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1. INTRODUCTION

In this paper we study the existence of many positive nonradial solutions
of the equation

Au+f(u)=0 in Q, (1.1)
u=0 on 082, (1.2)
where 2=0,={xeR":a<|x|<1} is an annulus in R", n>2, and f
satisfies the following conditions:
(H-0) feC'(R') and f(u)>0 for u large,
(H-1) f(0)=0 and f'(0) <0,
(H-2) there exists ¢ >0 such that uf"(u)= (1 +0) f(u) for all >0,
(H-3) for u large,

n+

Cu” for some p <

Sy < n—

exp A(u) with A(u)=o(u?)as u— x if n=2.

;and C>0ifn=3,

In [3], Coffman considered Eqgs.(1.1) and (1.2) when n=2,
flu)= —u+u?, p=2N+1, N is a positive integer, and Q=0Q(r,c)=
{(x, y)eR* r?<x?+y*<(r+c)?}. He showed that for any fixed ¢>0,
the number of rotationally non-equivalent nonradial positive solutions is
unbounded as r— oo. The method used in [3] was to minimize the
associated Rayleigh quotients on the class of all radial functions and the
class of functions which are invariant under the rotating 2n/k angles
with k& >2. By choosing some appropriate test functions, he was able
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POSITIVE NONRADIAL SOLUTIONS 339

to show that the minimums are different as soon as r is large enough.
Later, using the same idea, Li [6] extended the results to »>4 and
pe(l,(n+2)/(n—2)). He also treated the problems when the nonlinearity
was not homogeneous.

In this paper, we use a Nehari-type variational method, i.e., we consider
the functionals

Joy=[ §1Vul = Fu),

“

and

M= |Vul> —uflu")

u

on Hy($2,), where F(u)= 4 f(¢)dr and u* = max{u, 0}, and manifolds,
M={ueHyR2,): M(u)=0 and u#0},
and
V,=1{ueM:uis radial }.
For any proper subgroup G of O(n), denote by
Mi={ueM: u(gx)=u(x) for all ge G and xe Q,},

the G-symmetric submanifold
Let

I,=1,(a)=nf{J(u):ueV_},
and

I,=1a)=inf{J(u):ue M;}.

Let I be a family of subgroups of O(n). Then we can obtain many
positive nonradial solutions if we can establish the following properties for
Gel:

(i) I,<[1, forall GeTr,
(ii) I, is achieved by some uge M, and ug is a critical point of J
on M,
(ili) u is a critical point of J on H(Q,),
(iv) I,#1;i{G#Gand G,GeT.
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Note that (ii) is related to the compact imbedding of M into L”*1Q,),
and (ii1) is related to the symmetric critically principle: if ug; is a critical
point of J on Mg, then it is also a critical point of J on H)(R2,) (see, e.g.,
[15]).

To establish (i) and (iv), we study the nonradial instability of positive
radial solutions of (1.1) and (1.2). Indeed, for n=2, let u, be a positive
radial solution of (1.1) and (1.2) on £2,. The linearized eigenvalue problem
of (1.1) and (1.2) at u, is

Aw +f(u,)w= —puw in Q,, (1.3)
w=0 on 6Qu (14)

In spherical coordinates, (1.3) and (1.4) are equivalent to

1 .
o)+ 00+ {7t - B o= “ ) o, a<r<i,
(15)
pla)y=0=1¢p(1), (1.6)

where o, =k(k+n—2), k=0,1,2,.., and /=1,2,... Note that z,
are eigenvalues of Laplacian —4 on $”', the unit sphere. For k=1,
the associated eigenspace S,, of —4 on S" ' is given by S, ;=
{Yi: 8" ' >R [ Y(x)=Pu(x) for [x]=1, where P,(x) is the harmonic
homogeneous polynomial of degree k on R”}. The associated eigenfunc-
tions w,, of (1.3) and (1.4) are given by w, ;= ¢, . For /=1, denote
@i = @iy and then w, =@, ¥,

u, is said to be unstable with respect to the k-mode if p, ,(u,) <O0. In this
case, it was proved in [9] that for |¢| small there exists é(7) = o(?) such that

U =u, +0()wy+tw,e M, (1.7)
and

J(u (1)) < J(u,). (1.8)

Therefore, there is a positive nonradial solution provided that all positive
radial solutions are unstable with respect to the k-mode for some k> 1
(a being fixed).

In this paper, by carefully studying the various kinds of symmetry of the
members of S, ,, we are able to obtain some families I" of subgroups of
O(n) such that (i)-(iv) hold, which give us many non-equivalent positive
nonradial solutions under the assumptions (H-0)}-(H-3).
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In [4], Ding showed that the imbeddings of certain symmetric
submanifolds of H'(S"™') into L”(§"') are compact for some p
exceeding the Sobolev critical exponent (n+ 2)/(n—2). Using the same
idea, Li [6] obtained some nonradial positive solutions for p greater than
(n+2)/(n—2). After proving similar compact imbedding theorems, we can
obtain more positive nonradial solutions in some supercritical cases.

The paper is organized as follows: In Section 2, we study the subcritical
cases. In Section 3, we study the supercritical cases.

2. SuBcrITICAL CASES

The existence of positive radial solutions of (1.1) and (1.2) has been
studied by many authors, see [5, 7, 11, 12, 14]. In fact, conditions
(H-0)-(H-2) imply that there exists at least one positive radial solution u,
of (1.1) and (1.2) for each a€ (0, 1). Note that it was proved in [10] that
there is no positive nonradial solution of (1.1) and (1.2) provided that a is
small enough.

We first need some results concerning the nonradial instability of
positive radial solutions.

LeMMa 2.1.  Assume conditions (H-0)-(H-2) are satisfied. Then, for each
k=1, there exists an a, = a,(n, 6)e (0, 1), such that for any ae(a,, 1) and
any positive radial solution u,, we have y, (u,)<0.

Proof. The lemma was proved essentially in Lemma 3.1 of [9]. Here,
we give better estimates on a,.
It is known that p, , = p, ,(u,) can be characterized as

il
Mo ___inf{Qk(U)/'[ r"~'wldr:ve Hia, 1) and vséO}, (2.1)

[

where
1
0.(v) =J‘ ro! {v’z —f’(u,,)vz+%—§-vz} dr.

From (2.1), it is clear that y, , is strictly increasing in &.
Since u, is a solution of (1.1) and (1.2), we have

L Vu = u, flu,). (2.2)
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By (H-2) and (2.2), we have

onQutu) = [ fuo ) —rtupich v |

< —GJ |Vuu|2+1ka'/zj ul,
£, Q4
where w,, is the area of $" .
Let v (a)>0 be the least eigenvalue of —4 on @, with the Dirichlet
boundary condition. Then, it is easy to check that v (g} is strictly
increasing in @ and

lim v (a)= . (2.3)

a—1

Using the Poincaré inequality

L, Vol = vy(a) [ o2

2,

for all ve H{(£2,), we have

ﬂ),,Qk(llu)< { —U+‘1ka7 2‘,]71(‘1)} J qu,,'z-

Q,
Now, by choosing a, satisfying
apvi(a,)=a,/o, (2.4)

the results follow. The proof is complete.

Next, we recall the results concerning the change of J(v) along the
direction of nonradial mode w, at positive radial solution u,,.

LEMMA 2.2 Assume conditions (H-0)-(H-2) are satisfied. Let u, be a
positive radial solution of (1.1) and (1.2), w, and w, be associated eigen-
Junctions  with respect to p,,, and u,,, k=1, respectively, and
fa,wi=1la,wi=1. Then, there exist £¢>0 and a smooth function
3:(—e &) R" with 5(0)=6'(0) =0 such that for any te(—zs, &), we have

M(uu+(5(t)w0+rwk)=0. (2.5)
Moreover, wc have
J(u, +6(Dwo+ 1wy =J(u,) + 3uo 07 +3u 2+ 00, (26)

for t ~0.
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For the proofs, see Lemmas 6.1 and 6.2 in [9].

Next, we characterize various kinds of symmetric submanifolds of
H/(£2,) which are invariant under the group actions of certain subgroups
of O(n), the set of all n x n orthogonal matrices.

DerINITION 2.3. Let G be a subgroup of O(n). A function u is said to
be invariant under G or G-symmetric if u(gx)=wu(x) for all ge G and
xe$2,. In this case, we write ue G,

DEerINITION 2.4, Two functions u and v on €, are said to be equivalent
if there exists a g e O(n) such that v(x)=u(gx) for all xe €2,,.

Note that if « and v are equivalent then w is a solution of (1.1} and (1.2)
if and only if v is a solution of (1.1) and (1.2).
For k > 2, the rotational subgroup G, is defined by

2nl . 2nl . 2nl 2n
G.,=14ge€ O(2):g(x,,_\:2)=<x1 cos—k—+x2 sm—k—, —x,smT+x2cos-7<— ,

(x,, x,)eR% lis an integer}.

Let
Vi={ueM: ueG,x0(n—-2)},
I, =I(a)=inf{J(u): ueV,},
and for 2<n—1I1</, let
Zi={ueM:ueO()xO(n—1)},
I,=T(a)=inf{J(u):ueX,}.

Remark 2.5. In [6], it was proved that if ueO(/)xO(n—1)n
O([yx O(n—1) with 1 #/[ and [#n—1I, then u is radial.

The following lemma shows that S, , can provide eigenfunctions of
G, x O(n—2) symmetry for all k> 1.

LEMMA 2.6. Let (p, 8) be the polar coordinates in R?. Then, for n>2 and
for each k = 1, choosing i, = p* cos kO, we have w, = @Y, € G, x O(n—2).

Proof. The associated homogeneous polynomial
P(x)=p*cos b

is of degree k and harmonic. The result follows.
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Furthermore, S, , can also provide more symmetric eigenfunctions when
the dimension n > 4.

LemMa 2.7. For n24, k is even and 2 <n— 1</ Then, there exist
such that w, ;=@ Y, ;€ O()x O(n—1). Moreover, for any decomposition
L=(l,..0) of n, j22, ie, [, satisfies (i) I,22 for each i and (ii)

1_y 1, =n, then there exists wy = @, , €0(l))x --- xO(l)).

Proof. Let k=2m>2, s’=xi+ - +x], and *=x], + - +x2.
Consider the homogeneous polynomials

Py (x)=Y A5 M

j=0

where A; are real numbers which will be determined immediately. Then

APy, ={—4—2 2 2 7 m O
2 {5s2 s ds ar t ot

m— | ) ]
= 2 AC A+ Coy Ay y S50,

j=0

0 1-1 é? —I-10
——a z }PZm

where the C,; are positive constants. If 4P,, =0, then 4,=C;4, with
(—1)’C;>0 for j=1, .., m. Therefore, let ¥, ,= P, then w, , =@, ¥, €
o xO(n—1).

The second assertion of the lemma can be proved analogously, the detail
is omitted.

After these preparations, we can now prove the following theorems.

THEOREM 2.8. Assume conditions (H-0)}-(H-3) are satisfied. Then there
exists an increasing sequence a,— 1~ as k— o, such that for any
a€(ay, 1), (1.1) and (1.2) have a positive nonradial solution u;e V,, for each
J=1,2, .., k. Furthermore, u, are non-equivalent for j=1,2, .., k.

Proof. By Lemma 2.1, there exists a, € (0, 1) such that yu, (1) <0 for
all positive radial solutions u, if ae (a,, 1).

For fixed 421 and j=1,2,..,k, by Lemma26, there exist
w;=@,eG;xO(n—2), where the ¢, depend on u,. By Lemma 2.2,
u,+0({)wo+tw, eV, and

Ju,+3(t)wo + tw) < J(u,) (2.7)

for |t| sufficiently small, j=1, 2, ..., k. Then conditions (H-0)-(H-3) imply
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that the minimums 7/, and /; are achieved by some functions u, e V', and
weV, j=12, .,k By(27)wehave

I.<I,., (2.8)

J

forj=1,2, ..,k
To show that all u; are non-equivalent, we first recall the result, which
was proved in [3, 6, 16] that

I,, <[, implies I,<1I,,, (29)

forj=1,2,..and m=2, ...

Now, let 1 <i< j<k and / be the least common multiple of / and ;. If
Jj=1, then u; and u; are non-equivalent by (2.9). If j</, then V,nV, =V
If u, and u; are equlvalent then we may assume u,=u;=deV,. Therefore
by (2.8), we have

L<J@)=1,<1.,. (2.10)

By (2.9) and (2.10), we obtain /;< [,, a contradiction to (2.10). Hence u,
and u; are non-equivalent.

The proof that the ; are solutions of (1.1) and (1.2) is rather standard.
Indeed, since u, is a minimizer of J(u) over V,, there is a Lagrange
multiplier 4, € R’ such that

J'(u) =AM (u))

on V,, see, e.g.,, [2]. Now, by (H-2), it is easy to verify that 4;=0, see, e.g,
[13]. Hence, u; is a critical point of J(u) over V.

Finally, by using the symmetric critically principle [4, 15] or the results
in (6], the u; are positive solutions of (1.1} and (1.2). The proof is
complete.

For higher dimensions, #>6, we can have more positive nonradial
solutions.

THEOREM 2.9. Assume conditions (H-0)-(H-3) are satisfied. For n= 6, k
is even, 3<n—1<1, and ae(a,, 1), then there exist non-equivalent positive
nonradial solutions u, e 2.

Proof. The proof is the same as in proving the previous theorem except
using Lemma 2.7 instead of Lemma 2.6. The detail is omitted.
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3. SUPERCRITICAL CASES

In this section, we first prove the following compactness lemma which is
motivated by Ding [4] and Li [6].

LemMa 3.1, For nz4 and 2<n—I1<I, the imbedding of X, into
L7 YR, is compact provided 1 < p< (I+3)/(I—1).

Proof. Let y=(x,,...x;)and z=(x,, ,, ... X,,), s =|y|? and £’ =|z]%
D={(s,NeR:a*<s’+1*< 1},
az
D, = {(s, NeD: t2>—2-},
and
Dz = D\Dl .
In the following, the constants C; may vary but depend only on n, /, q,

and p.
Let ue X,, then there exists ve H)(D) such that u(y, z)= (||, |2]),

cr
E;(s,t)=0 for =0,

and

Therefore,

[ (Yl + ) dy dz

v Q

=C,jp(|Vu|2+v2)s'*‘z"”" U ds dr

=C, {L (Vo> +v*)s' ' ds dt+jD (Vo2 4+ v3y =1V ds dt}.

N

Let

Di={(»)eR*':(|yl,1)eD,},
D,={(s,2)eR" " 'i(s,|z])e D,}.
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Define w,e H(D,), i=1,2, by u,(y,1)=0v(]yl, 1) and u,(s, z)=0u(s, |z|).

Then
20p+ 1)
f uwﬁ+ﬁn’%&m=}(NMV+ﬁu@m>c%J|mv“} ,
Dl 5] D

1

for p < (/+ 3)/({—1). Similarly, we have

f(ww+ﬁw"mm>a{f
D, b

2ilp+1)
|u2|p+l}

2

forp<(n—1+3)/(n—1-1)

Since n—1</, we have (/+3)/(/—1)<(n—1+3)/(n—1—1) and the
imbeddings of H'(D,) into L?*'(D,) are compact if p < (/+ 3)/(/—1), for
i=1,2.

Since 2/(p+ 1)< 1, we have

2(p+ 1)
J (]Vu|2+u2)dydz>C5{f |u1|”+1+J‘ |u2|””}
2, by D,

2:p+ 1)
>C, {J‘ [p] P+ lg/—tpn 1! dsdt}
D

2/{p+1)
=, {L ]ui”“dydz} .

The proof is complete.

For n >4, define

if n is even,

B SRR

+1
2

if n is odd,

and P¥=({,+3)/(/,—1). It is easy to see that P*> (n+1)/(n—3)ifn>6.
We can now prove the following theorems.

THEOREM 3.2. Let n 2 4. Assume f satisfies (H-0)-(H-2) and
(H-3)"  for u large, f(u) < Cu”, C >0, and for some p< (n+ 1)/(n—3).
Then for each k22 and ae(ay, 1), there exist non-equivalent positive

nonradial solutions u; ,€ X, for j=2,4, .., 2[k/2] and I=1,.

505:103:2-9
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THEOREM 3.3. Let n2 4. Assume f satisfies (H-0)-(H-2) and (H-3)' with
p<PY Then for each k22 and ae(ay, 1), there exist non-equivalent
positive nonradial solutions u,, € 2, for j=2, .., 2[k/2].

Proof of Theorems 3.2 and 3.3. By Lemma 2.7, for each even j < 2[k/2]
and 2<n 1<, there exist w, ;= ¢, O(l)xO(n—1!). By Lemma 3.1,
the imbeddings of £, into L**'(2) are compact if p < (/+ 3)/(/—1).

Since (/4 3)/(I—1) is decreasing in [/, we have (/+3)/(/—1)=
(n+1)/(n—3)for /=2, .., n—2. Hence, Theorem 3.2 follows. Similarly, the
imbedding of X, —» L?*'(Q,) is compact if 1<p<P¥ Theorem 3.3
follows. The proof is complete.

Remark 34. (1) The arguments used in this paper are also valid if f(u)
is replaced by f(|x|, u) which satisfies conditions similar to (H-0}-(H-3).

(ii) It is possible to use the same techniques to bring more positive
nonradial solutions in the cases (0} >0 or f(0)=0 and f'(0)> 0, see [8]
for results concerning the nonradial instability and estimations of g, .
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