problem, 7 is 194 and m
is 1, where Y (1), O\l,), T and m are defined in
Eq. (4). FCEA executes 10 independent runs, and
it successfully classifies all 194 training points in
seven runs. Figure 18 indicates a convergence curve
of FCEA for the two-spiral problem. It correctly
classifies 152 and 186 training points at the 5000th
and 15,000th generation, respectively; it required
25,300 generations to learn all 194 training points.

A Robust Evolutionary Algorithm for Training Neural Networks

(a) The training data set of two-spiral problem
with 194 examples

(¢) The classification at the 15000th generation
(learned points are 186)

227

-10 5 0 5 10

(b) The classification at the 5000th generation
(learned points are 152)

10

(d) The classification at the 25300th genera-
tion (learned points are 194)

Fig. 17. The two-spiral problem and classification solutions created by the ANNs evolved by FCEA at different numbers of

the generations.

0.25

0.2

o1 \\

0.05 \\w
T

0 T
0 5000 10000 15000 20000 25000
generations

fitness value

(a) Fitness value vs. generations

200

180 /v_’./.'”J

160 L

140

learned points

120

100

80

60
] 5000 10000 15000

generations

20000 25000

(b) Learned points vs. generations

Fig. 18. The convergence of FCEA for the two-spiral problem.

Figures 17(b)—(d) show the two-spiral response pat-
terns of FCEA at the 5000th, 15,000th and 25,300th
generation, respectively.

For every learning method, an important practical
aspect is the number of pattern presentations neces-
sary to achieve the necessary performance. In the
case of a finite training set, a common measure is

the number of cycles through all training patterns,
also called the epoch. Table 5 compares our FCEA
with previous approaches [3,4,26] on the two-spiral
problem based on the averaged number of epochs
and the ANN architectures. As can be seen, FCEA
needs more epochs than the constructive algorithm
[3,4], evolving both ANN architectures and connec-

228

J.-M. Yang and C.-Y. Kao

Table 5. Comparison FCEA with several previous studies in the two-spiral problem.

Method Number of epochs?® Hidden Nodes Number of
Connection weights®

Back propagation [26] 20000 15 138

Cascade-correlation [3] 1700 12-19 N/A®

Projection pursuit learning [4] N/A 11-13 187

FCEA (this paper) 27318 (generations) 15 138

“The values in ‘number of epochs’ and ‘connection weights’ are the average values.

®N/A denotes ‘not applicable’ in the original paper.

tion weights simultaneously, and its convergence
speed is also slower than the back propagation
approach.

In general, the performance of the back propa-
gation approach is more sensitive to initial weights
of an ANN than evolutionary algorithms. The archi-
tectures obtained by constructive algorithms seem to
be larger than the 2-5-5-5-1 network. To the best
of our knowledge, FCEA is the first evolutionary
algorithm to stably solve the two-spiral problem by
employing the fixed 2-5-5-5-1 network. FCEA is
also more robust than genetic programming [28]
whose learned points was about 180, on average.

7. The Parity Problems

In this section, FCEA trains feedforward networks
shown in Fig. 1(a) for N parity problems [3,29,30]
where N ranges from 7 to 10. All 2V patterns are
used in the training phase, and no validation set is
used. The learning goal is to train an ANN to
classify all training data, consisting of an N-binary
input data and a respective one-binary output for
each training data. The output value is 1 if there is
an odd number of 1s in the input pattern. We
employ an ANN with N input nodes, N or 2N

hidden nodes, and 1 output node. The amount of
training data and the connection weights of the N-
N-1 and N-2N-1 architectures are summarised in
Table 6. FCEA employs the same parameter values
shown in Table 1, except that population size is 30.
The fitness function is defined as in Eq. (4). A
training input pattern is classified correctly if the
tolerance of |Yi(I,) — O«1)| is below 0.1 for each
output neuron, where Y(I,) and O«I,) are defined in
Eq. (4). Then, a network is convergent if a network
classifies all training input patterns (i.e. 2%).

The experimental results of FCEA are averaged
over ten runs for Parity-7 and Parity-8; and five
runs for Parity-9 and Parity-10. These results are
summarised in Table 6. The convergent rates (S,)
are 100% for parity problems with a different prob-
lem size when FCEA uses the N-2N-1 architectures.
On the other hand, the S, exceeds 60% if FCEA
employs the N-N-1 architectures.

Tesauro and Janssens [29] used the back propa-
gation approach to study N parity functions. They
employed an N-2N-1 fixed network to reduce the
problems of getting stuck in a local optimum for N
ranging from 2 to 8. They required an average of
781 and 1953 epochs, respectively, for the Parity-
7 and Parity-8 problems. FCEA can obtain 100%
convergent rates for the N-2N-1 architectures, and

Table 6. Summary of the results produced by FCEA on the N parity problems by training N-N-1 and N-2N-1
architectures. All results are averaged over 10 independent runs.

Problem Number of N-N-1 N-2N-1
training data

Number of Average S, (%)* Number of Average S, (%)

connections generations connections generations
Parity-7 128 64 1052 90 127 1050 100
Parity-8 256 81 3650 80 161 1360 100
Parity-9 512 100 6704 80 199 4072 100
Parity-10 1024 121 9896 60 241 7868 100

4§, denotes the percentage of successfully classifying all training data for FCEA on ten independent runs for Parity-7 and Parity-8;

and on five independent runs for Parity-9 and Parity-10.

A Robust Evolutionary Algorithm for Training Neural Networks

229

Table 7. Comparison of FCEA with several previous approaches on various parity functions based on epochs.

Problem FCEA Back propagation [28] EPNet [29]
Number of Average Number of Number of Number of Number of
links generations links epochs links epochs
Parity-7 64 1052 127 781 34.7 177417
Parity-8 81 3650 161 1953 55 249625
Parity-9 100 6704 N/A® N/A N/A N/A
Parity-10 121 9896 N/A N/A N/A N/A

“N/A denotes ‘not applicable’.

90% for the N-N-1 architectures on these two prob-
lems. EPNet [30] is an evolutionary algorithm based
on evolutionary programming [8] and combines the
architectural evolution with the weights learning. It
only evolves feedforward ANNs which are general-
ised multilayer perceptrons. EPNet can evolve a
network whose hidden nodes are 4.6 and connection
weights are 55 on average for the Parity-8 problem.
FCEA requires 1052 and 3650 generations for the
Parity-7 and Parity-8 problems, respectively. FCEA
is also able to robustly solve the Parity-9 problem
and the Parity-10 problem. Table 7 summarises
these results.

8. Conclusions and Future Works

This study demonstrates that FCEA is a stable
approach to training both feedforward and recurrent
neural networks with the same parameter settings
for three complex problems: the artificial ant prob-
lem, the two-spirals problem, and parity problems.
Our experience suggests that a global optimisation
method should consist of both global and local
search strategies. For our FCEA, the decreasing-
based mutation with large initial step sizes is the
global search strategy; the self-adaptive mutations
with the family competition procedure and replace-
ment selection are the local search strategies. Based
on the family competition and adaptive rules, these
mutation operators can closely cooperate with one
another.

The experiments on the artificial ant problem
verify that the proposed approach is very competi-
tive with other evolutionary algorithms, including
genetic algorithms and evolutionary programming.
Although FCEA requires more training time than
back propagation, FCEA employs the same para-
meter settings and initial weights to train the neural
architectures for the two-spirals problem and parity
problems. We believe that the flexibility and robust-
ness of our FCEA makes it a highly effective global

optimisation tool for other task domains. According
to the experimental results, using an evolutionary
algorithm as a replacement for back propagation
approach does not seem to be competitive with the
best gradient methods (e.g. Quickprop [3]). How-
ever, evolutionary algorithms may be a promising
learning method when the gradient or error infor-
mation is not directly applicable, such as in the
artificial ant problem.

We believe that FCEA can be applied to real-
world problems, because FCEA trains both feedfor-
ward and recurrent neural networks with the same
parameter values for applications in this paper.
Recently, we have studied FCEA to train neural
networks on several real-world problems, such as
the classification of sonar signals [31], and gene
prediction [32]. Our proposed approach was also
successfully applied to global optimisation [13] and
flexible ligand docking [33] for structure-base drug
design.

To further improve the performance qualities of
the FCEA, several modifications and extensions
should be investigated in the future. We will extend
FCEA to automatically evolve both architectures
and connection weights simultaneously, because to
design a near optimal ANN architecture for some
application domains is an important issue. Then, a
flexible mechanism is considered to adapt the family
competition lengths to improve the performance
according to the performance improvement of
mutations and the morphology of the landscape.
Finally, we will investigate FCEA on applications
where gradient methods are not directly applicable.

References

1. Hornik K. Approximation capabilities of multilayer
feedforward networks. Neural Networks 1991; 4:
251-257

2. Rumelhart DE, Hinton GE, Williams RJ. Learning
internal representations by error propagation. In: DE
Rumelhart, JL McClelland, editors, Parallel Distributed

230

10.

11.

12.

13.

14.

15.

16.

17.

18.

Processing: Explorations in the Microstructures of
Cognition. MIT Press 1986; 318-362

. Fahlamn SE, Lebiere C. The cascade-correlation learn-

ing architecture. In: DS Touretzky, editor, Advances
in Neural Information Processing Systems II. Morgan-
Kaufmann, 1990; 524-532

. Hwang J-N, You S-S, Lay S-R, Jou I-C. The cascade-

correlation learning: A projection pursuit learning per-
spective. IEEE Trans Neural Networks 1996; 7(2):
278-289

. Schaffer JD, Whitley D, Eshelman LJ. Combinations

of genetic algorithms and neural networks: A survey
of the state of the art. Proc Int Workshop on Combi-
nations of Genetic Algorithms and Neural Networks
1992; 1-37

. Bengio Y, Simard P, Frasconi P. Learning long-term

dependencies with gradient descent is difficult. IEEE
Trans Neural Networks 1994; 5(2): 157-166

. Goldberg DE. Genetic algorithms in Search, Optimis-

ation and Machine Learning. Addison-Wesley, 1989

. Fogel DB. Evolutionary Computation: Toward a New

Philosophy of Machine Intelligent. IEEE Press, 1995

. Biéck T. Evolutionary Algorithms in Theory and Prac-

tice. Oxford University Press, 1996

Davidor Y. Epistasis variance: Suitability of a rep-
resentation to genetic algorithms. Complex Systems
1990; 4: 368-383

Eshelman LJ, Schaffer JD. Real-coded genetic algor-
ithms and interval-schemata. In: LD Whitley, editor,
Foundation of Genetic Algorithms 2. Morgan Kauf-
mann, 1993; 187-202

Miihlenbein H, Schlierkamp-Voosen D. Predictive
models for the breeder genetic algorithm I. Continuous
parameters optimisation. Evolutionary Computation
1993; 1(1): 2449

Yang J-M, Kao C-Y. Integrating adaptive mutations
and family competition into genetic algorithms as
function optimizer. Soft Computing 2000; 4(2): 89—102
Hart WE. Adaptive global optimisation with local
search. PhD thesis, University of California, San
Diego, 1994

Kitano H. Empirical studies on the speed of the
convergence of neural network training using genetic
algorithms. Proc Int Conf on Artificial Intelligence
1990; 789-795

Montana DJ, Davis L. Training feedforward neural
networks using genetic algorithms. Proc Eleventh Int
Joint Conf on Artificial Intelligence 1989; 762-767
Xiao J, Michalewicz Z, Zhang L, Trojanowski K.
Adaptive evolutionary planner/navigator for mobile
robots. IEEE Trans Evolutionary Computation 1997,
1(1): 18-28

Yang J-M, Chen Y-P, Horng J-T, Kao C-Y. Applying

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

J.-M. Yang and C.-Y. Kao

family competition to evolution strategies for con-
strained optimisation. In: Angeline PJ, Reynolds RG,
McDonnell JR, Eberhart R, editors, Lecture Notes in
Computer Science 1213. 1997; 201-211

Yang J-M, Kao C-Y, Horng J-T. Evolving neural
induction regular languages using combined evolution-
ary algorithms. Proc 9th Int Conf on Artificial Intelli-
gence 1996; 162-169

Bick T, Schwefel H-P. An overview of evolution
algorithms for parameter optimisation. Evolutionary
Computation 1993; 1(1): 1-23

Schwefel H-P. Numerical Optimisation of Computer
Models. Wiley, 1981

Rudolph G. Local convergence rates of simple evol-
utionary algorithms with cauchy mutations. IEEE
Trans Evolutionary Computation 1997; 1(4): 249-258
Whitley D, Starkweather T, Bogart C. Genetic algor-
ithms and neural networks: Optimizing connections
and connectivity. Parallel Computing 1990; 14: 347-
361

Jefferson D, Collins R, Cooperand C, Dyer M, Flowers
M, Korf R, Taylor C, Wang A. Evolution as a theme
in artificial life: The genesys/tracker system. Artificial
Life II: Proc Workshop on Artificial Life 1990;
549-577

Angeline PJ, Saunders GM, Pollack JB. An evolution-
ary algorithm that constructs recurrent neural net-
works. IEEE Trans Neural Networks 1994; 5(1):
54-65

Lang KJ, Witbrock MJ. Learning to tell two spirals
apart. Proc Connections Models Summer School.
Morgan Kaufmann 1988; 52-59

Smieja F. The pandemonium system of reflective
agents. IEEE Trans Neural Networks 1996; 7(1):
97-106

Juilld H, Pollack JB. Co-evolving intertwined spirals.
Proc Fifth Annual Conference on Evolutionary Pro-
gramming 1996

Tesauro G, Janssens B. Scaling relationships in back-
propagation learning. Complex Systems 1988; 2: 39—
84

Yao X, Liu Y. A new evolutionary system for evolv-
ing artificial neural networks. IEEE Trans Neural Net-
works 1996

Gorman RP, Sejnowski TJ. Analysis of hidden units
in a layered network trained to classify sonar targets.
Neural Networks 1988; 1: 75-89

Xu Y, Mural RJ, Einstein JR, Shah MB, Uberbacher
EC. Grail: A multi-agent neural network system for
gene identification. Proc IEEE 1996; 84(10): 1544-
1552

Yang J-M, Kao C-Y. Flexible ligand docking using a
robust evolutionary algorithm. J Computational Chem-
istry 2000; 21(11): 988-998

