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Approximate Analytical Description for
Fundamental-Mode Fields of Graded-Index Fibers:

Beyond the Gaussian Approximation
Qing Cao and Sien Chi, Fellow, OSA

Abstract—An approximate analytical description for funda-
mental-mode fields of graded-index fibers is explicitly presented
by use of the power-series expansion method, the maximum-value
condition at the fiber axis, the decay properties of funda-
mental-mode fields at large distance from the fiber axis, and the
approximate modal parameters U obtained from the Gaussian
approximation. This analytical description is much more accurate
than the Gaussian approximation and at the same time keep the
simplicity of the latter. As two special examples, we present the
approximate analytical formulas for the fundamental-mode fields
of a step profile fiber and a Gaussian profile fiber, and we find
that they are both highly accurate in the single-mode range by
comparing them with the corresponding exact solutions.

Index Terms—Fundamental mode, optical waveguide, power-se-
ries expansion, single-mode fiber.

I. INTRODUCTION

T HERE is much interest in the determination of the modal
fields and the propagation constants of fundamental modes

of graded-index fibers due to the great progress of single-mode
fiber communication systems. However, exact analytical solu-
tions are possible only for a limited class of index profiles, such
as the step profile [1], [2], the clad parabolic profile [3], the
power-law profiles [4], [5], and the infinite parabolic profile [6].
Even for these special profiles (except for the unphysical infi-
nite parabolic profile [6]), the solutions [1]–[5] are still given
in special functions or in the sum of many power series. In al-
most all cases, one has to use either approximate or numerical
methods. At present, it is possible to use numerical methods to
obtain high accuracy, but one can not obtain much physical in-
sight as with the analytical expressions presented by approx-
imate methods. Among the approximate methods, the simple
Gaussian approximation [7] is good for the fundamental modes
of graded-index fibers with large value (i.e., is near or
larger than the cutoff frequency ). However, when the nor-
malized frequency gets smaller, the Gaussian approximation
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for the fundamental-mode fields becomes less accurate. In ad-
dition, the Gaussian approximation can not correctly describe
the fundamental-mode fields at large distance from the fiber
axes. To improve the accuracy, many people have presented var-
ious modified versions, such as the Gaussian-exponential [8],
the Gaussian–Hankel [9], the generalized Gaussian [10], the ex-
tended Gaussian [11], and the Laguerre–Gauss/Bessel expan-
sion approximations [12]. These modified versions are far more
accurate than the simple Gaussian approximation. However, the
optimizing processes of these modified variational methods are
much more complicated than that of the Gaussian approxima-
tion.

Unlike the high-order modes, the fundamental mode of a
graded-index fiber has some special properties, such as the
maximum-value point is always located at the fiber axis, the
modal field is always larger than zero in the whole range of

. As we show below, these special properties
allow us to establish a simple power-series method to obtain the
approximate fundamental-mode field when the modal param-
eter is known. Fortunately, for those typical graded-index
fibers, such as the power law profile fibers [4], [5], [7], [13]
and the Gaussian profile fiber [13]–[16], the Gaussian approx-
imation can still present highly accurate modal parameters
in the single-mode range ([7, Fig. 14] and [13, Fig. 15-1], note
that the normalized frequency of the practical single-mode
fibers are usually in the range of ), though in this
case the Gaussian approximation fails to provide the accurate
fundamental-mode fields.

In this paper, we shall use the power-series expansion
method, the maximum-value condition at the fiber axes, the
positive-value property of the fundamental-mode fields, the
decay property of the fundamental-mode fields at large distance
from the fiber axes, and the modal parametersdetermined
by the Gaussian approximation [7] to present a approximate
analytical description for the fundamental-mode fields of
graded-index fibers. In particular, as two special examples,
we shall provide highly accurate closed-form formulas for the
fundamental-mode fields of a step profile fiber and a Gaussian
profile fiber.

II. PHYSICAL CONSIDERATIONS AND MATHEMATICAL

TREATMENTS

Let us consider a graded-index fiber whose radial index dis-
tribution has the form

(1)
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where
maximum index at the fiber axis;
normalized radial coordinate;
characteristic radius of the fiber core;
radial coordinate;
total variation in the profile, ;
profile function and satisfies the relations

and .
It is well known that the modal field and the propagation

constant of the fundamental mode of a weakly guiding fiber
satisfy the following eigen equation:[13]

(2)

where , is the wavenumber in free space,is the
wavelength in free space.

Substituting (1) into (2), and using the normalized radial co-
ordinate to replace the radial coordinate, one can
obtain

(3)

where , is the normalized frequency,
, is the dimensionless modal parameter for fiber

core.
Similarly to the evanescent field expression of the WKB

method [17], we first express the modal field as the
following form

(4)

where is a normalization constant, is a real function of
the variable . Apparently, this expression is consistent with the
real physical phenomenon that the fundamental-mode field of a
graded-index fiber, such as a power law profile fiber, is always
larger than zero in the whole range of . Unlike the
WKB method [17], we do not assume the triangular-function
soultion because the fundamental-mode field has no node in the
whole range of at all.

Substituting (4) into (3), one can obtain

(5)

One may notice that [18] provided a similar treatment for
the eigen equation of single-mode fibers. Especially, one can
prove that (5) here is completely equivalently to (6) of [18] by
taking the relation into account. This relation
shows that our work is somewhat related to [18]. However, it is
necessary to point out that they are apparently different. Refer-
ence [18] is mainly on the numerical algorithm, but our work is
mainly on the approximately analytical description.

From the point of view of physics, a real fiber should have
a uniform-index cladding. It is well known that the funda-
mental-mode field in the uniform-index cladding can

be analytically expressed as , where
is the modified Bessel function of the zeroth order andis
given by . In terms of this relation, (4) and
the assumption that the core-cladding interface is located at the

point for convenience, one can obtain the boundary con-
dition , where is
the modified Bessel function of the first order. Obviously, this
boundary condition is just [18, eq. (8b)]. In order to reduce the
computation, [18] employed this boundary. However, we shall
not use this boundary condition in the remainder of this paper.
This is mainly due to the following two considerations. 1) We
shall try to use some elementary function to approximately an-
alytically describe the fundamental-mode field of single-mode
fiber because of their simplicity. However, the modified Bessel
functions appeared in the above-mentioned boundary condition
are not elementary function. 2) Smooth profile functions such
as the Gaussian profile function are very useful, even though,
strictly speaking, those fibers with such smooth profile func-
tions do not exist. However, for those smooth profile fibers,
the boundary condition becomes
invalid.

By use of (4) and the maximum-value condition
at the point, one can prove that

at the point. We then expand and the profile
function (in this paper, we only consider those graded-
index fibers whose profile function can be expanded as
the power series for small) as the power-series form

(6)

(7)

in the region near the fiber axis, where we have used the proper-
ties that and . One may notice that the power
series of (6) and the power series of (7) are independent of each
other, and therefore one can use two independent numbers to ex-
press the powers of their highest-order terms that are taken into
account, respectively. However, we use two related numbers
and to express the powers of the highest-order terms
of (6) and (7), respectively, because we hope the highest-order
terms of has the same powers as that of in (5).

The high-order terms whose powers are higher thanin
the function and the high-order terms whose powers are
higher than in the profile function have been ig-
nored. Obviously, the expansion coefficients can be deter-
mined by , where is the th-order
derivative of at the point. The number of
the terms of the power series for the function can be de-
termined according to practical needs. Generally speaking, the
larger the number is, the better the obtained result is, but the
more complicated the expression for the function is. For
the fundamental-mode field of an ordinary graded-index fiber,
the first several terms are sufficient. In the examples of Section
III, we shall use only the first five terms (excluding the terms
whose coefficients are equal to zero).



56 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 1, JANUARY 2001

Substituting (6) and (7) into (5), and ignoring the high-order
terms whose powers are higher than , one can obtain the
following recurrence relations:

(8)

(9)

(10)

It is necessary to point out that these solutions are depen-
dent on the modal parameter. In almost all cases, the exact
values cannot be given in closed form. Fortunately, the simple
Gaussian approximation can still provide highly accurate ex-
pressions for the values in the single-mode range [7], [13] (as
low as ). Therefore, we suggest to directly substitute
the values that are obtained from the Gaussian approximation
into (8)–(10) to approximately determine the concrete values of
the parameters . It is worth mentioning that the power-series
expansion method presented here is completely different from
the previous power-series soultions for the fundamental modes
of graded-index fibers [4], [5], [19]. The latter directly expand
the fundamental-mode field as power-series and therefore
has slow convergence property, but we now expand the function

as power series and obtain a fast convergent solution. In
fact, as we state above, in our expansion method, the first sev-
eral terms are usually sufficient for the function .

Let us now investigate the asymptotic behavior of the funda-
mental-mode field of a graded-index fiber at large. Similarly
to the WKB approximation [17], from (5) one can deduce that

and when ,
where is the modal parameter for the fiber cladding. There-
fore, it is reasonable to use as the zero-order
approximation at large , and then employ the perturbation
method to obtain the first-order correction term . Simi-
larly to the WKB method [17], in terms of (5) one can easily
establish the following perturbation equation:

(11)

for large , where the terms , and have been
ignored. From (11), one can obtain

(12)

where we have ignored the term because it
is usually far smaller than the two terms of the right-hand side of

(12) for large . For example, for a power law profile fiber, the
term is exactly equal to zero in the range
of .

We then use the following method to joint the two kinds of
solutions that are given by (6) and (12), respectively. When

, the function is given by (6), and when ,
the function is given by (12), where the joint point is
determined by the equation

(13)

One can easily prove that (13) can ensure that the funda-
mental-mode field and its first-order derivative
are both continuous at the joint point . One may
want to know whether or not the joint point used here is
related to the so called turning point used in the WKB
method [17]. We point out that they are completely different.
The former is defined by (13), but the latter is determined
by the relation [17]. As we point out
before, the fundamental-mode field and its first-order
derivative are both continuous at the joint point ; but
according to the WKB method, the modal field is divergent at
the turning point . In addition, we also want to emphasize
the well-known result that the WKB method is invalid for
the fundamental-mode field. Therefore, we do not discuss the
turning point problem in this paper. In practical applications,
(13) can be easily solved by numerical approach.

After obtaining the coefficients and the joint point ,
one can analytically express the fundamental-mode field
as the closed form (14) shown at the bottom of the page.

One can obtain a more accuratevalue than that of the
Gaussian approximation if one substitute the solution of (14)
into the expression

(15)

which can be derived from (3) and (4), because the solution
given by (14) is more accurate than the corresponding Gaussian
approximation solution. In order to understand this statement
better, we shall present two concrete numerical results in Sec-
tions III-A and -B.

,

(14)
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It is interesting to explain why the fundamental-mode field
of a graded-index fiber has an approximate Gaussian distribu-
tion when the normalized frequencybecomes large. Our the-
oretical treatments imply a good explanation. If one let
, then one can obtain the zero-order approximation

, which is a Gaussian distribution. One may
notice the interesting result that the width of this Gaussian dis-
tribution is only (directly) related to the modal parameter.
Usually, when the normalized frequencybecomes large, the
terms ( ) become negligible with the
first term before the first term
has become rather large. As a consequence, in this case, the
zero-order approximation is a good one in the region where the
modal field is remarkably different from zero. This is why the
fundamental-mode field of a graded-index fiber shows a nearly
Gaussian distribution when is large.

III. EXAMPLES

To understand the above analytical description better, let
us now present two special examples. One is the funda-
mental-mode field of a step profile fiber, the other is the
fundamental-mode field of a Gaussian profile fiber. These two
kinds of graded-index fibers are both typical. Therefore, the
investigation on their fundamantal-mode fields has practical
meanings.

A. The Step Profile Fiber

For a step profile fiber whose profile function is given by
for and for , the expan-

sion coefficients are determined to be for all orders.
Substituting these relations into (8)–(10) and letting ,
one can obtain , ,

, , and
, where the modal parameteris approximately

given by according to the Gaussian approxima-
tion [13], [14]. Substituting the coefficients and the relations

and into (13), one
can determine the joint point . The change of with the
variable is shown in Fig. 1. From Fig. 1 one can see that
is nearly invariant in the range of . To more conve-
niently use the approximate analytical formulas of (14), we now
use the approximate expression

(16)

to fit the function in the single-mode range. From (16)
one can find that is a approximate parabolic function in
the range of and is approximately equal to 1.0 in the
range of . From Fig. 1 one can further find that the
total change of in the range of is very small and
the central point is about .

The error of (16) with the exact values is less than 0.34% in
the range of and less than 0.52% in the range of

. The modal field distribution is not sensitive to this

Fig. 1. Functional relation between the normalized radial coordinateR (V )
of the joint point and the normalized frequencyV : The step profile fiber.

(a)

(b)

Fig. 2. Comparison among our approximate formula, the Gaussian
approximation and the exact solution: The step profile fiber: (a)V = 1:5 and
(b) V = 2:5.

small error, because (6) and (12) are both approximately valid
in the region near the point. In practical applications,
one can directly insert (16) and the expressions of, and
(they are all explicitly given as the functions of) into (14) to
obtain the modal field. Concretely, the modal field is given by
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Fig. 3. Functional relation between the normalized radial coordinateR (V )
of the joint point and the normalized frequencyV : The Gaussian profile fiber.

(17), shown at the bottom of the next page, whereis given by
(16), , , , , , and are given in the first paragraph
of this subsection. The exact modal field, the approximate ana-
lytical formula presented here and the Gaussian approximation

for and are
shown in Fig. 2, where the field distributions have been normal-
ized according to , is the normalized con-
stant. From Fig. 2 one can see that our expression is far more ac-
curate than the Gaussian approximation and still valid for small

values. In order to test the accuracy of (15), we also evaluate
the value corresponding to by employing (15). In
this case, the exact value is ; the value determined
by the Gaussian approximation is ; and the value
determined by (15) is . From thses results, one can
find that, just as we predict in Section II, thevalue determined
by (15) is more accurate than that determined by the Gaussian
approximation.

B. The Gaussian Profile Fiber

For a Gaussian profile fiber whose profile function has the
form , the expansion coefficients are
determined to be for all even m and

for all odd . Substituting and the relation
, which is obtained from the Gaussian approximation

[13], [14], into (8)–(10) and letting , one can obtain
, ,

, ,

(a)

(b)

Fig. 4. Comparison among our approximate formula, the Gaussian
approximation and the exact solution: The Gaussian profile fiber: (a)V = 1:5
and (b)V = 2:5.

and . Substituting
these coefficients and the relations and

into (13), one can determine the joint point
. The change of with the variable is shown in Fig. 3. The

functional relation can be well fitted by the approximate
expression

(18)
The error of (18) with the exact value is less 0.25% in the range
of and less than 0.45% in the range of .
From (18) one can find that is a approximate parabolic
function in the range of and is a approximate linear
function in the range of . From Fig. 3 one can
further find that the total change of in the range of

(17)
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(19)

is very small and the central point is about .
Similarly to the step profile fiber, the fundamental-mode field
of a Gaussian profile fiber can be expressed as the closed form
(19), shown at the top of the page, where is given by (18),
and , , , , , and are given in the first paragraph of
this subsection.

The exact modal field (we use the numerical method pre-
sented by [15] to obtain the exact numerical solutions), the ap-
proximate analytical formula presented here and the Gaussian
approximation for and

are shown in Fig. 4, where the field distributions have
been normalized according to , is the nor-
malized constant. Again, the high accuracies of our approxi-
mate analytical description are observed. We also evaluate the

value corresponding to by employing (15). In this
case, the exact value is ; the value determined
by the Gaussian approximation is ; and the value
determined by (15) is . Again, we find that the
value determined by (15) is more accurate than that determined
by the Gaussian approximation.

IV. CONCLUSION

We have presented an approximate analytical descrip-
tion for fundamental-mode fields of graded-index fibers
by use of the power-series expansion method, the max-
imum-value condition of the fundamantal-mode
field at the point, and
the decay law at large . This new
analytical description is much more accurate than the Gaussian
approximation and at the same time keep the simplicity of
the latter. As two special examples, we have presented the
analytical approximate formulas for the fundamental-mode
fields of a step profile fiber and a Gaussian profile fiber, and
found that they are both highly accurate in the single-mode
range by comparing them with the exact solutions. The results
obtained in this paper can be used to conveniently evaluate the
relevant parameters of a single-mode graded-index fiber.
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