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A convex Frechet differentiable function is minimized subject to a certain´
hyperplane at a point if the function is minimized in all directions which are
defined by a finite set of vectors. The proposed approach is different from the
Lagrange multiplier approach. At the end of this paper, a linear program is
formulated to solve the case when the above given convex function is quadratic.
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1. INTRODUCTION

Let f be a real-valued convex Frechet differentiable function on Rn.´
The function f is to be minimized subject to a constraint hyperplane

n
nH � x � R : x � x , x , . . . , x , x � c ,Ž . Ýc 1 2 n j½ 5

j�1

i.e., min f x . 1Ž . Ž .
x�Hc
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This problem occurs in many real life situations such as portfolio analysis,
investment analysis, etc. The new necessary and sufficient condition pro-
posed in this paper can be applied to improve the computation efficiency.
This necessary and sufficient condition allows one to solve the above

Ž .problem 1 by minimizing the convex objective function in every direction
j Ž j j j.T n� � � , � , . . . , � � R , j � 1, 2, . . . , n, where1 2 n

�1 if k � j
j� � 2Ž .1k ½ if k � j.n � 1

We will show that if a convex Frechet differentiable function is minimized´
j Ž .at a point x � H in every direction � , j � 1, 2, . . . , n, as defined in 2 ,0 c

then the function attains its minimum over H at x . More precisely, wec 0
Ž .establish a condition for the solution of problem 1 . The condition is

Ž .stated and proved as Theorem 1, in Section 2 Main Results . This allows
Ž . jone to obtain solutions of 1 by considering all directions � , j � 1, 2, . . . , n,

Ž . Žand the following necessary and sufficient condition: f x � f x �0 0
j. � 	 Ž . Ž .t� , j � 1, 2, . . . , n, � t � 0, � , for some � � 0, if and only if f x � f x ,0

� x � H .c
Ž .The solution of 1 is usually obtained by applying the Lagrange multi-

plier condition and solving a system of equations to reach an optimal
solution. The condition established in this paper allows one to approach
the problem without using the Lagrange multiplier. This is an alternative
method of solving this class of problems.

2. MAIN RESULTS

� n n 4Let’s consider the hyperplane H � x � R : Ý x � c . Obviouslyc j�1 j

H is a linear subspace of Rn and H � x � H , � x � H . The Frechet´0 c 0 c
Ž .differential of f at x , denoted by d f , can be calculated as d f x �0 x x0 0

² Ž . : n ² : n�f x , x , x � R , where � ,� is the usual inner product in R and0
Ž . ŽŽ .Ž . Ž .Ž . Ž .Ž ..�f x � � f�� x x , � f�� x x , . . . , � f�� x x .0 1 0 2 0 n 0

Ž . nLet’s denote � � 1, 1, . . . , 1 � R . This vector is normalized as q �0
' ' '� � Ž .� � � � � � n � 1� n , . . . , 1� n .0 0 0

� n n 4By definition of H � x � R : Ý x � 0 , one has � 
 H , i.e.,0 j�1 j 0 0
² : 
� , x � 0, � x � H or � , q � H , the orthogonal complement of H .0 0 0 0 0

Ž T T . nLet U be a unitary operator i.e., U U � UU � I, the identity on R
' ' 'ŽŽ .. Ž .with the property U 0, 0, . . . , 0, 1 � q � 1� n , 1� n , . . . , 1� n .
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² Ž . Ž .: ²Ž .Then U x , . . . , x , 0 , U 0, . . . , 0, 1 � x , . . . , x , 0 ,1 n� 1 1 n� 1
T Ž .: ²Ž . Ž .:U U 0, . . . , 0, 1 � x , . . . , x , 0 , 0, . . . , 0, 1 � 0, which implies1 n�1
Ž .U x , x , . . . , x , 0 � H , � x � R, i � 1, 2, . . . , n � 1. Thus if we de-1 2 n�1 0 i

�Ž . 4note S � x , x , . . . , x , 0 : x � R, i � 1, . . . , n � 1 , U maps S onto1 2 n�1 i
Ž .H , i.e., U S � H . Let T be the translation mapping by x , i.e.,0 0 x 00

Ž . n n�1T x � x � x , � x � R . Define a function F on R byx 00

F x , x , . . . , x � f T U x , x , . . . , x , 0 . 3Ž . Ž . Ž .Ž . Ž .Ž .Ž1 2 n�1 x 1 2 n�10

Ž . Ž .Then F 0 � f x . Recall f is convex. Now T is affine and U is linear.0
Thus we have the following lemma.

LEMMA 1. F is a con�ex function on Rn�1.
n�1 Ž . Ž .Let � be defined on R by � x , x , . . . , x � x , x , . . . , x , 0 .1 2 n�1 1 2 n�1

Then F � f �T �U�� . Since U and � are linear functions, U and � arex 0

Frechet differentiable at any point with the differential equal to U and � ,´
respectively. The map T is obviously differentiable at all points withx 0

Ž . Ž .differential equal to the identity map. Since F 0 � f x and f is Frechet´0
differentiable at x , it follows by the chain rule that F is Frechet´0

� 	 � 	� 	� 	� 	differentiable at 0 with differential given by d F � d F I U � .0 x 0� 	Here we use � to denote the matrix of a linear transformation. This is
stated as the following lemma.

LEMMA 2. F is Frechet differentiable at 0 with Frechet differential gi�en´ ´
Ž . Ž Ž ..by d F x , x , . . . , x � d f U x , x , . . . , x , 0 .0 1 2 n�1 x 1 2 n�10

� j 4 Ž .Note that the set of all directions, � : j � 1, 2, . . . , n defined in 2 , is a
linearly dependent set of n vectors in H , and0

Ž . � j 4a any proper nonempty subset of � : j � 1, 2, . . . , n is a linearly
independent set of vectors,

Ž . 1 2 nb � � � � ��� �� � 0.

� j 4The selection of the set � : j � 1, 2, . . . , n is not unique. In fact, one can
Ž . Ž .select any subset of H with properties a and b in order to prove the0

following.

LEMMA 3. For e�ery �ector � � H there exist some nonnegati�e real0
numbers � , � , . . . , � such that � � Ýn � � j.1 2 n j�1 j

Proof. It is easy to see that � 1, � 2, . . . , � n�1 are linearly independent
1 2 n Ž . nand � , � , . . . , � belong to H , a n � 1 -dimensional subspace of R .0

Hence � 1, � 2, . . . , � n span H . Thus, for each vector � � H , there exist0 0
real numbers 	 , j � 1, 2, . . . , n such that � � Ýn 	 � j.j j�1 j
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� � � 4Let M � max 	 : j � 1, 2, . . . , n . Set � � M � 	 � 0, j � 1, 2, . . . , n.j j j
n j n Ž . j n j n jObserve that Ý � � � Ý M � 	 � MÝ � � Ý 	 � � 0 � �j�1 j j�1 j j�1 j�1 j

� � . The lemma is proved.

LEMMA 4. If for some � � 0,

j � 	f x � f x � t� , j � 1, 2, . . . , n , � t � 0, � 4Ž . Ž .Ž .0 0

Ž .Ž .then d f � � 0, �� � H .x 00

Ž . Ž j. � 	Proof. f x � f x � t� , j � 1, 2, . . . , n, � t � 0, � implies0 0
Ž .Ž j. Ž Ž j. Ž . .�d f � � lim f x � t� � f x �t � 0, j � 1, 2, . . . , n.x t � 0 0 00

Ž .Ž .By Lemma 3 one deduces d f � � 0, �� � H .x 00
Ž .Ž . Ž .Ž .If � � H then �� � H , hence d f �� � 0, i.e., d f � �0 0 x x0 0

Ž .Ž .0, �� � H . Thus, d f � � 0, �� � H .0 x 00

THEOREM 1. Let f be a real �alued con�ex function defined on Rn. If f is
n Ž .Frechet differentiable at x � R and satisfies condition 4 , namely, for some´ 0

Ž . Ž j. � 	 Ž .� � 0, f x � f x � t� , j � 1, 2, . . . , n, � t � 0, � , then f x �0 0 0
Ž . Ž . Ž .f x , � x � H . Con�ersely, if f x � f x , � x � H then f satisfies condi-c 0 c

Ž .tion 4 .

Ž .Proof. For the sufficiency part, let F be as defined in 3 . Since
Ž Ž Ž n�1.. Ž . Ž . n�1T U � R � H , it is sufficient to show F 0 � F x , � x � R .x c0

Ž Ž n�1..Observe that U � R � H and by Lemma 2 and Lemma 4 we have0

d F x , x , . . . , x � d f U � x , x , . . . , x � 0,Ž . Ž .Ž . Ž .Ž .Ž .0 1 2 n�1 x 1 2 n�10

� x , x , . . . , x � Rn�1.Ž .1 2 n�1

�By Lemma 1, F is convex. Hence according to Theorem 25.1 in Ref. 2,
	 Ž . Ž . n�1p. 242 , we can deduce that F 0 � F x , � x � R . The converse im-

plication is obvious.

3. APPLICATIONS TO QUADRATIC PROGRAMMING

Let Q be a positive semidefinite n � n matrix, B a 1 � n matrix, and
1 TŽ . Ž .f x � x Qx � Bx. Then 1 becomes a quadratic program2

1
Tmin f x � x Qx � Bx. QPŽ . Ž .

2x�Hc
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Applying Lemma 4 and Theorem 1, we obtain the following theorem.

Ž .THEOREM 2. x* is an optimal solution of QP if and only if x* is a
solution of the following system of linear equations.

xTQ� j � B� j � 0, j � 1, 2, . . . , n 5Ž .
1 x � c,

Ž . j Ž .where 1 � 1, 1, . . . , 1 and � is defined in 2 .

Proof. x* � H if and only if 1 x* � c.c
Ž . Ž .Ž j.x* is an optimal solution of QP if and only if d f � � 0, � j �x*

1, 2, . . . , n

f x* � t� j � f x*Ž . Ž .
jd f � � limŽ . Ž .x* � tt�0

Tj j j1�2 x* � t� Q x* � t� � B x* � t�Ž . Ž . Ž . Ž .
T� 1�2 x* Qx* � Bx*Ž .Ž .

� lim
� tt�0

� x*TQ� j � B� j

� 0.

Ž .COROLLARY. x* is an optimal solution of QP if and only if x* sol�es
Ž .the following linear program LP-Q with the optimal objecti�e function

�alue 0,

n�1

min sÝ j
j�1s.t.

T j j LP-QŽ .x Q� � B� � s � 0, j � 1, 2, . . . , nj

1 x � s � cn�1

s � 0, j � 1, 2, . . . , n � 1.j

Ž .In order to obtain the solution of QP via the Lagrange multiplier
theorem one solves the system of equations

xTQ � B � 	1 � 0Ž .
1 x � c. 6Ž .
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Ž . Ž .To find an optimal solution of QP applying Theorem 1, one solves 5 .
Ž . Ž . Ž .Conditions 5 and 6 have the same number of equations and 6 contains

Ž .a Lagrange multiplier. Thus, solving the system 6 , usually, one has to
Ž .determine more variables than solving 5 .

4. AN EXAMPLE

Ž .Based on the above theorems, one can apply the linear program LP-Q
Ž .to solve 1 when the objective is a quadratic function. It is easy to see that
Ž .solving 1 by the method proposed in this paper can be more efficient

than applying the traditional Lagrange multiplier theorem. The following
example is solved by both methods to illustrate the differences between
them.

EXAMPLE.
1 3

2 2 2min f x , y , z � x � y � z � xz � yz � x � y � 2 zŽ .
2 2

s.t.
x � y � z � 1.

Solution.
1 3

2 2 2f x , y , z � x � y � z � xz � yz � x � y � 2 zŽ .
2 2

1 0 1 x x1
� x , y , z � 1, 1, 2Ž . Ž .0 2 1 y y

2 ž / ž /ž / z z1 1 3

1 1�1 2 21 0 1
1 11 2 3 �1Q � , V � � � � � .Ž .0 2 1 2 2ž / 1 1 01 1 3 �12 2

Applying Theorem 2, we solve the system of equations:

x , y , z QV � BV � 0Ž .½ x � y � z � 1,
i.e.,

�x � 3 y � 2 z � 1 � 0�
2 x � 3 y � 2 z � 1 � 0 7Ž .�x � 4 z � 2 � 0�x � y � z � 1.
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By the Corollary, an alternative is to solve the linear program

min s � s � s � s1 2 3 4

s.t.
�x � 3 y � 2 z � s � �11

2 x � 3 y � 2 z � s � �12

� x � 4 z � s � 2 8Ž .3

x � y � z � s � 14

s � 0, j � 1, 2, 3, 4.j

The optimal solution is s � 0, i � 1, 2, 3, 4, x � 1.2, y � 0.6, z � �0.8i
and the optimal objective function value of this linear program is 0. Thus

�Ž .x � 1.2, y � 0.6, and z � �0.8 minimizes f over the set H � x, y, z : x1
4� y � z � 1 .

To apply the Lagrange multiplier theorem, one solves the equations

x , y , z Q � B � 	 1, 1, 1 � 0Ž . Ž .½ x � y � z � 1,

i.e., one solves the system of equations

x �z �	 � 1 � 0�
2 y � z � 	 � 1 � 0

x � y � 3 z � 	 � 2 � 0�x � y � z � 1 � 0.

Solving this system one obtains the same solutions as expected.
This example demonstrates the methods based on Theorem 2 and its

Corollary. Also, the method developed in this paper is an alternative to the
Ž .Lagrange multiplier theorem for 1 .
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