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Abstract: In this paper we completely solve the problem of ®nding a maximum packing of any

complete multipartite graph with edge-disjoint 4-cycles, and the minimum leaves are explicitly
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1. INTRODUCTION AND PRELIMINARIES

A k-cycle packing of a graph G is a set C of edge disjoint k-cycles in G. A k-cycle
packing C of G is maximum if jCj � jC0j for all other k-cycle packings C0 of G. The
leave of a k-cycle packing of G is the set of edges of G that occur in no k-cycle in
C; sometimes we also refer to the subgraph induced by these edges as the leave.
A k-cycle system of G is a k-cycle packing of G for which the leave is empty. We
refer to the leave of a maximum k-cycle packing as a minimum leave. Also, let
K�v1; v2; . . . ; vn� denote the complete multipartite graph with vertex set
V1 [ V2 [ � � � [ Vn and edge set E, where jVij � vi and E consists of all edges
between vertices in Vi and Vj, i 6� j; there are no edges between two vertices in the
same set Vi.
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In recent years, various edge-disjoint decompositions of complete graphs and
complete multipartite graphs into cycles have been investigated; see for example [6]
and [2]. Moreover, maximum packings and minimum coverings of complete graphs
by k-cycles for various k have also been considered; see [8], [7], and [5] for 4-, 5- and
6-cycles respectively, for instance.

The problem of partitioning the edges of a complete multipartite graph into 3-
cycles has also been considered, and is proving to be an extremely dif®cult problem
to solve. For example, one paper deals with the particular case where all parts have
the same size, except possibly for one part [3]. In contrast to this, here we completely
solve the problem of ®nding a maximum 4-cycle packing of K�v1; v2; . . . ; vn� (see
Theorem 6.1). This generalizes the result of Cavenagh and Billington [2] which
characterizes the complete multipartite graphs for which there exists a 4-cycle
system.

This problem has already been solved for complete graphs; that is, when
v1 � v2 � � � � � vn � 1. For convenience, in Table I we list the minimum leaves in
this case (see [8], and also [4]). In the following, F denotes a 1-factor of the complete
graph Kn when n is even, B denotes a bowtie, that is, two triangles K3 having one
common vertex, and Ci denotes a cycle of length i.

Remark 1.1. It is also possible (and will be useful in a later section) to obtain a
packing of Kn with 4-cycles, having leave Ki, when n � i (mod 8), for i � 1; 3; 5; 7.
(Clearly, this is not a maximum packing when i � 5 or 7, but by replacing the Ki by its
maximum packing, we can obtain a maximum packing of Kn, containing a maximum
packing of Ki, i � 5 or 7. See the inductive construction described in [4].)

One straightforward result (which is easily seen to hold for 4-cycles) follows from
Sotteau [9]. This guarantees the existence of a decomposition of any complete
bipartite graph into 4-cycles if and only if the two parts each have even size. We shall
use this frequently in the following. This result also means that in any complete
multipartite graph which has all parts of even size, there is a decomposition into
4-cycles with empty leave. We shall refer to this as the `̀ all parts even'' condition (*),
and henceforth assume that at least one part has odd size.

The complement of a graph G is denoted here by G. If two graphs G and H are
vertex disjoint, then the join G _ H is formed from G [ H by joining each vertex in G
to each vertex in H. For any other graph theoretic de®nitions, see [10].

2. THE BIPARTITE CASE

Let K�v1; v2� be a complete bipartite graph with vertex partition fV1;V2g where
jVij � vi, i � 1; 2. If both v1 and v2 are even, condition (*) ensures there exists a
4-cycle system of K�v1; v2�.

TABLE I. Minimum leaves in 4-cycle packings of Kn

Kn, n mod 8: 1 2 3 4 5 6 7 0

Leave: ; F K3 F B, C6 or 2K3 F C5 F
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If v1 is odd and v2 is even, then in any minimum leave each vertex in V2 has odd
degree. Pick any vertex x1 in V1, and let R denote the star centered at x1, with v2

edges. This is our leave. What remains is the graph K�v1; v2� n E�R�, which is
isomorphic to K�v1 ÿ 1; v2�, a complete bipartite graph with both parts of even size.
So a 4-cycle decomposition of K�v1; v2� n E�R� follows from (*).

Now suppose that v1 and v2 are odd, with v1 � v2. In this case any minimum leave
must be a spanning subgraph, with every vertex of odd degree. So, certainly the
minimum number of edges in the leave is at least v1. Thus, if v2 � 3 (mod 4), any
minimum leave must contain at least v1 � 2 edges, in order that the number of
remaining edges is 0 (mod 4). Therefore, the graph induced by the minimum leaves
can be F1 or F2, according as v2 � 1 or 3 (mod 4), where F1 and F2 are given in
Figure 1 (providing the remaining edges can be partitioned into 4-cycles).

In Figure 1, we conveniently group vertices in the component of F1 or F2 con-
taining more than one edge into pairs p1;i as shown, together with the special pair
a1; a2. This concept of paired vertices will also be important in Section 4 below.

Note that the number of components in both F1 and F2 is 1 (mod 4). In order to
describe a convenient 4-cycle decomposition of K�v1; v2� n Fi, i � 1; 2, we need the
following lemma. (See also Lemma 6 of [1]; we include a brief proof below for
completeness.)

Lemma 2.1. The complete bipartite graph K�4m� 1; 4m� 1� minus a perfect
matching F has a decomposition into 4-cycles.

Proof. First, when m � 1, a decomposition of K5;5 n F with vertex set
f0; 1; 2; 3; 4g [ f00; 10; 20; 30; 40g into 4-cycles is given cyclically by �0; 10; 4; 30�
(mod 5), where F is ffi; i0g j 0 � i � 4g.

Now, K�4m� 1; 4m� 1� n F is essentially m copies of K5;5 n F (with vertices 0
and 00 in each copy, and with f0; 00g 2 F), together with m�mÿ 1� copies of K4;4. So
the result follows. &

Returning to K�v1; v2� n E�Fi�, we can now apply Lemma 2.1 together with (*),
and easily decompose K�v1; v2� n E�Fi� into 4-cycles. Thus we have proved:

Lemma 2.2. The complete bipartite graph K�v1; v2� can be decomposed into
4-cycles with leave L, where L is as follows:

K�v1; v2� leave L

v1 � v2 � 0 (mod 2) ;
v1 ÿ 1 � v2 � 0 (mod 2) R, star with v2 edges
v1 � v2 � 1 (mod 2), v1 � v2 � 1 (mod 4) F1 (see Figure 1)
v1 � v2 � 1 (mod 2), v1 � v2 � 3 (mod 4) F2 (see Figure 1)

FIG. 1.
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In the case v2 � 3 (mod 4), for 1 � i � x1 ÿ 1; the decomposition includes the
4-cycle with vertex set p1;x1

[ p1;i.

3. AN ODD NUMBER OF PARTS, ALL OF ODD SIZE

In this case the vertices are in parts Vi, 1 � i � n, with n odd and vi odd. Let wi 2 Vi,
for 1 � i � n, and let Vi n fwig be denoted by Qi. Then we may take a maximum
packing as follows, with leave being exactly the same as the leave for a maximum
packing of Kn with 4-cycles (see Table I).

First, on the set fwi j 1 � i � ng, place a maximum packing of Kn with 4-cycles.
Then use (*) to take a 4-cycle decomposition of the following complete bipartite
graphs Fi and Hij, for 1 � i; j � n, i 6� j. The graph Fi has vertex partition
ffwj j 1 � j � n; j 6� ig;Qig, while Hij, i < j, has vertex partition fQi;Qjg.

Now each edge of the complete multipartite graph with an odd number of odd
parts is used either in the leave or in a 4-cycle. Furthermore, the leave has at most six
edges, so since it must be simple, the leave is a minimum leave.

We summarize this section as follows.

Lemma 3.1. A maximum packing with 4-cycles of a complete multipartite graph
with n parts, where all parts have odd size and where n is odd, has minimum leave
exactly the same as that in a maximum packing of Kn, namely: ;; K3; B;C6 or 2K3;
C5, according as n � 1; 3; 5 or 7 (mod 8).

Remark 3.2. We may also take a packing of a complete multipartite graph with n
odd parts, where n is odd, having leave as described in Remark 1.1, namely: ;, K3,
K5, K7 according as n � 1, 3, 5 or 7 (mod 8). (Of course, this is not a minimum leave
when n � 5 or 7 (mod 8), but this type of leave will be useful later.)

4. AN EVEN NUMBER OF PARTS, ALL OF ODD SIZE

In this section we deal with one of the two dif®cult cases. We begin with some
preliminary results giving 4-cycle decompositions of particular graphs which arise
later.

For 1 � i � 4, let pi be a set of two of non-adjacent vertices. Let H1�b1; p1; b2; p2;
b3; p3; b4; p4� denote the graph with vertex set fbi j 1 � i � 4g [ �S4

i�1 pi� and edge
set consisting of the eight edges joining bi to vertices in pi, for 1 � i � 4, together
with the edges of a K4;4 with bipartition p1 [ p2 and p3 [ p4 (see Fig. 2). Here
possibly b1 � b2, and possibly b3 � b4. This graph H1 contains 24 edges, and the
degrees of the 8 vertices in

S4
i�1 pi are all odd.

Lemma 4.1. The graph H1�b1; p1; b2; p2; b3; p3; b4; p4� has a 4-cycle packing with
the leave perfectly matching between p1 [ p2 and p3 [ p4.

Proof. Letting pi � fci;1; ci;2g, 1 � i � 4, the leave is the four edges fc1;1; c4;2g;
fc1;2; c3;2g; fc2;1; c4;1g; fc2;2; c3;1g, and the 4-cycles are �b1; c1;1; c3;1; c1;2�; �b2; c2;1;
c4;2; c2;2�; �b3; c3;1; c2;1; c3;2�; �b4; c4;1; c1;2; c4;2�; �c1;1; c3;2; c2;2; c4;1�. (see Fig. 2.).

&
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We now de®ne the graph H2�W1;W2;W3; b1; b2; c1; c2; c3; c4� as follows (see Fig.
3). The sets W1 and W2 each consists of four different vertices, with a copy of K4;4

joining them. Vertex bi is joined by an edge to each of the four vertices in Wi,
i � 1; 2. The set W3 consists of eight independent vertices, paired as p1; p2; p3; p4, so
that ci is joined by edges to the two vertices in pi, 1 � i � 4. Finally, H2 contains a
copy of K8;8 with bipartition W1 [W2 and W3. Note that possibly the vertices
c1; c2; c3; c4 are not all distinct (see Fig. 3).

Lemma 4.2. The graph H2�W1;W2;W3; b1; b2; c1; c2; c3; c4� has a 4-cycle packing
with the leave being a perfect matching between W1 [W2 and W3.

FIG. 2. H1�b1; p1; b2; p2; b3; p3; b4; p4� with its maximum 4-cycle decomposition.

FIG. 3. The graph H2�W1;W2;W3; b1; b2; c1; c2; c3; c4�.
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Proof. The graph H2 is made up of: H1�c1; p1; c2; p2; b1; p5; b1; p6� (where
W1 � p5 [ p6�; H1�c3; p3; c4; p4; b2; p7; b2; p8� (where W2 � p7 [ p8�; and three
copies of K4;4, one from W1 to W2, one from p1 [ p2 to W2, and one from p3 [ p4

to W1. Therefore, the result follows from Lemma 4.1 and the fact that K4;4 is trivially
decomposable into 4-cycles. &

The next lemma is similiar to the previous two in ¯avor, and is needed subse-
quently in one particular case. We de®ne the graph H3�W1;W2;W3;W4; b1; b2; b3; b4�
on 20 vertices as follows (see Fig. 4). The sets W1 � fw1;i j 1 � i � 4g and
W2 � fw2;i j 1 � i � 4g each consists of four independent vertices, with a copy of
K4;4 joining them. Vertex b4 is joined to the four vertices in W1, vertex b3 is joined to
the ®ve vertices in W2 [ fb4g. The set W4 consists of two independent vertices, each
joined to b4. The set W3 consists of six independent vertices, w3;i, 1 � i � 6, all
joined to b2, and b2 is joined to b1. Finally, H3 contains copies of K6;4, K6;4, and K2;4,
with bipartitions fW3;W1g, fW3;W2g, and fW4;W2g, respectively.

Lemma 4.3. The graph H3�W1;W2;W3;W4; b1; b2; b3; b4� can be decomposed into
4-cycles with the leave being a 1-factor consisting of fb1; b2g, fb3; b4g, four edges
between fw3;1;w3;2;w3;3;w3;4g and W1, and four edges between fw3;5;w3;6g [W4

and W2.

Proof. The graph H3 is made up of: H1�b2; fw3;1;w3;2g; b2; fw3;3;w3;4g;
b4; fw1;1;w1;2g; b4; fw1;3;w1;4g�; H1�b2; fw3;5;w3;6g; b4;W4; b3; fw2;1;w2;2g; b3;
fw2;3;w2;4g�; a copy of K8;4 joining W1 [ fw3;1;w3;2;w3;3;w3;4g to W2; a copy of
K2;4 joining fw3;5;w3;6g to W1; and the two edges b1b2 and b3b4. Thus the
decomposition into 4-cycles follows from Lemma 4.1 and condition (*). &

FIG. 4 The graph H3�W1;W2;W3;W4; b1; b2; b3; b4�.
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Lemma 4.4. The graph K9 _ K9 has a 4-cycle packing with the leave being a
perfect matching of nine edges.

Proof. The graph K9 can be packed with 4-cycles (with empty leave), since 9 � 1
(mod 8). Also, K9;9 can be decomposed into one perfect matching and a collection of
4-cycles (Lemma 2.1). So the result follows. &

Let H4�b1; b2; . . . ; b7; b8; . . . ; b11; b12; b13; b14� denote the graph K7 _ �K4 _ K3�,
where V�K7� � fb1; . . . ; b7g, V�K4� � fb8; . . . ; b11g; and V�K3� � fb12; b13; b14g.
Lemma 4.5. The graph H4�b1; . . . ; b7; b8; . . . ; b11; b12; b13; b14� has a 4-cycle
packing, with the leave being a perfect matching of seven edges.

Proof. Begin with a 4-cycle packing of K7;7, with bipartition of the vertices being
ffb1; . . . ; b7g, fb8; . . . ; b14gg, so that the leave is the set of edges ffb1; b8g;
fb2; b9g; fb3; b10g; fb4; b11g; fb5; b12g; fb5; b13g; fb5; b14g; fb6; b12g; fb7; b12gg, and
so that �b6; b13; b7; b14� is one of the 4-cycles (see Lemma 2.2). Remove the
4-cycle �b6; b13; b7; b14�; the leave from K7;7 now consists of seven copies of K2

together with one 6-cycle c1 � �b5; b13; b7; b12; b6; b14�.
We also have a partition of E�K7 n K3�, with V�K7 n K3� � fb8; b9; . . . ; b14g and

V�K3� � fb12; b13; b14g, which induces three 4-cycles and one 6-cycle:
f�b8; b9; b12; b10�; �b9; b10; b11; b14�; �b8; b11; b9; b13�; and c2 � �b8; b12; b11; b13;
b10; b14�g.

The edges in the two 6-cycles c1 and c2 together form three 4-cycles:
�b5; b13; b10; b14�, �b6; b14; b8; b12�, �b7; b12; b11; b13�. The only remaining leave is
now ffbi; bi�7g j 1 � i � 7g. &

We are now ready to prove our main result in this section.

Theorem 4.6. Suppose G is a complete multipartite graph with 2z parts V1; . . . ;V2z,
where jVij � vi is odd for 1 � i � 2z: Also, let � be the number of vertices in the
largest part, and let � �P2z

i�1 vi. There exists a maximum 4-cycle packing in which
the leave L satis®es either

(A) jLj � �
2
� 3, or

(B) jLj � � � 3.

(Each leave constructed here induces one of the graphs in Fig. 5.)

Proof. Since every vertex in G has odd degree, we ®rst point out that any leave L
will be a spanning subgraph with all vertices of odd degree; so, clearly L is a
minimum leave if jLj � maxf�=2� 3; � � 3g.

We pair the parts of G, V2iÿ1 with V2i for 1 � i � z; for convenience we label them
v2iÿ1 � v2i for each pair of parts V2iÿ1;V2i.

For 1 � i � z; apply Lemma 2.2 to the bipartite graph with vertex partition
V2iÿ1;V2i to obtain a maximum 4-cycle packing, Bi, and let Gi be the graph
containing the edges in the leave of Bi (the 4-cycles in Bi might not be part of our
®nal set). Note that Gi contains v2iÿ1 edges if v2i � 1 (mod 4), and v2iÿ1 � 2 edges if
v2i � 3 (mod 4). For 1 � i � z, Gi consists of "i copies of K2 (where necessarily
"i � 0 (mod 4)) together with a ®nal component Zi (see Fig. 1). If v2iÿ1 � v2i � 1
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(mod 4), then Zi � K2; otherwise, Zi is the star Ri if v2i � 1 (mod 4) and v2iÿ1 > v2i,
and Zi � Di if v2i � 3 (mod 4) (see Fig. 6). We now introduce the notation used for
certain vertices in Figure 6. In the star Ri, pair off all but one of the vertices of degree
1 in V2iÿ1 into sets pi;1; pi;2; . . . ; pi;xi

, and in Di pair off all of the vertices of degree 1
in V2iÿ1 into sets pi;1; . . . ; pi;xiÿ1 and let pi;xi

be the pair of vertices of degree 1 in V2i in
Di. In any case, let a2iÿ1 and a2i in Zi be the unpaired vertices in Zi \ V2iÿ1 and
Zi \ V2i, respectively. Note that in each leave the two vertices in each pair pi;j have a

FIG. 5. Leaves: 2z parts, all of odd size.
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common neighbor. Note also that if pi; j � fx1; y1g and pi;xi
� fx2; y2g occur in

different parts in Zi (see Di in Fig. 6), then by Lemma 2.2 the 4-cycle �x1; x2; y1; y2� is
in Bi.

Now we concentrate on the pairs pi; j, 1 � i � z, 1 � j � xi. We partition as many
of these pairs as possible into sets S1; S2; . . . ; Sy of size 4, with the property that for
1 � k � 2z and 1 � l � y, the set Sl contains at most two pairs from each part Vk. Let
S denote the set of remaining pairs which do not occur in

Sy
l�1 Sl. Then S must

satisfy:

(a) jSj � 3, or
(b) jSj � 4 and all pairs in S, except possibly one, belong to the same part, say V1,

in G1.

In both cases (a) and (b), if Sl � fpi1;m1
; pi2;m2

; pi3;m3
; pi4;m4

g, then we apply Lemma
4.1 to the graph H1�b1; pi1;m1

; b2; pi2;m2
; b3; pi3;m3

; b4; pi4;m4
� where bt � a2itÿ1 or a2it

according as pit;mt
is in V2it or V2itÿ1 for 1 � t � 4 (so possibly b1 � b2, possibly

b3 � b4, possibly i1 � i2, and possibly i3 � i4). Let B1;l denote the set of ®ve 4-cycles
obtained by applying Lemma 4.1 to Sl in this way, and let Ll denote the four edges in
the leave. These are placed in our ®nal set of 4-cycles, B, and our ®nal leave L,
respectively.

Now for convenience, let Ei denote the set of �i copies of K2 in the leave Gi n Zi,
1 � i � z. (Henceforth we also think of an edge such as fa2iÿ1; a2ig as a 2-element set
of vertices.) Then we partition all the vertices in V into 2-element subsets: let

P � fe 2 Ei; pi; j; fa2iÿ1; a2ig j 1 � i � z; 1 � j � xig:

FIG. 6. In Di; pi;j [ pi;xi
induces a 4-cycle in Bi for 1 � j < xi.
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In case (a), for every two distinct pairs fq1; q2g and fq3; q4g in P that are not both in
Sl for 1 � l � y, and not both contained in the same V�Gi�, 1 � i � z, we take the
4-cycle �q1; q3; q2; q4� and place it in B. In case (a) we complete forming B by adding
all the 4-cycles in

Sz
i�1 Bi, except those 4-cycles which have been used in taking care

of the pairs in the Sl. Let G0i � �Gi n Zi�, and let L0i be formed from E�G0i� by adding
fa2iÿ1; a2ig and any edges in Gi that are incident with vertices in pairs in S. Then the
leave of B is L � �Sy

l�1 Ll� [ �
Sz

i�1 L0i�, and jLj � �=2� jSj � �=2� 3.
The minimum leave is given in Figure 5; we comment further on this at the end of

the proof.
Case (b) remains. By choosing y to be maximal, we can assume (for 1 � l � y�

that each Sl contains exactly two pairs in V1 in G1. (For, if Sl contains at most one pair
from V1 then we can replace any pair in Sl that is not in V1 with a pair from S that is in
V1.) So we can assume that V1 is the largest part, and thus v1 � �.

Recall that for 1 � i � z, Ei � E�Gi� n E�Zi�, "i � jEij, and "i � 0 (mod 4). Let

� � min
jSj
4

� �
;
Xz

i�2

"i

4

( )
:

(Thus � is the minimum of the number of disjoint sets of four distinct pairs that are in
S, and the number of disjoint sets of four copies of K2 that are in

Sz
i�2 Gi n Zi.)

Now select � pairwise disjoint sets T1; . . . ; T�, where each Tj contains four edges
from Ei, for some i, 2 � i � z, as well as four pairs from S.

Consider Tj. Let e1; . . . ; e4 be the four edges from Ei in Tj, so each joins a vertex
in part V2iÿ1 to a vertex in V2i, for some i � 2. Also, let p1; j1 ; p1; j2 ; p1; j3 ; pk; j4

be the
four pairs from S in Tj. Here possibly k � 1 with pk; j4 in V1 or in V2, or k > 1,
in which case without loss of generality we say pk; j4

is in V3. So the possibilities
for Tj are:

T(i) 4 pairs in Tj all from V1, 4 edges e1; . . . ; e4 all from Gi, for some i,
2 � i � z.

T(ii) 3 pairs in Tj from V1, one pair from V2, 4 edges e1; . . . ; e4 from Gi, for some
i, 2 � i � z.

T(iii) 3 pairs in Tj from V1, one pair from V3, 4 edges e1; . . . ; e4 from Gi, for some
i, 3 � i � z.

T(iv) 3 pairs in Tj from V1, one pair from V3, 4 edges e1; . . . ; e4 from G2 (based on
V3 [ V4).

In cases T(i), T(ii), and T(iii) above, we apply Lemma 4.2 to the graph
H2�W1;W2;W3; b1; b2; c1; c2; c3; c4� where: c1 � c2 � c3 � a2; in cases T(i), T(ii),
and T(iii), c4 � a2; a1; and a4; respectively; W1 � �

S4
j�1 ej� \ V2iÿ1 and W2 �

�S4
j�1 ej� \ V2i (regarding ej as a set of two vertices); W3 �

S3
l�1 p1; jl [ pk; j4 ; and

b1 � a2i and b2 � a2iÿ1. If k 6� 1 then for 1 � l � 3 add the 4-cycle between p1; jl and
pk; j4

to the set of 4-cycles that arises in this way from Tj, and call the resulting set
B2; j. Let B2; j � B, and place the leave from Lemma 4.2 into L.

In case T(iv) above, we apply Lemma 4.3 to the graph H3�W1;W2;W3;W4;

b1; b2; b3; b4� where W1 � �
S4

j�1 ej� \ V3, W2 � �
S4

j�1 ej� \ V4, W3 �
S3

l�1 p1;jl ,
W4 � p2;j4

, and bi � ai for 1 � i � 4. Again, for 1 � l � 3, add the 4-cycle between
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p2;j4 and p1;jl
to the set of 4-cycles obtained from Lemma 4.3 to form B2;j. Let

B2;j � B, and place the leave from Lemma 4.3 into L.
Let S0 � S n fpi;l j pi;l 2 Tj for some j; 1 � j � �g, and let A � ffa2iÿ1; a2ig j

2 � i � zg. Choose � pairwise disjoint sets U1; . . . ;U� with � as large as possible so
that for 1 � j � �

U(i) Uj contains 4 pairs in S0, each of which is a subset of V1, and 4 edges in A,
or

U(ii) Uj contains 4 pairs in S0, three of which are subsets of V1 and one is a subset
of V2, and 2 edges in A, or

U(iii) Uj contains 4 pairs in S0, three of which are subsets of V1 and one is a subset
of Vj with j � 3 (say j � 3), and 2 edges in A, one of which is fa3; a4g.

Notice that since S contains at most one pair that is not a subset of V1 (in case �b�),
we have at most one occurrence of cases U(ii) and U(iii); in such a case we can
assume that the edges in A are fa3; a4g and fa5; a6g.

If Uj � fp1;jl ; fa3; a4g; fa5; a6g j 1 � l � 4g is formed in case U(ii), then let
p1;jl � fp1

1;jl
; p2

1;jl
g for 1 � l � 4 with p1;j4 � V2. Let B3;j be the set of 4-cycles

obtained by applying Lemma 4.5 to the graph H4�a1; p
1
1; j1
; p2

1; j1
; p1

1; j2
; p2

1; j2
; p1

1; j3
; p2

1; j3
;

a3; a4; a5; a6; a2; p
1
1; j4
; p2

1; j4
�, and let L3;j be the leave.

If Uj � fp1;jl ; p2;j4 ; fa3; a4g; fa5; a6g j 1 � l � 3g is formed in case U(iii) then let
pi;jl � fp1

i;jl
; p2

i;jl
g for 1 � j � 4 and i 2 f1; 2g, with p2;j4 � V3. Let B3;j be the set of 4-

cycles obtained by applying Lemma 4.5 to the graph H4�a1; p
1
1; j1
; p2

1; j1
; p1

1; j2
; p2

1; j2
;

p1
1; j3
; p2

1; j3
; a3; a4; a5; a6; a2; p

1
2; j4
; p2

2;j4
�, and let L3;j be the leave.

Finally, if Uj � fp1; jl ; el j 1 � l � 4g then let B3;j be the set of 4-cycles obtained
by applying Lemma 4.4 to the graph K9 _ K9 with V�K9� � fa1g [ �

S4
j�1 p1; j� and

V�K9� � a2 [ �
S4

j�1 ej�, and let L3;j be the leave.
For 1 � j � � let B3;j � B and let L3;j � L.
Now let V 0j ; 1 � j � 2z, be the subset of Vj containing all vertices that are not

incident with an edge in
S�

j�1 Tj. Also, let B0i be the set of 4-cycles in a maximum
packing of the complete bipartite graph V 02iÿ1 [ V 02i, chosen so that the leave G0i
satis®es G0i � Gi; this is possible since jVjj � jV 0j j (mod 4) for 1 � j � 2z. Let B0i � B.

All that remains is to include those 4-cycles arising from decompositions of
various complete bipartite subgraphs, all of whose parts now have even size (so
condition (*) applies). First, for 2 � i � z, we place in B the 4-cycles of a 4-cycle
system of each of the two complete bipartite graphs, one with bipartition V 02iÿ1n
fa2iÿ1g and V2i n V 02i, the other with bipartition V 02i n fa2ig and V2iÿ1 n V 02iÿ1.
Secondly, recall that V is partitioned into 2-element subsets, P � fe 2 Ei; pi;j;
fa2iÿ1; a2ig j 1 � j � xi; 1 � i � zg. Let fq1; q2g, fq3; q4g be any two of the 2-
element subsets in P satisfying:

1. ffq1; q2g; fq3; q4gg 6� Sl, 1 � l � y,
2. ffq1; q2g; fq3; q4gg 6� Ti, 1 � i � �,
3. ffq1; q2g; fq3; q4gg 6� Ui, 1 � i � �, and
4. fq1; q2; q3; q4g 6� V�Gi� for 1 � i � z,

(again, regarding the edges in Sl, Ti, and Ui as 2-element subsets). Then we place the
4-cycle �q1; q3; q2; q4� in B.
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Below we comment on the leaves described in Figure 5. Recall that since every
vertex must have odd degree in the leave, it is clear that if

(a) the number of edges is less than �
2
� 4, or

(b) the number of edges is less than � � 4,

then the leave is a minimum. In the case (a) above (when jSj � 3), any of the leaves
(i)±(iv) can arise, while in case (b) above (when jSj � 4), one of the leaves (i)±(iii)
arises. Moreover, cases (i), (ii), and (iii) of Figure 5 satisfy (B), while case (iv)
satis®es (A). Thus in all cases the resulting leave is a minimum, and we have
achieved our desired maximum packing.

This concludes the proof of the theorem. &

5. PARTS OF BOTH EVEN AND ODD SIZES

Here we deal with the ®nal case, which in retrospect is probably the most dif®cult
case, but easier to read!

First, note that if the number of parts, say t, of odd size is even (and possibly zero),
then this case essentially reduces to that in Section 4 above as the following shows.
Let V1; . . . ;Vs be the parts of even size, and let Vs�1; . . . ;Vs�t be the parts of odd size.
We use condition (*) on the bipartite graphs with bipartition fVi;Vjg for
1 � i < j � s, and also on the complete bipartite graph with bipartition
fV1 [ V2 [ � � � [ Vs;Vs�1 [ Vs�2 [ � � � [ Vs�tg. Finally, Theorem 4.6 above deals
with the complete multipartite graph that remains, on the parts Vs�1; . . . ;Vs�t. The
resulting leave is clearly a minimum since it satis®es (A) or (B), where � is now the
number of vertices of odd degree, and � is the size of the largest part.

However, if the number of odd parts is odd, the above simple approach needs
modi®cation. First we give some useful lemmas.

Lemma 5.1. The graph K�4; 4; 1� can be decomposed into ®ve 4-cycles and four
independent edges.

Proof. Let the vertex set be partitioned as ffa1; a2; a3; a4g; fb1; b2; b3; b4g; fzgg.
Then the decomposition is �z; a1; b3; a2�; �z; a3; b2; a4�; �z; b1; a4; b3�; �z; b2; a1; b4�;
�a2; b1; a3; b4�, and the edges in ffai; big j 1 � i � 4g. &

Lemma 5.2. The graph K7 minus one edge can be decomposed into four 4-cycles
and a path of length 4.

Proof. We may pack K7 with 4-cycles with minimum leave one 5-cycle (see Table
I). Let the removed edge be from this 5-cycle, and the result follows. &

Lemma 5.3. The graph K9 minus one edge can be decomposed into eight 4-cycles
and a path of length 3.

Proof. A maximum packing of K9 with 4-cycles has empty leave (see Table I). So
removing one edge from one 4-cycle produces the required leave of a path of length 3.

&
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Lemma 5.4. Let K7 be de®ned on the vertex set fa1; . . . ; a7g. Then K7 minus two
vertex-disjoint edges fa1; a2g and fa3; a4g can be decomposed into four 4-cycles with
leave ffa1; a3g; fa2; a5g; fa4; a5gg.
Proof. Take the 4-cycles �a2; a3; a5; a6�; �a1; a4; a7; a5�; �a1; a6; a3; a7�; �a2; a4;
a6; a7�; this leaves edges fa1; a3g; fa2; a5g and fa4; a5g. &

Lemma 5.5. The graph K9 minus two vertex-disjoint edges fa1; a2g and fa3; a4g
can be decomposed into eight 4-cycles with leave ffa1; a3g; fa2; a4gg.
Proof. Take a 4-cycle decomposition of K9 (with empty leave) containing the
4-cycle �a1; a2; a4; a3�. Then removal of the edges fa1; a2g and fa3; a4g yields the
result. &

Lemma 5.6. The graph K11 minus two vertex-disjoint edges fa1; a2g and fa3; a4g
can be decomposed into twelve 4-cycles and leave the ®ve edges e1 � fa1; a3g;
e2 � fa2; a4g and three edges that induce a copy of K3 that is vertex-disjoint from
e1 [ e2.

Proof. Start with a 4-cycle packing of K11, which contains thirteen 4-cycles and has
leave K3 (see Table I). We choose one 4-cycle vertex-disjoint from the K3 leave, and
label it �a1; a2; a4; a3� so that removal of the two disjoint edges leaves the opposite
edges, fa1; a3g; fa2; a4g. We can certainly ®nd such a disjoint 4-cycle, since the
vertices in the K3 leave are each in four 4-cycles, whereas the packing of K11 contains
thirteen 4-cycles, and 13 > 4� 3. &

Lemma 5.7. There exists a packing of K�4; 4; 2; 1; 1; 1� with 4-cycles in which the
leave L is a matching of ®ve edges that saturates the ten vertices of odd degree.

Proof. Let v1 � v2 � 4; v3 � 2, and v4 � v5 � v6 � 1. Let Vi � fwi;j j 1 � j � vig
for 1 � i � 6. Let B1 be a set of ®ve 4-cycles that packs K5;5 with bipartition
fV1 [ fw4;1g;V2 [ fw5;1gg in which the leave is ffw1;j;w2;jg; fw1;4;w5;1g;
fw2;4;w4;1g j 1 � j � 3g. (Only some of this leave is in the ®nal leave.) Let B2 be
the set of 4-cycles in a 4-cycle system of K2;6 with bipartition fV3; fwi;j j 1 � i � 2;
1 � j � 3gg. Let B3 � f�wi;1;w6;1;wi;2;w3�i;1�, �wi;3;w6;1;w3;i;wi�3;1�, �w1;4;w6;1;
w4;1;w3;2�, �w2;4;w6;1;w5;1;w3;1�, �w1;4;w4;1;w2;4;w5;1� j 1 � i � 2g. Then B1 [
B2 [ B3 is a set of 4-cycles that packs K�4; 4; 2; 1; 1; 1� with leave L �
ffw1;j;w2;jg; fwi;4;w3;ig j 1 � j � 3; 1 � i � 2g. &

Lemma 5.8. There exists a packing of K�4; 4; 1; 1; 1; 1; 1� with 4-cycles in which
the leave L is six edges: two independent edges, and four more that induce a star.

Proof. Let the partition of the vertex set be fi1 j 1 � i � 4g, fi2 j 1 � i � 4g, and
fzig for 1 � i � 5. Then on f31; 41; 32; 42; z1; . . . ; z5g we place a decomposition of K9

into 4-cycles, with one cycle being �31; 41; 42; 32�. The edges f31; 41g and f32; 42g;
are removed (since they do not belong to our original graph) and the edges f31; 32g,
f41; 42g become part of our leave L.

Now, on the bipartite graph K4;4 with parts f11; 21; 12; 22g and fz2; z3; z4; z5g, we
place a 4-cycle decomposition. We also take 4-cycles �11; 32; 21; 42�, �31; 12; 41; 22�;
and �11; 12; 21; 22�. The edges fx; z1g for x � 11; 21; 12; 22 remain; these also form
part of our leave L. &
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Lemma 5.9. There exists a packing of K�4; 4; 1; 1; 1; 1; 1; 1; 1� with 4-cycles in
which the leave is ®ve edges: three independent edges, and two more that induce a
star.

Proof. Let the vertex set, with partition, be fi1 j 1 � i � 4g, fi2 j 1 � i � 4g, fzig
for 1 � i � 7. On the set f11; 12; zi j 1 � i � 7g we place a 4-cycle decomposition of
K9, ensuring that �11; z1; 12; z2� is one of the cycles; this cycle we remove. Call the set
of eight remaining cycles B1. We place the edges f11; z1g, f12; z1g into the leave L,
and retain edges f11; z2g, f12; z2g for later use. Next, on the bipartite graph K6;6 with
vertex partition ff2i; 3i; 4i j i � 1; 2g, fz1; z3; z4; z5; z6; z7gg, we place a 4-cycle
decomposition, say B2.

The remaining edges partition into ®ve further 4-cycles, B3, where

B3 � f�z2; 11; 32; 21�; �z2; 31; 12; 41�; �z2; 12; 21; 42�; �z2; 22; 41; 32�; �11; 22; 31; 42�g;

leaving edges ffx1; x2g j 2 � x � 4g to form a further part of the leave. Now
B1 [ B2 [ B3 is a set of twenty two 4-cycles that pack K�4; 4; 1; 1; 1; 1; 1; 1; 1�, with
minimum leave L � ff11; z1g; f12; z1g; fx1; x2g j 2 � x � 4g. &

Theorem 5.10. Suppose that G is a complete multipartite graph with s � 1 even
parts and t odd parts, where t is odd. Let the even sized parts have sizes
v1 � v2 � � � � � vs, and let � �Ps

i�1 vi be the number of vertices of odd degree in G.
There exists a maximum 4-cycle packing B of G with leave L in which either

(A) jLj � �
2
� 3, or

(B) jLj � v1 � 3.

Proof. As observed in the proof of Theorem 4.6, if L satis®es (A) or (B) then it is a
minimum leave. Let E denote the set of vertices in the even parts and O the set of
vertices in the odd parts.

First we deal with s � 1, the case of only one even-sized part. We pack the odd
parts with 4-cycles with leave as described in Remark 3.2, and then use condition (�)
from E to O n fzg where z is one vertex in an odd-sized part. We possibly modify this
set of 4-cycles, considering four cases in turn.

(i) t � 1 (mod 8).
The current leave is a star that joins z to all vertices in E, so it has size v1;
hence L is minimum by (B).

(ii) t � 3 (mod 8).
The current leave is a star that joins z to all vertices in E, together with a K3

on three vertices from three different odd-sized parts, so it has size v1 � 3.
Hence L is minimum by (B).

(iii) t � 5 (mod 8).
The current leave is a star centered at vertex z in O, together with (by choice)
a K5 leave on a vertex set that includes vertex z and four other vertices, each
from a different odd-sized part. We apply Lemma 5.2 to a pair of vertices
from the even-sized part together with the ®ve vertices of the K5 leave. The
®nal leave is then a path of 4 edges starting and ending on two vertices in E,
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together with a star that joins z to the remaining v1 ÿ 2 vertices in E. This
leave has a total of v1 � 2 edges, so it is a minimum leave, by (B).

(iv) t � 7 (mod 8).
We proceed exactly as in the case t � 5 (mod 8), but use Lemma 5.3 instead
of Lemma 5.2. The ®nal leave contains v1 � 1 edges and so is a minimum
leave by (B).

Next we assume that s � 2, so there are at least two even-sized parts. Form a
partition P of the vertices in E into pairs, the two vertices in each pair belonging to
the same part. Partition as many of these pairs as possible into sets S1; . . . ; Sy of size
four, so that each Sl; 1 � l � y, contains at most two pairs from each part. Let S be
any of the remaining pairs. Then:

case (a) jSj � 3, and we can assume that:
(ai) no two pairs in S occur in the same part, or

(aii) Sl contains two pairs in V1, for 1 � l � y.

case (b) jSj � 4, and we can assume that:
(bi) all pairs in S except possibly one are in V1, and

(bii) Sl contains two pairs in V1, for 1 � l � y.

To see that we can assume either (ai) or (aii) holds, suppose that W is a part
containing two pairs p1 and p2 in S. If Sl contains two pairs in W for 1 � l � y then
W � V1 and (aii) holds. Otherwise one set, say S1, contains at most one pair in W .
Then since jS1j � 4 and jSj � 3, S1 contains a pair p3 contained in a part which
contains no pair in S. Interchange pairs p1 and p3 between S and S1. If W still contains
two pairs in S (so jSj � 3), then this process can be repeated.

To see that (bi) and (bii) can be assumed we argue as follows. Clearly, the
maximality of y forces all but at most one pair in S to occur together in one part, say
Vi. If there exists a set Sl; 1 � l � y, say S1, that contains at most one pair in Vi, then
replace one pair p1 in S1 that is not in Vi with a pair p2 in S that is in Vi to form S01. Let
S0 � �S [ fp1g� n fp2g. By the maximality of y, p1 is the only pair in S0 that is not in
Vi (for otherwise we can form another set Sl�1 from the pairs in S0). Also, all sets S01
and Sl for 2 � l � y contain exactly 2 pairs in Vi; for otherwise the above step could
be repeated, producing a second pair in S00 not in Vi which together with p1 and two of
the jSj ÿ 2 � 2 pairs in S00 that are in Vi form a set Sl�1, again contradicting the
maximality of y. Therefore, (bii) holds, and so clearly Vi is the largest part, so i � 1
and (bi) holds.

Let z 2 O. For each l, 1 � l � y, let Sl � fpl;i j 1 � i � 4g where possibly pl;2jÿ1

and pl;2j are subsets of the same part for j � 1; 2. Let pl;i � fw1
l;i;w

2
l;ig. Let Bl be

formed from: the 4-cycles in a packing of K�4; 4; 1� (see Lemma 5.1) with partition
fpl;1 [ pl;2; pl;3 [ pl;4; fzgg; and for j � 1; 2, if pl;2jÿ1, and pl;2j are subsets of different
parts, include also the 4-cycle �w1

l;2jÿ1;w
1
l;2j;w

2
l;2jÿ1;w

2
l;2j�. Now the 4-cycles in Bl

cover all edges joining vertices in
S4

i�1 pl;i [ fzg that are in different parts, except for
the leave Ll that consists of a 1-factor joining vertices in pl;1 [ pl;2 to vertices in
pl;3 [ pl;4. Note that in case (b), by (bii) we have that each edge in

Sy
l�1 Ll is incident

with a vertex in V1.
Next, let B02 be a set of 4-cycles that form a packing of K�vs�1; . . . ; vs�t� with leave

K
 de®ned on the vertex set fz � z1; z2; . . . ; z
g, where 
 � t (mod 8) with
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 2 f1; 3; 5; 7g (see Remark 3.2). Then we pair off the vertices in O n fzg so that, in
particular, fz2; z3g; . . . ; fz
ÿ1; z
g are pairs, and for each pair from O n fzg, together
with each pair in P (the partition of E into pairs), we take the induced 4-cycle, and
place these 4-cycles in B01. Also, for each fp1; p2g � P such that

(1) p1 and p2 are in different parts, and
(2) for 1 � l � y, fp1; p2g 6� Sl,

place the 4-cycle induced by p1 [ p2 in B03. (If t 6� 1 (mod 8), note that not all of these
4-cycles will be in our ®nal maximum packing.)

Now consider the cases t � 1; 3; 5; and 7 (mod 8) in turn. Let

B �
[y
l�1

Bl

 !
[

[3
j�1

B0j

 !

and

L �
[y
l�1

Ll

 !
[ E�R�;

where R is a star that joins z to each vertex in each pair of S.

(i) t � 1 (mod 8).
The cycles in B form a maximum packing with leave L which is a minimum leave
because in case (a), jLj � jEj=2� jSj � �=2� 3 (see (A)), and in case (b), jLj � v1

or v1 � 2, according as all pairs in S are in V1, or one pair is not in V1 (see (B)).
For t � i (mod 8) when i � 3; 5; or 7, we now start with B, that has leave L [ L0i

where L0i is a copy of Ki de®ned on the vertex set fz � z1; z2; . . . ; z
g. We shall show
how to modify B to obtain a maximum packing.

(ii) t � 3 (mod 8).
If jSj � 0 then jL0j � �

2
� 3, where L0 � L [ L03, and thus L0 is a minimum leave by

(A). Therefore we can assume that jSj � 1.
If S contains two pairs p1 and p2 from different parts, then remove the 4-cycle

induced by p1 [ p2 from B03, and remove the two 4-cycles joining p1 [ p2 to fz2; z3g
from B01; then let B04 be the set of 4-cycles formed by applying Lemma 5.4 to
K7 n fp1; p2g (regarding pi as an edge here), on the vertex set p1 [ p2[
fzi j 1 � i � 3g. This results in the modi®ed leave L0 with

jL0j � jLj ÿ 1 �
�

2
� jSj ÿ 1 in case �a� �so 2 � jSj � 3�

v1 � 1 in case �b�:

8<:
(See Figure 7.)

If all pairs in S belong to one part, say Vi (in case (b), i � 1), then either there
exists a set, say S1, containing at most one pair in Vi (by (bii), this only arises in case
(a), and so by (ai) and (aii), jSj � 1), or else each Sl contains two pairs in Vi, for
1 � l � y (so i � 1). Let S1 � fp1; p2; p3; p4g.
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In the former case, if S1 contains a pair in Vi, let it be p1. If S1 contains one (or
two) pairs of pairs that are both subsets of the same part, then we can suppose that p3

and p4 are in the same part (or p3 and p4 occur in one part, and p1 and p2 occur in one
part). Let p 2 S. Remove the 4-cycles in B1 from B. Remove from B01 the 4-cycles
induced by p [ fz2; z3g and by pi [ fz2; z3g for 1 � i � 4. Let B04 be the set of
4-cycles formed by applying Lemma 5.7 to K�4; 4; 2; 1; 1; 1� with vertex parts de®ned
as follows. If p1 2 Vi then the parts are p [ p1; p3 [ p4; p2; fz1g; fz2g; fz3g, in
which case if p3 and p4 are in different parts we add to B04 the 4-cycle formed by the
edges joining p3 to p4. If p1 62 Vi then the parts are p1 [ p2; p3 [ p4; p;
fz1g; fz2g; fz3g, in which case for i � 1; 2, if p2iÿ1 and p2i are in different parts
then we also add to B04 the 4-cycle formed by the edges joining p2iÿ1 to p2i. The
modi®ed leave L0 satis®es

jL0j � �
2
� jSj ÿ 1 � �

2
; �1�

so L0 is a minimum leave by (A). (See Figure 8.)
In the latter case, every edge in L meets V1, so jL [ L03j � v1 � 3 and thus

L0 � L [ L03 is already a minimum leave by (B).

(iii) t � 5 (mod 8).
If jSj � 0 then clearly y � 1, so let S1 � fp1; p2; p3; p4g, where we can assume for
i � 1; 2 and j � 3; 4 that pi and pj occur in different parts. Replace the 4-cycles in B01

FIG. 7.

FIG. 8.
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joining pi, 1 � i � 4, to fzj j 2 � j � 5g and the 4-cycles in B1 with the set B04 of
4-cycles de®ned as follows. Let B04 contain the 4-cycles formed by applying Lemma
5.8 to K�4; 4; 1; 1; 1; 1; 1� with parts p1 [ p2, p3 [ p4 and fzig for 1 � i � 5, together
with the 4-cycles that join p2iÿ1 to p2i, i � 1; 2, whenever p2iÿ1 and p2i are in different
even-sized parts. The resulting leave L0 satis®es jL0j � �

2
� 2, so is a minimum leave

by (A). Therefore, we can assume that jSj � 1.
If S contains two pairs p1 and p2 from different parts, then remove the 4-cycle

induced by p1 [ p2 from B03 and the four 4-cycles joining p1 [ p2 to fz2; z3; z4; z5g
from B01. Let B04 be the set of 4-cycles formed by applying Lemma 5.5 to K9 n fp1; p2g
(regarding pi as an edge here) on the vertex set p1 [ p2 [ fzi j 1 � i � 5g. This results
in the modi®ed leave

jL0j � jLj ÿ 2 �
�

2
� jSj ÿ 2 in case �a� �so jSj � 2 or 3�;

v1 in case �b�:

8<:
(See Figure 9.)

Now if all pairs in S belong to one part, say Vi, then let p 2 S and remove the two
4-cycles joining p to fz2; z3; z4; z5g from B01. Then apply Lemma 5.2 to K7 ÿ fpg with
vertex set p [ fz1; z2; . . . ; z5g. If jSj � 1, then jL0j � �

2
� 3, so L0 is minimum by (A).

If jSj � 2, and all pairs in S belong to Vi, then since (ai) is not satis®ed, each Sl

contains two pairs in Vi for 1 � l � y (so i � 1). Therefore, every edge in L meets V1,
so we have ®nal leave L0 satisfying jL0j � v1 � 2.

(iv) t � 7 (mod 8).
If jSj � 0 then proceed exactly as in the case where t � 5 (mod 8) and jSj � 0, except
that Lemma 5.9 is used instead of Lemma 5.8. Then the resulting modi®ed leave L0
satis®es jL0j � �

2
� 1, so is a minimum leave by (A). Therefore, we can assume that

jSj � 1.
If jSj � 2 or jSj � 4 and S contains two pairs p1 and p2 from two different parts,

then remove: the 4-cycle induced by p1 [ p2 from B03, and the six 4-cycles joining
p1 [ p2 to fzi j 2 � i � 7g from B01. Then apply Lemma 5.6 to K11 ÿ fp1; p2g on the
vertex set p1 [ p2 [ fzi j 1 � i � 7g to obtain a set of 4-cycles B04. This results in the
modi®ed leave L0 with:

jL0j �
�

2
� 3 if jSj � 2; and

v1 � 3 if jSj � 4:

8<:
(See Figure 10.)

FIG. 9.
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If jSj 6� 3, and all pairs occur in one part (so if jSj � 2, then in fact jSj � 1 by (ai)),
apply Lemma 5.3 to K9 ÿ p with vertex set fzi j 1 � i � 7g [ p, where p 2 S. The
resulting leave L0 satis®es

jL0j �
�

2
� jSj � 1 � �

2
� 2; if jSj � 2;

v1 � 1; if jSj � 4:

8<:
So L0 is a minimum leave. (See Figure 11.)

Finally, suppose jSj � 3. Let S � fp1; p2; p3g.

(1) If all three of these pairs in S belong to different parts, then remove the
4-cycles in B03 joining pi to pj for 1 � i < j � 3, and remove from B01 the nine
4-cycles that join p1 [ p2 [ p3 to fzi j 2 � i � 7g. Let B04 be a packing of K13

on the vertex set fp1; p2; p3; zi j 1 � i � 7g, with leave being the 6-cycle
�p1

1; p
1
2; p

2
2; p

1
3; p

2
3; p

2
1�, where pair pi � fp1

i ; p
2
i g. This is equivalent to a 4-cycle

packing of K�2; 2; 2; 1; 1; 1; 1; 1; 1; 1� with three disjoint edges in the leave,
between vertices in the parts of size 2. Thus the ®nal leave L0 satis®es
jL0j � �=2:

(2) If exactly two pairs, p1 and p3, belong to one part, W1 and p2 to a third part,
then (ai) is not satis®ed. Therefore, each Sl, 1 � l � y, contains two pairs from
W1, so W1 � V1. Remove the 4-cycle in B03 joining p1 to p2, and remove from
B01 the six 4-cycles that join p1 [ p2 to fzi j 2 � i � 6g. Let B04 be the set of

FIG. 10.

FIG. 11.
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4-cycles formed by applying Lemma 5.6 to K11 n fp1; p2g, on the vertex set
fzi j 1 � i � 7g [ p1 [ p2. This packing of K11 n fp1; p2g has the leave of two
disjoint edges between p1 and p2 and a K3 on the vertex set fz1; z2; z3g, so the
®nal leave L0 satis®es jL0j � v1 � 3.

(3) Finally, we can assume that jSj � 3 and all three pairs in S occur in the same
part, say W. Since (ai) is not satis®ed, each Sl contains two pairs from W ,
for 1 � l � y, so W � V1. Then using Lemma 5.3 on K9 n fp1g yields
jL0j � v1 � 1. &

6. CONCLUDING REMARKS

We now have the following result.

Theorem 6.1. Let G be a complete multipartite graph with � vertices of odd degree
and � vertices in the largest part containing vertices of odd degree (if such a part
exists). Then there exists a maximum 4-cycle packing of G with leave L satisfying

(i) maxf�=2; �g � jLj � maxf�=2; �g � 3, if G does not have n parts all of odd
size with n � 5 or 7 (mod 8); and

(ii) jLj � 6 or 5 if G has n parts, all of odd size, with n � 5 or 7 (mod 8),
respectively.

Remark: Note that the size of the leave is completely determined by the
inequalities.

Proof. Clearly, jLj � �=2 and jLj � �. Also, for any other 4-cycle packing of G with
leave L0, 4 must divide jL0j ÿ jLj. Therefore, the result follows from the 4-cycle
packing of G with leave L that is constructed in one of Lemmas 2.2 and 3.1 and
Theorems 4.6 and 5.10. &

We remark that of course many different minimum leaves are possible in most
cases. For instance, in cases where a component of the leave as described above is a
star with center at a vertex in an odd part, this could be split into several smaller stars
having centers at different vertices in odd sized parts.

The related problem of packing a �-fold complete multipartite graph will be the
subject of a subsequent paper, for reasons of length.
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