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Control System Design for a Rapid Thermal
Processing System

Ching-An Lin and Yaw-Kuen Jan

Abstract—This paper proposes a control system design for a
rapid thermal processing (RTP) system, which has four circular
concentric lamp zones and four temperature sensors. The control
system consists of a least square feedforward controller and an
output feedback proportional plus integral (PI) controller. The
goal is to maintain uniform temperature tracking for typical
ramp-up and hold-steady profiles. A high-order nonlinear model
describing the temperature dynamics of the rapid thermal
processing (RTP) system is used for the feedforward controller
design. A balanced reduced model, obtained from a linear model
around a desired uniform steady-state temperature, is used for
the design of the multiinput–multioutput (MIMO) PI controller.
The PI controller gain matrices are designed using an LQR-based
procedure. Tradeoff between robustness and performance of the
system is discussed. Simulation results show the control system
designed yields robust temperature tracking with good uniformity
for a wide temperature range.

Index Terms—Output feedback, proportional plus integral (PI)
controller, rapid thermal processing (RTP), reduced order system,
single-wafer process, temperature control, temperature measure-
ment.

I. INTRODUCTION

RAPID thermal processing (RTP) is a relatively new man-
ufacturing technology that is applied in the processing of

silicon and gallium arsenide wafers [1], [2]. Maintaining wafer
temperature uniformity while following fast temperature trajec-
tories is a key requirement for RTP systems. Many approaches
have been proposed for temperature control system design. For
example, internal model control with gain-scheduling proposed
by Schaperet al. [3]–[5], the quadratic dynamic matrix con-
trol (QDMC) strategy with successive linearization proposed by
Stuberet al. [6], closed-loop adaptive control [7], decentralized
control [8], and control by iterative learning [9]. It is generally
agreed that multizone multisensor feedback control is necessary
to meet the stringent uniformity requirement especially when
the wafer becomes bigger. For real-time implementation, it is
also very desirable to have a simple controller that is not too dif-
ficult to tune. The decentralized control with steady-state model
proposed in [8] can be viewed as an effort in this direction.

This paper proposes a control system design method for
an RTP system with four concentric lamp zones. The control
system consists of a feedforward least square open-loop
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controller and a simple proportional integral (PI) feedback
controller. One of the advantages of a PI controller is its
simplicity: the controller order equals to the sensor number.
It is also suitable for ramp-up and hold-steady temperature
commands typical for RTP processes. The proposed design
method involves establishing a model based on the uniform
steady state, model reduction via balanced realization, and an
LQR design for choosing the gain matrices. Robustness of the
design is guaranteed by imposing a constraint, based on model
reduction error, on the design requirement. Design tradeoff
between dynamic performance and robustness is achieved
by choosing the parameters in the LQR performance index.
The controller designed is simple and the PI gain matrices
can be easily tuned. Simulation results show that the control
system designed yields robust temperature tracking with good
uniformity over a wide range of temperature.

We consider an RTP system which has a circular chamber and
four concentric lamp zones. A simplified schematic of the RTP
system is shown in Fig. 1 [10]. The lamp configuration has been
optimally designed for maintaining uniform temperature on the
wafer. A detailed design procedure can be found in [10].

By dividing the wafer into concentric zones, starting from
the center, and assuming that the temperature and the radiosity
over each zone are uniform, we obtain a high-order nonlinear
state equation in matrix form

...
...

...

...
...

... (1.1)

where , denotes the temperature of
the th wafer zone, and is the temperature of wafer edge,

, is the heat flux generated by theth lamp,
, is the ambient temperature of theth

wafer zone, matrix describes the effect of conduction,
matrices and describe the effect of radiation including
reflection of the chamber wall, and matrix describes the
convective heat transfer. A detailed derivation of (1.1) can be
found in [11]. These matrices depend on the distribution of
wafer temperature. In the design example, we take
for a 200-mm wafer.

This paper is organized as follows. Section II describes the
control system structure. Section III establishes the relation be-
tween sensor locations and steady-state performance and pro-
poses a method to determine good sensor locations. Section IV
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Fig. 1. A simplified schematic of the RTP system.

discusses the design of PI controller gain matrices. Design pro-
cedure and simulation results are given in Section V. Section VI
provides a brief conclusion.

II. CONTROL SYSTEM STRUCTURE

The block diagram of the proposed control system is shown in
Fig. 2. We use the open-loop feedforward control law proposed
in [10], that is

...
...

...

(2.1)

where is the desired temperature trajectory. As seen in
[10], a criterion for choosing a lamp configuration, which de-
termines , is to make the equation error

...
...

... (2.2)

small. To make the equations compact, we also define the fol-
lowing variables:

...
...

...
...

... and

...

in Fig. 2. The control input is the sum of the open-loop
control , defined in (2.1), and an additional input (to
be provided by feedback), i.e.,

Fig. 2. The RTP system with feedforward and PI feedback control.

We measure the wafer temperature at four points (zones).
Thus the measured output is

where is a matrix with all zero entries except a one
in each row indicating the measurement location. Let

be the temperature error at the measured loca-
tions. Thus

(2.3)

The PI controller is described by

(2.4)

where the constant matricesand are proportional gain and
integral gain, respectively, to be designed.

Let be the temperature error vector. From
(1.1) and (2.2), the equation describing the dynamics ofis

(2.5)

where we have (2.6)–(2.8), shown at the bottom of the next page.
Typical desired temperature trajectory in many RTP ap-
plications can be characterized as a ramp at a constant positive
slope followed by a hold [3]. Since the matrices and
in (1.1) and hence (2.2) depend only on the temperature of the
wafer, if the wafer temperature has uniformly reached the de-
sired steady state, that is, the final value of , then these
matrices become constant. Hence, in the sequel we will take
them as constant matrices corresponding to a specified steady-
state (final) value of . To simplify further, we take

where is the final value of .
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Thus (2.5) gives a linear time-invariant model for the dy-
namics of the RTP system, where is the disturbance term
which takes the convection effect into account. This is the model
we will use in the design of sensor locations and the PI con-
troller. Later in simulations, to verify the design, the nonlinear
high-order model (1.1) will be used.

Combining (2.3) through (2.5), the dynamic model of the
closed-loop system is

(2.9)

where

(2.10)

III. SENSORLOCATIONS AND STEADY-STATE PERFORMANCE

In this section we show that as long as the closed-loop system
is stable, the steady-state temperature error is completely de-
termined by the sensor locations and we propose a method to
choose good sensor locations. Thus the subsequent design of
the gain matrices and would not affect the steady-state
performance.

Consider the closed-loop RTP system (2.9). Suppose the ma-
trices and have been chosen so that the system is stable.1

Assume that the disturbance , a constant vector, as
. We note that in view of (2.8) and (2.2), this assumption

is equivalent to that the ambient temperature approaches
constant steady state as .

We note first that closed-loop stability implies that , in
(2.10), is nonsingular, which in turn implies that, the inte-
gral gain matrix, is nonsingular. It is intuitively clear that
must be nonsingular, otherwise a linear combination of the in-
tegrator states would be unstable and unobservable. Let

and . From (2.5) and (2.4), we
have

and (3.1)

It then follows that the closed-loop steady-state temperature
error is given by

(3.2)

1We will use “stable” to mean “asymptotically stable.”

where , provided that is nonsingular.
We note that, from (2.5), is the open-loop steady-state tem-
perature error and that is nonsingular means that the
RTP system has no transmission zero at dc. Since and
are fixed, the steady-state erroris completely determined by

and is independent of and . Let
, be the location indexes of wafer

temperature to be measured. A criterion to choose, and hence
, is to make , where denotes the infi-

nite norm of a vector.
Let denote the th row of . Then ,

is the th row of . We think of the th row of
as the coefficients of expressed as a

linear combination of . Therefore, from (3.2),
if , satisfies

(3.3)

then the th entry of in (3.2) satisfies

(3.4)

This means that if one row of is interpolated from th
and th rows of , then the corresponding entry of the
closed-loop steady-state error is the deviation of corresponding
entry of from a value interpolated accordingly fromth and

th entries of . This generally has the effect of making the
curve of smoother than that of . The proposed method of
choosing , is as follows. First, let be the
th column of and plot , with respect

to entry index . Second, let
and find indexes and to separate these curves so that
all broken segments between each two neighboring indexes are
nearly straight. These indexes , are then col-
lected as if the resultant matrix is nonsingular. This
approach is especially suitable when the associated broken seg-
ments of are also nearly straight, as will be seen from the
example in Section V.

IV. DESIGN OFGAIN MATRICESBASED ON A REDUCEDMODEL

In this section we propose an LQR-based method for de-
signing the gain matrices and . We first obtain a reduced-
order model from the high-order linear system (2.5) and (2.3)
via balanced realization [12]. The design problem is cast as an

(2.6)

...
...

...
...

. . .
. . .

(2.7)

and

(2.8)
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optimal LQR state feedback problem. Design parameters are in-
cluded in the quadratic performance index to allow tradeoffs be-
tween speed of response and robustness.

A. Reduced Order Model and Robustness Condition

Consider the open-loop controlled RTP system described by
(2.5) and (2.3). The system is stable and, with the disturbance

neglected, is described by

(4.1)

The corresponding transfer matrix is .
Let

be the Hankel singular values of the system (4.1) [12].
Let the reduced-order system obtained from (4.1) via balanced
realization, by keeping states, be

(4.2)

where and are the state, input, and output, re-
spectively. The reduced-order system is stable with transfer ma-
trix . It is well known that the
model reduction error satisfies [12]

(4.3)

where .
Consider now the PI controller for the reduced-order system

(4.2) defined by the state equation

(4.4)

where is the state of the controller. If the closed-loop
system described by (4.2) and (4.4) is stable, then the
closed-loop system with the original plant (4.1) and the same
controller ( and ) would be stable, provided [13]

(4.5)

where

B. Design of and

We now consider the design of and . If we take as
the state of the closed-loop system (4.2) and (4.4), the equation
can be written in state feedback form. More precisely, we have

and

where

and

Let the LQR cost function be

(4.6)
where and are weighting parameters to be adjusted to meet
transient and robustness requirements. For eachand , there
corresponds an optimal control law

which minimizes (4.6). The unique state feedback gain matrix
can be computed by solving a matrix algebraic Riccati equa-

tion [14]. Since is stable [14], is stable if there
exist and such that . And this is true if is
square and nonsingular, since we can set and

where .
If is not square and is nonsingular, based on a least

square approximation of to , we let

and (4.7)

Controller gain matrices thus designed will give a property that a
performance index of the original system
is determined only by the value of the weighting parameter.
We will prove this in the next section. Suppose the dimension
of is with . The following proposition gives
a sufficient condition for to be nonsingular. A proof of
which can be found in [11].

Proposition 4.1: Let the singular values of the matrix
be with . If

then is nonsingular.
For given , since is uniquely determined (and thus are

and ) by the given and , it remains to see how to choose
and such that (4.5) is satisfied and the dynamic performance
has the desired transient property.

C. Performance Analysis

We will first show that the dynamic performance is closely
related to , the weighting parameter associated with the inte-
gral error. From (3.1), and is
independent of and . And we also have

(4.8)

where and are states of the original system (2.9). The
dependence of the dynamic performance onis described by
the following proposition.
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Proposition 4.2: Consider the system (2.9). Supposeis
designed as (4.7). Then

(a)

(b)

Proof: Assertion (a) follows from the Riccati equation as-
sociated with the LQR problem and (b) follows from (a) and
(4.8).

Remark: Condition (b) shows that is
inverse proportional to .

Note that the cost function in (4.6) is equal to

With such a cost function, small and generally give small
. Since roughly is the gain from the ref-

erence input to the control input, small and give small
. Hence if has been designed large enough to get small

and good transient response, we need to
reduce in order to reduce the value of .

To summarize, when sensor locations have been determined,
the following conditions are required for stability: 1) is
nonsingular; 2) is stable; and 3) (4.5) must be satisfied in
designing controller gain matrices. Note that if is square and
nonsingular, is always stable. If is not square, we need
to check that is nonsingular and the corresponding
is stable. To satisfy condition 3) we should decrease; to satisfy
the requirement on dynamic performance we should increase.

V. DESIGNPROCEDURE ANDSIMULATION RESULTS

A. Design Procedure

The design procedure for the PI controller is summarized as
follows.

Step 1) Use the method proposed in Section III to choose,
the sensor locations.

Step 2) Find the smallest singular value of the matrix
and perform balanced realization on

to get . Let be the smallest
satisfying and . Assign
the dimension of the reduced order system as.

Step 3) Extract the reduced order system from the balanced
realization of . Choose small and large
(with ) for the cost function given in (4.6).
Assign factors and with .

Step 4) Find the optimal which minimizes the cost func-
tion. Assign gain matrices and as in (4.7). Com-
pute .

Step 5) Decrease and repeat Step 4) until the value of
does not change significantly asdecreases.

Step 6) The design is completed if

and is stable. Otherwise

i) If then decrease
and go to Step 4).

ii) If then increase
and go to Step 4).

iii) If is not stable then increase the dimen-
sion of the reduced-order system by one and
go to Step 3).

Remark: (a) Note that in Step 3) we assign factorsand
to make the adjustment of stop at a condition of

(b) In Step 2), the dimensioncan be arbitrarily chosen from
the integer set .

B. Simulation Results

The lamp configuration in [10] is used to simulate the per-
formance of the proposed control system. The simulations for
both closed-loop and open-loop controlled systems are based
on the high-order nonlinear model with the effect of convection
included. The physical parameters of the system under study
are the following. 1) The thickness of the 200 mm wafer is 1
mm. The wafer has a total emissivity 0.7 and it is divided into
101 concentric zones. 2) The widths of the ring-type lamps and
lamp 4 are fixed at 10 mm and the radius of the disk-type lamp
1 is 25 mm. 3) The radius of the chamber is 180.5 mm and this
also is the radius of lamp 4. The height and radius of lamp 3
is 26 mm and 100 mm, respectively. The height and radius of
lamp 2 is 87.9 mm and 84.2 mm, respectively. The wall and
ceiling of the chamber have an emissivity of 0.5 except for these
areas occupied by lamps. The chamber wall and ceiling are to-
tally divided into 49 annular zones. 4) The ambient temperature
( C) of the th wafer zone is for .
The convective heat coefficient is approximated [15] as

(W/m K).
The tracking error at time for temperature profile is

defined as

The temperature profile (C) used for the controller design is

for
for

(5.1)

Following the design procedure, four columns of and
the computed open-loop steady-state error,, are plotted in
Fig. 3 for choosing . The computed steady-state tracking
error, , is 19.4492C. Since the most nonlinear
column of is , approximating by a
piecewise linear curve is most important. We thus choose

.
The computed Hankel singular values of are

.
Since and is nonsingular
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Fig. 3. Four columns ofA F and open-loop steady-state error,�.

TABLE I
SIMULATED RESULTS FORDIFFERENTTRAJECTORIESWHENK AND G ARE GIVEN IN (5.2)

for . With and starting from
, the design procedure gives

(5.2a)

and

(5.2b)

The value of the resultant is 32.3864, thus
. To demonstrate the

robustness of the PI controller (5.2), simulations are per-
formed for three desired temperature trajectories: all start
from 400 C but with three hold temperatures 1100C, 1000 C
and 1200C beginning at . Convection effects con-
sidered include and

. The results are summarized in Table I which in-
cludes and

. It is clear that

is the most significant performance index for the temperature
controller. The second entry, ,

represents the damping behavior of the tracking error. The third
entry, , is used to compare with the
computed steady-state tracking error. The maximal tracking
error during the entire heating process, , is

less than 0.7C for all these trajectories. Hence, the controller
designed achieves good performance and robustness.

For all these cases, it turns that tracking error at
is very close to the computed steady-state tracking error,

. When sensor noise is added
to the simulation, roughly the same amount of sensor noise
propagates to the tracking error.

We next consider a case where is not square. When the
dimension of the reduced-order system is increased to six, the
design procedure gives

(5.3a)

and

(5.3b)
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TABLE II
SIMULATED RESULTS FORDIFFERENTTRAJECTORIESWHENK AND G ARE GIVEN IN (5.3)

Note that the entries of the gain matrices are much larger than
that of the previous case. These control gains are also applied
to these cases with different temperature trajectories. Simula-
tions are performed with results shown in Table II. As the results
show, the performance is close to that obtained in the previous
case. Since the resultant and give a much higher value of

( while ),
the controller provides a faster response. The tracking errors
are driven to steady state more quickly with a smaller peak,

.

VI. CONCLUSIONS ANDDISCUSSIONS

This paper proposes a method for RTP temperature control
system design. The control system consists of a least square
feedforward controller and a feedback controller. It is shown
that for RTP systems with typical ramp-up and hold temperature
profiles, a simple steady-state reduced order model is adequate
for feedback design and very simple PI controller can be used to
achieve good temperature tracking, uniformity, and robustness.
A method for choosing good temperature sensor locations is
also presented.

The design method prespecifies the feedback controller type
(PI). With an appropriate choice of performance index, the de-
sign reduces to the tuning of two parameters to quantitatively
take dynamic performance and robustness into consideration.
Systematic and simple tuning procedure is one attribute of the
method that is different from RTP design methods proposed in
the literature [3], [4], [6], [7], [16]. The simplicity of the PI
controller, together with a simple tuning procedure, also makes
on-line tuning possible, an advantage in real-time implementa-
tion.

Thermal process of RTP, dominated by radiation and conduc-
tion, exhibits highly damped and nonoscillatory dynamic re-
sponse. It thus allows very accurate low-order approximation
(the list of Hankel singular values in the example confirms this)
and this in turn makes PI control suitable. In general the simplest
(decentralized) -channel multiinput–multioutput (MIMO) PI
controller requires tuning parameters if the channels are to be
independently tuned. In the design example, there are only two
parameters for a four-input–four-output system and they seem
adequate. The reason is that, for the RTP system, the actuators
are all of the same type (lamps) and the performance require-
ment is dominated by uniformity, thus each channel is of the

same importance and hence only two parameters are required.
The small number of tuning parameters makes the design ap-
proach attractive.
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