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Approximate Analytical Description for
Fundamental-Mode Fields of Graded-Index Fibers:
Beyond the Gaussian Approximation

Qing Cao and Sien ChFellow, OSA

Abstract—An approximate analytical description for funda- for the fundamental-mode fields becomes less accurate. In ad-
mental-mode fields of graded-index fibers is explicitly presented dition, the Gaussian approximation can not correctly describe
by use of the power-series expansion method, the maximum-value e fyndamental-mode fields at large distance from the fiber

condition at the fiber axis, the decay properties of funda- Toi th leh ted
mental-mode fields at large distance from the fiber axis, and the axes. loImprove the accuracy, many peopie have presented var-

approximate modal parameters U obtained from the Gaussian i0Us modified versions, such as the Gaussian-exponential [8],
approximation. This analytical description is much more accurate the Gaussian—Hankel [9], the generalized Gaussian [10], the ex-

than the Gaussian approximation and at the same time keep the tended Gaussian [11], and the Laguerre-Gauss/Bessel expan-
simplicity of the latter. As two special examples, we present the gjon anproximations [12]. These modified versions are far more
approximate analytical formulas for the fundamental-mode fields . . . .
of a step profile fiber and a Gaussian profile fiber, and we find acclurf’:lt.e than the simple Gaussian .a.pproana.\tlon. However, the
that they are both highly accurate in the single-mode range by Optimizing processes of these modified variational methods are
comparing them with the corresponding exact solutions. much more complicated than that of the Gaussian approxima-
Index Terms—Fundamental mode, optical waveguide, power-se- tion. . .
ries expansion, single-mode fiber. Unlike the high-order modes, the fundamental mode of a
graded-index fiber has some special properties, such as the
maximum-value point is always located at the fiber axis, the
modal field is always larger than zero in the whole range of
HERE is much interest in the determination of the mod&l < & < oo. As we show below, these special properties
fields and the propagation constants of fundamental modglow us to establish a simple power-series method to obtain the
of graded-index fibers due to the great progress of single-moajgproximate fundamental-mode field when the modal param-
fiber communication systems. However, exact analytical solater U is known. Fortunately, for those typical graded-index
tions are possible only for a limited class of index profiles, sudibers, such as the power law profile fibers [4], [5], [7], [13]
as the step profile [1], [2], the clad parabolic profile [3], th@nd the Gaussian profile fiber [13]-[16], the Gaussian approx-
power-law profiles [4], [5], and the infinite parabolic profile [6].imation can still present highly accurate modal parametérs
Even for these special profiles (except for the unphysical infia the single-mode range ([7, Fig. 14] and [13, Fig. 15-1], note
nite parabolic profile [6]), the solutions [1]-[5] are still giventhat the normalized frequendy of the practical single-mode
in special functions or in the sum of many power series. In dibers are usually in the range b5 < V' < 3.0), though in this
most all cases, one has to use either approximate or numergge the Gaussian approximation fails to provide the accurate
methods. At present, it is possible to use numerical methodgtndamental-mode fields.
obtain high accuracy, but one can not obtain much physical in-In this paper, we shall use the power-series expansion
sight as with the analytical expressions presented by approxethod, the maximum-value condition at the fiber axes, the
imate methods. Among the approximate methods, the simplesitive-value property of the fundamental-mode fields, the
Gaussian approximation [7] is good for the fundamental modéscay property of the fundamental-mode fields at large distance
of graded-index fibers with larg& value (i.e.,V is near or from the fiber axes, and the modal parametgrsletermined
larger than the cutoff frequendy,.). However, when the nor- by the Gaussian approximation [7] to present a approximate
malized frequency” gets smaller, the Gaussian approximatiognalytical description for the fundamental-mode fields of
graded-index fibers. In particular, as two special examples,
we shall provide highly accurate closed-form formulas for the
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where be analytically expressed @§R) « Ko(W R), whereKo(u)
Mo maximum index at the fiber axis; is the modified Bessel function of the zeroth order a#idis
R =r/p normalized radial coordinate; given byW = /V2 — U2, In terms of this relation, (4) and
o characteristic radius of the fiber core; the assumption that the core-cladding interface is located at the
r radial coordinate; R = 1 point for convenience, one can obtain the boundary con-
A total variation in the profileA < 1; dition P(1) = —G(1) = WK, (W)/Ko(W), whereK, (W)is
F(R) profile function and satisfies the relatiofi)) = the modified B(_agsel_fu_ncuon of the first order. Obviously, this

0 and f(~c) = 1. boundary condition is just [18, eq. (8b)]. In order to reduce the

computation, [18] employed this boundary. However, we shall
pot use this boundary condition in the remainder of this paper.
This is mainly due to the following two considerations. 1) We
shall try to use some elementary function to approximately an-
24 1 de alytically describe the fundamental-mode field of single-mode
-+ = = + [P — Fle=0 (2) fiber because of their simplicity. However, the modified Bessel
dr rodr functions appeared in the above-mentioned boundary condition
wherek = 27/, is the wavenumber in free spacejs the aré not elementary function. 2) Smooth profile functions such
wavelength in free space. as the Gaussian profile function are very useful, even though,
Substituting (1) into (2), and using the normalized radial c&lrictly speaking, those fibers with such smooth profile func-
ordinateR = r/p to replace the radial coordinate one can tions do not exist. However, for those smooth profile fibers,

Itis well known that the modal fielgh(+) and the propagation
constant3 of the fundamental mode of a weakly guiding fibe
satisfy the following eigen equation:[13]

obtain the boundary conditiod?(1) = WK1 (W)/Kq(W') becomes
invalid.
d2 1 d . _ - _
¢ L1 dp U2 - V2f(R)$ =0 3) By use of (4) and the maximum-value conditigf(0)

—P(0)¢(0) = 0 attheR = 0 point, one can prove th&(0) =
0 at the R = 0 point. We then expand@(R) and the profile
whereV = kpn.,v/24, is the normalized frequency/ = function f(R) (in this paper, we only consider those graded-
p\/n2,k? — 32, is the dimensionless modal parameter for fibehdex fibers whose profile functiofi( R) can be expanded as
core. the power series for smalt) as the power-series form

Similarly to the evanescent field expression of the WKB
method [17], we first express the modal fie{{ R) as the
following form il

dR? R dR

P= " auR"+OR™") (6)
R m=1
= Aex _ mg—1
(/)(R) exp /0 P(R) dR (4) f(R) _ Z mem + O(Rmo) (7)
m=1

whereA is a normalization constanE( R) is a real function of ) ] )
the variableR. Apparently, this expression is consistent with thi the region near the fiber axis, where we have used the proper-
real physical phenomenon that the fundamental-mode field ofigS that?’(0) = 0 andf(0) = 0. One may notice that the power

graded-index fiber, such as a power law profile fiber, is alway§res of (6) and the power series of (7) are independent of each
larger than zero in the whole range& R < oo. Unlike the other, and therefore one can use two independent numbers to ex-

WKB method [17], we do not assume the triangular-functioRf€SS the powers of their highest-order terms that are taken into

soultion because the fundamental-mode field has no node in #0UNt, respectively. However, we use two related numhgrs
whole range ob < B < oo atall. andmg — 1 to express the powers of the highest-order terms

Substituting (4) into (3), one can obtain of (6) and (7), respectively, because we hope the highest-order
terms of P’ has the same powers as thatféR?) in (5).
P The high-order terms whose powers are higher thgnin
—P'+P? - R= ~U* + V2 f(R). (5) the functionP(R) and the high-order terms whose powers are
' higher thanmg — 1 in the profile functionf(R) have been ig-
One may notice that [18] provided a similar treatment fanored. Obviously, the expansion coefficiehts can be deter-
the eigen equation of single-mode fibers. Especially, one carined byb,, = £ (0)/m!, wheref("(0) is themth-order
prove that (5) here is completely equivalently to (6) of [18] bglerivative of f(R) at the R = 0 point. The numbern, of
taking the relationP(R) = —G(R) into account. This relation the terms of the power series for the functiBQR) can be de-
shows that our work is somewhat related to [18]. However, it termined according to practical needs. Generally speaking, the
necessary to point out that they are apparently different. Reftarger the numbei is, the better the obtained result is, but the
ence [18] is mainly on the numerical algorithm, but our work imore complicated the expression for the funct®R) is. For
mainly on the approximately analytical description. the fundamental-mode field of an ordinary graded-index fiber,
From the point of view of physics, a real fiber should havthe first several terms are sufficient. In the examples of Section
a uniform-index cladding. It is well known that the fundaill, we shall use only the first five terms (excluding the terms
mental-mode fieldp(R) in the uniform-index cladding can whose coefficients,,, are equal to zero).
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Substituting (6) and (7) into (5), and ignoring the high-ordeg12) for largeRR. For example, for a power law profile fiber, the
terms whose powers are higher thag — 1, one can obtain the termV2[f(R) — 1]/(2W) is exactly equal to zero in the range

following recurrence relations: of R > 1.
12 We then use the following method to joint the two kinds of
a, = — (8) solutions that are given by (6) and (12), respectively. WRen
2V2b Rg, the functionP(R) is given by (6), and whe®® > Ry,
as = — L (9) the functionP(R) is given by (12), where the joint poidt, is
3 determined by the equation
m—2
1 2
Um = ——— Z AjAm—j—1 — |4 brn—l) o 1
1 mo__
m—+ (j:l Z A Ly —W+2—RO (13)
3 < m < mge. (10) m=1

It is necessary to point out that these solutions are dep&l€ can easily prove that (13) can ensure that the funda-

dent on the modal paramete In almost all cases, the exdgt Mental-mode fieldg(£?) and its first-order derivativey'(17)
values cannot be given in closed form. Fortunately, the simpie® POth continuous at the joint poit = R,. One may
Gaussian approximation can still provide highly accurate eyant to know whether or not_the joint poitity 9590' here is
pressions for thé&/ values in the single-mode range [7], [13] (aéelated to the so cqlled turning poidt, used in the V.VKB
low asV = 1.0). Therefore, we suggest to directly substitutg?ethod [17]. We point out that they are completely different.
theU values that are obtained from the Gaussian approximatibR€ former is d2ef|ned2by (123)' but the latter is determined
into (8)—(L0) to approximately determine the concrete values/3f the relationn”(f,)k* — 5 = 0 [17]. As we point out
the parameters,... It is worth mentioning that the power-serie€re: the/ fundamental-mode fiel{ ) and its first-order
expansion method presented here is completely different fr(%nvatl_ved) (k) are both continuous at the J_O'nt _pOlf_%; but
the previous power-series soultions for the fundamental mod0rding to the WKB method, the modal field is divergent at
of graded-index fibers [4], [5], [19]. The latter directly expand® turning point;. In addition, we also want to emphasize
the fundamental-mode fielf R) as power-series and thereford€ Well-known resuit that the WKB method is |n\{al|d for
has slow convergence property, but we now expand the functid¥y fundamental-mode field. Therefore, we do not discuss the
P(R) as power series and obtain a fast convergent solution.{fniNg point PrF’b'em in this Paper. In practical applications,
fact, as we state above, in our expansion method, the first s&l3) an be easily solved by numerical approach.
eral terms are usually sufficient for the functiofi R). After obtalnmg the coefficienta.,, and the joint pointRy,
gne can analytically express the fundamental-mode e
mental-mode field of a graded-index fiber at laigeSimilarly 2 the closed form (14) shown at the bottom of the page.
to the WKB approximation [17], from (5) one can deduce that One_ can obta|r_1 a more accura[tbv_alue than tha_t of the
P(R) = W = /VZ_0Z andP'(R) = 0 whenR — oo, Gaussian approximation if one substitute the solution of (14)
whereW is the modal parameter for the fiber cladding. Therdt© the expression
fore, it is reasonable to usEy(R) = W as the zero-order

approximation at largek, and then employ the perturbation / [(d¢/dR)* + V2 f(R)$*|R dR

method to obtain the first-order correction te#q(R). Simi- U2 =429 —

larly to the WKB method [17], in terms of (5) one can easily / #R dR

establish the following perturbation equation: - 0

Py [P vk ar
2P Py — R VAS(R) — 1] (11) _Jo _ (15)

2

forlargeR, where the term&? (R), P{(R) andP; / R have been /0 P RAR

ignored. From (11), one can obtain
1 which can be derived from (3) and (4), because the solution
PxPy+PreW+— (12) given by (14) is more accurate than the corresponding Gaussian
2R approximation solution. In order to understand this statement
where we have ignored the te#it[f(R) — 1]/(2W ) because it better, we shall present two concrete numerical results in Sec-
is usually far smaller than the two terms of the right-hand side tibns 1l1-A and -B.

mo

=3 am R (m+ 1), 0< R< Ry,
$(R) = m : (14)

mo

A/ Ro/Rexp [—W(R — Rg) — Z amBRyT/(m4+1)|, R > Ry.

Aexp

m=1
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It is interesting to explain why the fundamental-mode field 1.01

of a graded-index fiber has an approximate Gaussian distribu-

E
2
tion when the normalized frequengybecomes large. Our the- % 1.00
oretical treatments imply a good explanation. If onertgt = 5
1, then one can obtain the zero-order approximatioR) = & 099
Aexp(—U?R?/4), which is a Gaussian distribution. One may 2
notice the interesting result that the width of this Gaussian dis- g 0.98
tribution is only (directly) related to the modal parametér 8
Usually, when the normalized frequentybecomes large, the % 0.97
termsa,, R+ /(m + 1) (m > 2) become negligible with the 8 0.96
first term a; R2/2 = U?R?/4 before the first termi/2 R% /4 z
has become rather large. As a consequence, in this case, the % 0.95
zero-order approximation is a good one in the region where the E
modal field is remarkably different from zero. This is why the 2 0.94 , )
fundamental-mode field of a graded-index fiber shows a nearly 1 2 3 4
Gaussian distribution whewi is large. Normalized frequency V
1. EXAMPLES Fig. 1. Functional relation between the normalized radial coordiRat@")

of the joint point and the normalized frequericy The step profile fiber.

To understand the above analytical description better, let
us now present two special examples. One is the funda-
mental-mode field of a step profile fiber, the other is the
fundamental-mode field of a Gaussian profile fiber. These two 14
kinds of graded-index fibers are both typical. Therefore, the 12k
investigation on their fundamantal-mode fields has practical
meanings.

~ — -Present approximation
Exact field
—-~-Gaussian approximation

A. The Step Profile Fiber

For a step profile fiber whose profile function is given by
f(R)=0forR < landf(R) =1for R > 1,the expan-
sion coefficients,,, are determined to bie,, = 0 for all orders.
Substituting these relations into (8)—(10) and letting = 9, 00
one can obtaimy, = a4 = ag = ag = 0, a7 = U?/2,
az = U4/16, a; = U6/96, a; = 11U8/6144 andag =
19U1° /61 440, where the modal parametéris approximately
given byl/? = 1421n V according to the Gaussian approxima- 2o
tion [13], [14]. Substituting the coefficients,, and the relations
U? =1+2lnV andW = /V2—-1-2InV into (13), one
can determine the joint poing,. The change of?, with the
variableV is shown in Fig. 1. From Fig. 1 one can see tRgt
is nearly invariant in the range af < V' < 4. To more conve-
niently use the approximate analytical formulas of (14), we now
use the approximate expression

08}

04

02}

Normalized modal field ¢(R)

Normalized radial coordinate R

(@)

- = - Present approximation
= Exact field
== Gaussian approximation

151

05

Normalized modal field ¢(R)

0.0 . :
14 < 2 i Norr:1alized radzial coordi 3t R )
Inate
V<4, b
(16) (b)
Fig. 2. Comparison among our approximate formula, the Gaussian
approximation and the exact solution: The step profile fiberi{ax 1.5 and

to fit the functionRo(V) in the single-mode range. From (16)Y®) V' = 2.5.

one can find thaf2y (V') is a approximate parabolic function in

therange ol < V < 2 and is approximately equal to 1.0 in the

range of2 < V < 4. From Fig. 1 one can further find that the

total change oR, in the range offl < V' < 4is very small and small error, because (6) and (12) are both approximately valid

the central point is abouty = 0.97. in the region near th& = R, point. In practical applications,
The error of (16) with the exact values is less than 0.34% one can directly insert (16) and the expressions,oft/ andiV

the range ofl < V < 2 and less than 0.52% in the range ofthey are all explicitly given as the functions &) into (14) to

2 < V < 4. The modal field distribution is not sensitive to thisobtain the modal field. Concretely, the modal field is given by

Ro — { —0.0634V2 + 0.2489V + 0.7553,

1<
1.0, 2 <
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€ 138 12
'g R - — - Present approximation
= - 10K Exact field
£ x . N
= —.—-Gaussian approximation
2 138 z it
u6 T 08}
« %
i) g 08l
s 134 £
£ °
o L
,6 ﬁ 04
8 £
= 1.32 5 o2}
? =z
e 0.0
'8 0 8 10
N 1.30 ) ) )
= Normalized radial coordinate R
£
S @
1.281 é :'3
4 2.0
i k - = -Present approximation
Normalized frequency V N — Exactfield
15F —-—-Gaussian approximation

Fig. 3. Functional relation between the normalized radial coordiRaté’)
of the joint point and the normalized frequericy The Gaussian profile fiber.

05}

Normalized modal field $(R)
>

(17), shown at the bottom of the next page, whggas given by
(16), a1, as, as, a7, ag, andW are given in the first paragraph ool
of this subsection. The exact modal field, the approximate ana-

lytical formula presented here and the Gaussian approximation

#(R) = Bexp[—(InV)R?]for V = 1.5 andV = 2.5 are (b)

§hown in Flg. 2, where the field dlstr|b_ut|ons have b_een norm@i-g_ 4. Comparison among our approximate formula, the Gaussian
ized according tOfOOO #’R dR = 1, B is the normalized con- approximation and the exact solution: The Gaussian profile fibef’ (2 1.5
stant. From Fig. 2 one can see that our expression is far moreang. (b)V' = 2.5.

curate than the Gaussian approximation and still valid for small

V values. In order to test the accuracy of (15), we also evaluate

the U value corresponding t& = 1.5 by employing (15). In
this case, the exact valuelis= 1.3169; theU value determined
by the Gaussian approximationlis= 1.3457; and thel/ value
determined by (15) i#/ = 1.3172. From thses results, one ca
find that, just as we predict in Section II, thevalue determined
by (15) is more accurate than that determined by the Gaus

1 2 3 4 5
Normalized radial coordinate R

anday = (32V3 — 128V% 4 190V — 19)/61 440. Substituting
these coefficients,,, and the relation/? = 2V — 1 andW =
r]\/VQ — U? =V —1into (13), one can determine the joint point
Ry. The change aR, with the variablé is shown in Fig. 3. The
Sgldﬂctional relation?y (V") can be well fitted by the approximate

approximation. expression
. . . —0.10096V2 4 0.368 84V + 1.039 53,
B. The Gaussian Profile Fiber Ro(V) = 1<v<a
For a Gaussian profile fiber whose profile function has the —0.042575V 4 1.457 52, 2 < V<4
form f(R) = 1 —exp(—R?), the expansion coefficients, are (18)

determined to b&,, = (—1)™/2)~1/(m/2)!forallevenmand The error of (18) with the exact value is less 0.25% in the range
b, = 0 for all oddm. Substitutingd,,, and the relatiod/? = of 1 < V' < 2 and less than 0.45% in the range2ofks V' < 4.

2V — 1, which is obtained from the Gaussian approximatioRrom (18) one can find thak, (1) is a approximate parabolic
[13], [14], into (8)—(10) and lettingny = 9, one can obtain function in the range of < V' < 2 and is a approximate linear
az = ayg = ag = ag = 0, a1 = (2V —1)/2, a3 = —(4V — function in the range 02 < V < 4. From Fig. 3 one can
1)/16, a5 = (6V — 1)/96, ar = (16V? — 88V + 11)/6144 further find that the total change df, in the range ofl <

Aexp [ =3 agm 1 R*™ /(2m)] : 0<R<R
H(R) = m=t (7)
Av/Ro/Rexp |-W (R — Ry) — Z aam-1RE"/(2m)|, R> R,
m=1
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Aexp —Z azm_1R¥™/(2m)| ,
H(E) = & -

A\/Ro/Rexp [—W(R — Rg) — i: azm—1R3™/(2m)| .

m=1
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(19)

V < 4is very small and the central point is abdgg = 1.34.
Similarly to the step profile fiber, the fundamental-mode field
of a Gaussian profile fiber can be expressed as the closed for
(19), shown at the top of the page, whé&g V') is given by (18),
andaq, as, as, a7, ag, andW are given in the first paragraph of
this subsection.

The exact modal field (we use the numerical method pre-
sented by [15] to obtain the exact numerical solutions), the ap46l
proximate analytical formula presented here and the Gaussiam
approximationp = Cexp[—(V — 1)R?/2] for V = 1.5 and
V = 2.5 are shown in Fig. 4, where the field distributions have (8]
been normalized according 9@“’ ¢’R dR = 1, C is the nor- [9]
malized constant. Again, the high accuracies of our approxi-
mate analytical description are observed. We also evaluate tr[lleO]
U value corresponding t& = 1.5 by employing (15). In this
case, the exact value I$ = 1.3929; the U value determined
by the Gaussian approximationlis= 1.4142; and thel/ value
determined by (15) i$/ = 1.3932. Again, we find that thé/ [12]
value determined by (15) is more accurate than that determined
by the Gaussian approximation.

(3]

(5]

(11]

[13]
IV. CONCLUSION (14
We have presented an approximate analytical descrip-
tion for fundamental-mode fields of graded-index fibers[®!
by use of the power-series expansion method, the max-
imum-value condition”(0) = 0 of the fundamantal-mode [16]
field p(R) = exp[— fOR P(R) dR] at theR = 0 point, and
the decay lawP(R) W + 1/(2R) at largeR. This new [17]
analytical description is much more accurate than the Gaussian
approximation and at the same time keep the simplicity oft8l
the latter. As two special examples, we have presented the
analytical approximate formulas for the fundamental-mode
fields of a step profile fiber and a Gaussian profile fiber, and*?
found that they are both highly accurate in the single-mode
range by comparing them with the exact solutions. The results
obtained in this paper can be used to conveniently evaluate the
relevant parameters of a single-mode graded-index fiber.

~
~

ACKNOWLEDGMENT

The authors are indebted to the reviewers for their comments
and proposals for improving the paper.

REFERENCES

[1] A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigens
values of a dielectric or optical waveguiddEEE Trans. Microwave
Theory Tech.vol. 17, pp. 1130-1138, 1969.

[2] D. Gloge, “Weakly guiding fibers,Appl. Opt, vol. 10, pp. 2252—-2258,
1971.

R. Yamada, T. Meiri, and N. Okamoto, “Guided waves along an op-
tical fiber with parabolic index profile,J. Opt. Soc. Amenvol. 67, pp.
96-103, 1977.

] W. A. Gambling, D. N. Payne, and N. Matsumura, “Cut-off frequency

in radially inhomogeneous single-mode fibeElectron. Lett, vol. 13,

pp. 139-140, 1977.

J. D. Love, “Power series solutions of the scalar wave equation for
cladded, power-law profiles of arbitrary exponen@pt. Quantum
Electron, vol. 11, pp. 464-466, 1979.

D. MarcuseLight Transmission Optic2nd ed.
1989, ch. 7.

——, “Gaussian approximation of the fundamental modes of graded-
index fibers,”J. Opt. Soc. Amervol. 68, pp. 103-109, 1978.

A. Sharma and A. K. Ghatak, “A variational analysis of single mode
graded-index fibers,Opt. Commun.vol. 36, pp. 22—-24, 1981.

A. Sharma, S. I. Hosain, and A. K. Ghatak, “The fundamental mode
of graded-index fibers: Simple and accurate variational meth@jist”
Quantum Electron.vol. 14, pp. 7-15, 1982.

A. Ankiewicz and G. D. Peng, “Generalized gaussian approximation for
single-mode fibers,J. Lightwave Technglvol. 10, pp. 22-27, 1992.

S. C. Chao, W. H. Tsai, and M. S. Wu, “Extended gaussian approxima-
tion for single-mode graded-index fibers]” Lightwave Technqlvol.

12, pp. 392-395, 1994.

G. De Angelis, G. Panariello, and A. Scaglione, “A variational
method to approximate the field of weakly guiding optical fibers by
Laguerre-Gauss/Bessel expansiah,Lightwave Technalvol. 17, pp.
2665-2674, 1999.

A. W. Snyder and J. D. Loveé)ptical Waveguide Theory New York:
Chapman & Hall, 1983, ch. 15.

A. W. Snyder, “Understanding monomode optical fibeRrbc. IEEE

vol. 69, pp. 6-13, 1981.

R. S. Anderssen, F. R. de Hoog, and J. D. Love, “A numerical technique
for solving the scalar wave equation for gaussian and smoothed-out pro-
files,” Opt. Quantum Electronvol. 13, pp. 217-224, 1981.

Y. Ohtera, O. Hanaizumi, and S. Kawakami, “Numerical analysis of
eigenmodes and splice losses of thermally diffused expanded core
fibers,” J. Lightwave Technqlvol. 17, pp. 2675-2682, 1999.

S. Schiff, Quantum Mechani¢s3rd ed. New York: McGraw-Hill,
1968, ch. 8.

E. K. Sharma, A. Sharma, and |. C. Goyal, “Propagation characteristics
of single mode optical fibers with arbitrary index profiles: A simple nu-
merical approach,JEEE Trans. Microwave Theory Techol. MTT-30,

pp. 1472-1477, 1982.

W. A. Gambling and H. Matsumura, “Propagation in radially-inhomo-
geneous single-mode fibept. Quantum Electronvol. 10, pp. 31-40,
1978.

Malabar, FL: Krieger,

Qing Cao, photograph and biography not available at the time of publication.

Sien Chi, photograph and biography not available at the time of publication.



