MINIMUM SPAN OF NO-HOLE (*r* **+ 1)-DISTANT COLORINGS***[∗]*

GERARD J. CHANG†, JUSTIE SU-TZU JUAN‡, AND DAPHNE DER-FEN LIU§

Abstract. Given a nonnegative integer r, a no-hole $(r + 1)$ -distant coloring, called N_r-coloring, of a graph G is a function that assigns a nonnegative integer (color) to each vertex such that the separation of the colors of any pair of adjacent vertices is greater than r , and the set of the colors used must be consecutive. Given r and G, the minimum N_r -span of G, $nsp_r(G)$, is the minimum difference of the largest and the smallest colors used in an N_r -coloring of G if there exists one; otherwise, define nsp_r(G) = ∞. The values of nsp₁(G) (r = 1) for bipartite graphs are given by Roberts [Math. Comput. Modelling, 17 (1993), pp. 139–144]. Given $r \geq 2$, we determine the values of $nsp_r(G)$ for all bipartite graph with at least $r - 2$ isolated vertices. This leads to complete solutions of $nsp_2(G)$ for bipartite graphs.

Key words. vertex-coloring, no-hole $(r + 1)$ -distant coloring, minimum span, bipartite graphs

AMS subject classification. 05C78

PII. S0895480198339456

1. Introduction. The T-coloring of graphs models the channel assignment problem introduced by Hale [6] in communication networks. In the channel assignment problem, several transmitters and a forbidden set T (called $T\text{-}set$) of nonnegative integers with $0 \in T$ are given. We assign a nonnegative integral channel to each transmitter under the constraint that if two transmitters interfere, the difference of their channels does not fall within the given T -set. Two transmitters may interfere due to various reasons such as geographic proximity and meteorological factors. To formulate this problem, we construct a graph G such that each vertex represents a transmitter, and two vertices are adjacent if their corresponding transmitters interfere.

Thus, we have the following definition. Given a T-set and a graph G , a $T\text{-}coloring$ of G is a function $f: V(G) \to Z^+ \cup \{0\}$ such that

$$
|f(x) - f(y)| \notin T \text{ if } xy \in E(G).
$$

Note that if $T = \{0\}$, then T-coloring is the same as ordinary vertex-coloring.

A no-hole T-coloring of a graph G is a T-coloring f of G such that the set ${f(v) : v \in V(G)}$ is consecutive (the no-hole assumption). When $T = \{0, 1\}$ and $T = \{0, 1, 2, \ldots, r\}$, a no-hole T-coloring is also called an N-coloring [16] and an N_rcoloring (or no-hole $(r+1)$ -distant coloring) [17], respectively. That is, an N_r-coloring of a graph G is a vertex coloring $f: V(G) \to Z^+ \cup \{0\}$ such that the following two conditions are satisfied:

• $|f(x) - f(y)| \geq r + 1$ if $uv \in E(G)$;

[∗]Received by the editors May 27, 1998; accepted for publication (in revised form) June 7, 2001; published electronically August 29, 2001.

http://www.siam.org/journals/sidma/14-3/33945.html

[†]Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan (gjchang@math.nctu.edu.tw). The research of this author was supported in part by the National Science Council under grant NSC87-2115-M009-007 and the Lee and MTI Center for Networking Research at NCTU.

[‡]Department of Computer Science and Information Engineering, National Chi Nan University, 1, University Road, Puli, Nantou 545, Taiwan (jsjuan@csie.ncnu.edu.tw).

[§]Department of Mathematics, California State University, Los Angeles, CA 90032 (dliu@calstatela.edu). The research of this author was supported in part by the National Science Foundation under grant DMS-9805945.

• the set $\{f(v) : v \in V(G)\}$ is consecutive.

In terms of efficiency of the usage of the channels (colors), the variable T-span has been considered. The span of a T-coloring f is the difference of the largest and the smallest colors used in $f(V)$; the T-span of a graph G, $sp_T(G)$, is the minimum span among all T-colorings of G.

The T-spans for different families of graphs and for different T-sets have been studied extensively (see $[3, 4, 5, 10, 11, 12, 14, 15, 18]$). It is known $[3, 10]$ that if T is an r-initial set, that is, $T = \{0, 1, 2, \ldots, r\} \cup A$ where A is a set of integers without multiples of $(r + 1)$, then the following holds for all graphs:

(*)
$$
\text{sp}_T(G) = (\chi(G) - 1)(r + 1),
$$

where $\chi(G)$, the *chromatic number* of G, is the minimum number of colors to properly color vertices of G.

It is known [3] and not difficult to learn that for any given T-set and any graph G, a T-coloring always exists. However, a no-hole T-coloring does not always exist. For instance, as $T = \{0, 1\}$, then K_n , the complete graph with n vertices, does not have a no-hole T-coloring for any $n \geq 2$.

The minimum span of a no-hole T-coloring for a graph G is denoted by $nsp_T(G)$. If there does not exist a no-hole T-coloring for G, then $n s p_T (G) = \infty$. If T = $\{0, 1, 2, \ldots, r\}$, denote $nsp_T(G)$ by $nsp_r(G)$.

A no-hole T-coloring is also a T-coloring. Hence by (∗), a natural lower bound for $nsp_x(G)$ is $(\chi(G)-1)(r+1)$. Roberts [16] and Sakai and Wang [17] studied N-coloring and N_r -coloring, respectively. Among the findings in [16, 17] are the results about the existence of an N-coloring and an N_r -coloring for several families of graphs including paths, cycles, bipartite graphs, and 1-unit sphere graphs. The authors also compare the span of such a coloring (if there exists one) with the lower bound $(\chi(G)-1)(r+1)$. The N-colorings and N_r -colorings studied in [16, 17] are not necessarily optimal; i.e., the spans are not always the minimum.

This article focuses on the exact values of the minimum N_r -span, $nsp_r(G)$, especially for bipartite graphs, i.e., graphs with $\chi(G) \leq 2$. In section 2, we give preliminary results for general graphs. In section 3, we explore the values of $nsp_r(G)$ for bipartite graphs. The solutions of $nsp₁(G)$ for bipartite graphs are given by Roberts [16]. We determine the values of $nsp_r(G)$ for any bipartite graph G with at least $r-2$ isolated vertices. This result also leads to a complete description of the values of $nsp₂(G)$ for all bipartite graphs.

2. Preliminary results. In this section, we present several results about the minimum N_r -span for general graphs. We show a number of upper and lower bounds of $nsp_r(G)$ for different types of graphs. In order to find the minimum span, without loss of generality, we assume that the color 0 is always used in any N_r -coloring.

If $|V(G)| = n$ and $n s p_T(G) < \infty$, then by definition a trivial upper bound for $nsp_T(G)$ is $n-1$. On the other hand, any no-hole T-coloring is also a T-coloring, hence we have the following proposition.

PROPOSITION 2.1. For any T-set and any graph G with n vertices, $sp_T(G) \leq$ $nsp_T(G)$; and $nsp_T(G) \leq n-1$ if $nsp_T(G) < \infty$.

Combining Proposition 2.1 and (∗), we have the following proposition.

PROPOSITION 2.2. For any $r \in Z^+$ and any graph G with chromatic number $\chi(G)$, $(\chi(G) - 1)(r + 1) \leq nsp_r(G)$.

With the following result, we show a lower bound of $nsp_r(G)$ in terms of r and the number of isolated vertices in G.

THEOREM 2.3. Suppose $r \in Z^+$ and G is a graph with i isolated vertices, $i \geq 0$, and at least one edge. Then $n s p_r(G) \geq \max\{2r - i + 1, r + 1\}.$

Proof. It suffices to show the result when $nsp_r(G)$ is finite. Because G has at least one edge, $nsp_r(G) \geq r+1$. Thus the lemma holds if $i \geq r$.

Suppose $i < r$. Let f be an optimal N_r-coloring of G. By the no-hole assumption of an N_r -coloring, the colors $r, r-1, \ldots, 2, 1, 0$, must be used by some vertices. Since G has only i isolated vertices and $i < r$, there exists a nonisolated vertex u with $r - i \leq f(u) \leq r$. Because u is nonisolated, there exists some vertex v such that $uv \in E(G)$. Then $f(v) \ge f(u)$, for otherwise $0 \le f(u) - f(v) \le r$, a contradiction to $uv \in E(G)$. Therefore, we have

$$
f(v) \ge f(u) + r + 1 \ge r - i + r + 1 = \max\{2r - i + 1, r + 1\}.
$$

 \Box

This implies $nsp_r(G) \geq \max\{2r - i + 1, r + 1\}.$

The union of two vertex-disjoint graphs G and H, denoted by $G \cup H$, is the graph with vertex set $V(G \cup H) = V(G) \cup V(H)$ and edge set $E(G \cup H) = E(G) \cup E(H)$. For the case in which H has exactly one vertex $x, G \cup H$ is denoted by $G \cup \{x\}$.

The inequality $nsp_r(G) \leq nsp_r(G \cup H)$ does not always hold. For instance, if $G = K_2$, then $nsp_1(G) = \infty$, while $nsp_1(G \cup \{x\}) = 2$. In the rest of the section, we present several results on unions of graphs.

THEOREM 2.4. Suppose G is a graph with at least one edge; then $n s p_{r+1}(G \cup \{x\}) \ge n s p_r(G) + 1.$

Proof. It suffices to show the result when $nsp_{r+1}(G \cup \{x\})$ is finite. Suppose f is an N_{r+1}-coloring of $G \cup \{x\}$. Define a coloring g on $V(G)$ by

$$
g(v) = \begin{cases} f(v) & \text{if } f(v) < f(x) \text{ or } f(v) = 0, \\ f(v) - 1 & \text{if } f(v) \ge f(x) \text{ and } f(v) > 0. \end{cases}
$$

It is straightforward to verify that g is an N_r -coloring of G and the span of g is one less than the span of f. Therefore, $nsp_{r+1}(G \cup \{x\}) \geq nsp_r(G) + 1$. \Box

THEOREM 2.5. Suppose G is a graph with $nsp_r(G) = q(r + 1) + j$, where $q \ge 1$ and $0 \leq j \leq r$, and H is a graph with q vertices. Then $n s p_{r+1}(G \cup H) \leq n s p_r(G) + q$.

Proof. It suffices to show the result when $nsp_r(G) < \infty$. Let f be an optimal N_rcoloring of G and $f(V(G)) = \{0, 1, ..., \text{nsp}_r(G)\}\$. Suppose $V(H) = \{x_1, x_2, ..., x_q\}$. Define a coloring g on $G \cup H$, $g : V(G \cup H) \rightarrow Z^+ \cup \{0\}$, by

$$
g(v) = \begin{cases} \lfloor \frac{(r+2)f(v)}{r+1} \rfloor & \text{if } v \in V(G), \\ k(r+2) - 1 & \text{if } v = x_k \in V(H). \end{cases}
$$

It is enough to show that g is an N_{r+1} -coloring for $G\cup H$. Because f is onto, therefore $g(V(G \cup H))$ is a consecutive set; indeed $g(V(G \cup H)) = \{0, 1, 2, \ldots, \text{nsp}_r(G) + q\}.$ If $uv \in E(G \cup H)$, then either $uv \in E(G)$ or $uv \in E(H)$. If $uv \in E(H)$, then $|g(u) - g(v)| \ge r + 2$. If $uv \in E(G)$, without loss of generality, assume $f(u) > f(v)$. Since $f(u) - f(v) \ge r + 1$, we have $\frac{(r+2)f(u)}{r+1} - \frac{(r+2)f(v)}{r+1} \ge r + 2$, so $g(u) - g(v) \ge r + 2$. Hence g is an N_{r+1} -coloring with span $nsp_r(G) + q$. This completes the proof.

Note that the result in Theorem 2.5 is not always true if the assumption $nsp_r(G)$ = $q(r + 1) + j$ does not hold. For instance, let $G = K_2 \cup rK_1$ and $H = K_3$; then $n s p_r(G) = r + 1$ for any r. However, $n s p_{r+1}(G \cup H) = \infty$ for any $r \geq 4$.

COROLLARY 2.6. If G is a graph with $r + 1 \leq nsp_r(G) \leq 2r + 1$, then $n s p_{r+1}(G \cup \{x\}) = n s p_r(G) + 1.$

Proof. The corollary follows from Theorems 2.4 and 2.5.

Consider the graph G in Figure 2.1. According to Theorem 2.3, $nsp₁(G) \geq 3$ and so the labeling in the figure gives that $nsp₁(G) = 3$. According to Corollary 2.6, we have $nsp_2(G \cup \{x\}) = nsp_1(G) + 1 = 4.$

FIG. 2.1. Optimal N-coloring for G and optimal N₂-coloring for $G \cup \{x\}$.

3. Main results. In this section, we explore the minimum N_r -span for bipartite graphs. It turns out that the number of isolated vertices in a bipartite graph plays a key role for this problem. We give the values of $nsp_r(G)$ for all bipartite graphs G with at least $r-2$ isolated vertices. This result leads to complete solutions of nsp₂(G) for all bipartite graphs G.

In this section, a bipartite graph is conventionally denoted by $G = (A, B, I, E)$, where I is the set of all isolated vertices and (A, B) is a *bipartition* of all nonisolated vertices such that each edge in G has one end in A and the other in B . A vertex v is called an A -, B - or I-vertex if $x \in A, B$, or I, respectively.

The *bipartite-complement* G of a bipartite graph $G = (A, B, I, E)$ with $E \neq \emptyset$ is the bipartite graph G-with vertex set $V(G) = A \cup B$ and edge set

$$
E(G) = \{ ab : a \in A, b \in B, ab \notin E \}.
$$

Note that the set of isolated vertices in G is not specified in the notation. Moreover, we shall denote B' the set of all B-vertices not adjacent to any A-vertex in G. If G is a bipartite graph, then \widehat{G} is a subgraph of G^c , the *complement* of G (i.e., $V(G^c) = V(G)$ and $E(G^c) = \{uv : u \neq v \text{ and } uv \notin E(G)\}\).$

The N_1 -coloring for bipartite graphs has been studied by Roberts [16]. Although the concept of the *minimum* N_1 -span was not introduced explicitly in [16], the following theorem, which completely determines the values of $nsp₁(G)$ for bipartite graphs, can be generated from [16].

THEOREM 3.1 (see Roberts [16]). If $G = (A, B, I, E)$ is a bipartite graph with $E(G) \neq \emptyset$, then

$$
\mathrm{nsp}_1(G) = \begin{cases} 2 & \text{if } |I| \ge 1, \\ 3 & \text{if } |I| = 0 \text{ and } E(\widehat{G}) \ne \emptyset, \\ \infty & \text{if } |I| = 0 \text{ and } E(\widehat{G}) = \emptyset. \end{cases}
$$

 \Box

As examples to Theorem 3.1, consider the graphs G_1 and G_2 in Figure 3.1. As $|I| \geq 1$ for G_1 , we have $\text{usp}_1(G_1) = 2$. For G_2 , the facts $|I| = 0$ and $E(G) \neq \emptyset$ imply $nsp_2(G_2) = 3.$

Fig. 3.1. Two examples of optimal N-colorings for bipartite graphs.

Sakai and Wang [17] characterize the existence of an N_r -coloring by using the Hamiltonian r-path. The d-path on n vertices, v_1, v_2, \ldots, v_n , has the edge set $\{v_i v_j :$ $1 \leq i-j \leq d$. Figure 3.2 shows a 2-path with seven vertices. A 1-path on *n* vertices is an ordinary path denoted as P_n . A *Hamiltonian d-path* of a graph G is a d-path covering each vertex of G exactly once.

Fig. 3.2. A 2-path with seven vertices.

THEOREM 3.2 (see Sakai and Wang [17]). G has an N_r -coloring if and only if G^c has a Hamiltonian r-path. Indeed, if f is an N_r -coloring such that $f(v_1) \leq f(v_2) \leq$ $\ldots \leq f(v_n)$, then v_1, v_2, \ldots, v_n is a Hamiltonian r-path in G^c .

If the lower bound of $nsp_r(G)$ in Theorem 2.3 is attained by some graph G, according to Proposition 2.2, G must be bipartite. Such graphs do exist. In the next theorem, we show a sufficient condition for such graphs.

THEOREM 3.3. Suppose $G = (A, B, I, E)$ is a bipartite graph with at least one edge. If $|I| \geq r$, then $\text{usp}_r(G) = r+1$; if $|I| \leq r-1$ and there exist $\{a_1, a_2, \ldots, a_{r-|I|}\} \subseteq$ A and $\{b_1, b_2, \ldots, b_{r-|I|}\} \subseteq B$ such that $a_j b_k \notin E(G)$ for $j + k \geq r - |I| + 1$, then $n s p_r(G) = 2r - |I| + 1.$

Proof. It is obvious that $nsp_r(G) \geq r+1$, since $E(G) \neq \emptyset$.

If $|I| \geq r$, coloring A-vertices with 0, B-vertices with $r + 1$, and I-vertices with $1, 2, \ldots, r$ gives an N_r-coloring. Therefore, $nsp_r(G) = r + 1$.

If $|I| \leq r - 1$, by Theorem 2.3, $nsp_r(G) \geq 2r - |I| + 1$. Hence it suffices to find

an N_r-coloring with span at most $2r - |I| + 1$. Define a coloring by the following four steps:

- (1) color $a_1, a_2, \ldots, a_{r-|I|}$ with $1, 2, \ldots, r-|I|$, respectively;
- (2) color *I*-vertices with $r |I| + 1, r |I| + 2, \ldots, r;$
- (3) color $b_{r-|I|}, b_{r-|I|-1},...,b_1$ with $r+1, r+2,..., 2r-|I|$, respectively; and
- (4) color all the remaining A-vertices with 0 and B-vertices with $2r |I| + 1$. By the assumption that $a_j b_k \notin E(G)$ for $j + k \geq r - |I| + 1$, it is easy to verify that the coloring defined above is an N_r-coloring with span at most $2r - |I| + 1$. П

COROLLARY 3.4. Let $G = (A, B, I, E)$ be a bipartite graph with at least one edge. (a) If $|I| \leq r - 1$ and $E(G) = \emptyset$, then $nsp_r(G) = \infty$.

(b) If $|I| = r - 1$, then $nsp_r(G) = r + 2$ if and only if $E(G) \neq \emptyset$.

(c) If $|I| = r - 2$ and there exists a P_4 in G, then $n s P_r(G) = r + 3$.

Proof. We need only to show (a), since (b) and (c) follow from Theorem 3.3.

Suppose $|I| \leq r - 1$ and $E(G) = \emptyset$. Then, $G - I$ is a complete bipartite graph $K_{|A|,|B|}$. Combining this with the assumption that $|I| \leq r-1$, G does not admit any N_r -coloring, so nsp_r $(G) = \infty$. \square N_r -coloring, so $nsp_r(G) = \infty$.

Combining Theorem 3.3 and Corollary 3.4(b), the values of $nsp_r(G)$ for bipartite graphs with at least $r - 1$ isolated vertices are settled. In the rest of the article, we shall focus on the N_r-coloring for bipartite graphs $G = (A, B, I, E)$ with at most $r-2$ isolated vertices. By Corollary 3.4(a), we may assume $2 \leq |A| \leq |B|$. In the rest of the section, we search for the exact value of $nsp_r(G)$ to complete the case as $|I| = r - 2$. By Corollary 3.4(c), it suffices to consider the case that G-contains no P_4 . We first show a lemma which is a key to settle this problem.

For any real number x, denote $\max\{x, 0\}$ by x^+ . For any two integers a and b, $a \leq b$, let [a, b] denote the set {a, a + 1, a + 2, ..., b}.

LEMMA 3.5. Let $G = (A, B, I, E)$ be a bipartite graph with $2 \leq m = |A| \leq |B|$, $|I| \leq r-2$, and G contains no P_4 . If $nsp_r(G) < \infty$, then the following are all true:

- (a) In the graph G , every B -vertex is adjacent to at most one A -vertex.
- (b) There exist an arrangement $\Pi=(A_1, A_2, \ldots, A_m)$ of A and nonnegative integers $d_1 = 0, c_1, d_2, c_2, d_3, \ldots, d_m, c_m = 0$ such that $\deg_{\widehat{G}}(A_k) = d_k + c_k$ for $1 \le k \le m$ and $|I| \ge q(\Pi) := \sum_{k=1}^{m-1} q_k$, where $q_k = \max\{(r - c_k)^+, (r - d_{k+1})^+\}$. gers $d_1 = 0, c_1, d_2, c_2, d_3, \ldots, d_m, c_m = 0$ such that $\deg_{\widehat{C}}(A_k) = d_k + c_k$ for $1 \leq$ (c) $n s p_r(G) \ge (m-1)(2r+1) - |I|.$
- (d) If $B' \neq \emptyset$, then $|I| q(\Pi) \ge q'(\Pi) := \min_{1 \le k \le m-1} q'_k$, where $q'_k = \min\{(r (c_k)^+$, $(r - d_{k+1})^+$.
- (e) If $B' \neq \emptyset$, then $nsp_r(G) \geq \max\{2r+2, (m-1)(2r+1) |I| + s(\Pi) + 1\},\$ where $s(\Pi) = \min_{1 \leq k \leq m-1} \{q_k : q'_k \leq |I| - q(\Pi) \}.$

Proof. Suppose f is an optimal N_r-coloring for G. According to Theorem 3.2, G^c has a Hamiltonian r-path $P = v_1, v_2, \ldots, v_{|V(G)|}$ with $0 = f(v_1) \leq f(v_2) \leq$ $\cdots \leq f(v_{|V(G)|})$. Without loss of generality, we assume the order of A-vertices on the r-path P is $\Pi = (A_1, A_2, \ldots, A_m)$. We call this an arrangement of A. Hence $f(A_1) \leq f(A_2) \leq \cdots \leq f(A_m).$

On P, let an A- (or B-) run be a maximal interval of consecutive $A \cup I$ - (or $B \cup I$ -) vertices, starting and ending with A- (or B-) vertices. Note that there may exist some I-vertices within one run or between two consecutive runs; and the runs are alternating between A and B.

It is impossible to have two consecutive runs with at least two vertices in each. For if it is possible, then there exist $x, y \in A$ and $z, w \in B$ whose order in P is (x, y, z, w) , and the vertices between x and w, other than y and z, are I-vertices.

Downloaded 04/28/14 to 140.113.38.11. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php Downloaded 04/28/14 to 140.113.38.11. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php Because $|I| \le r - 2$, $(x - z - y - w)$ forms a P_4 in G , a contradiction.

Analogously it is impossible to have two consecutive singleton runs (except possibly the first run and the last run). For if it is possible, then we get a P_4 in G by connecting the two consecutive singleton A-run and B-run with the B-vertex and A-vertex before and after them.

We conclude that either all A-runs or all B-runs are singletons. As $|A| \leq |B|$, all A-runs are singletons and each B -run (except possibly the first run and/or the last run) contains at least two vertices. Therefore between any A_k and A_{k+1} on P, there are only B- or I-vertices. Since $|I| \leq r-2$ and P is an Hamiltonian r-path in G^c , there exist at least two B-vertices between A_k and A_{k+1} that are adjacent to A_k .

To prove (a), suppose to the contrary that there exists $v \in B$ such that $vA_k, vA_\ell \in$ $E(G)$ for some $k < \ell$. Then between A_k and A_{ℓ} on P there exists $u \in B-\{v\}$ adjacent to A_k in G. Thus $(u - A_k - v - A_\ell)$ forms a P_4 in G, a contradiction. This proves (a).

Claim. For all $1 \le k \le m - 1$, we have $f(A_{k+1}) - f(A_k) \ge r + 2$.

Proof of claim. Suppose $f(A_{k+1}) - f(A_k) \leq r+1$ for some k. Then the B-vertices between A_k and A_{k+1} on P are adjacent to both A_k and A_{k+1} in G, contradicting (a).

Note that if $A_1 = v_i$, then $P' = v_i, v_{i-1}, \ldots, v_2, v_1, v_{i+1}, v_{i+2}, \ldots, v_{|V(G)|}$ is also a Hamiltonian r-path in G^c , or, equivalently, f' defined by $f'(v_j) = f(v_{1+i-j})$ for $1 \leq j \leq i$ and $f'(v_j) = f(v_j)$ for $i < j \leq |V(G)|$ is also an optimal N_r-coloring of G. Therefore, without loss of generality, we may assume $A_1 = v_1$. Similarly, we may assume that $A_m = v_{|V(G)|}$. Put

 $D_1 := \{ y \in B : yA_1 \in E(G) \text{ and } f(y) < f(A_1) \} \text{ and } d_1 := |D_1|,$ $C_1 := \{x \in B : xA_1 \in E(G) \text{ and } f(A_1) \le f(x)\}\text{ and } c_1 := |C_1|,$ $D_k := \{y \in B : yA_k \in E(\mathcal{G}) \text{ and } f(y) \le f(A_k)\}\$ and $d_k := |D_k|$ for $2 \le k \le m$, $C_k := \{ x \in B : xA_k \in E(G) \text{ and } f(A_k) < f(x) \} \text{ and } c_k := |C_k| \text{ for } 2 \le k \le m,$ $I_k := \{ z \in I : f(A_k) < f(z) < f(A_{k+1}) \}$ and $i_k := |I_k|$ for $1 \le k \le m-1$, $I'_{k} := \{ z \in I : f(A_{k}) < f(z) \le f(A_{k}) + r \}$ and $i'_{k} := |I'_{k}|$ for $1 \le k \le m - 1$, $I''_k := \{ z \in I : f(A_{k+1}) - r \le f(z) < f(A_{k+1}) \}$ and $i''_k := |I''_k|$ for $1 \le k \le m - 1$.

Then $d_1 = c_m = 0$ and $\deg_{\widehat{G}}(A_k) = d_k + c_k$ for $1 \le k \le m$. By (a), the C_i 's and D_i 's are all disjoint. By the claim, for any $1 \le k \le m$. I', $\cup I''_i \subseteq I_k$ (while I', and D_j 's are all disjoint. By the claim, for any $1 \leq k \leq m$, $I'_k \cup I''_k \subseteq I_k$ (while I'_k and I''_k are not necessarily disjoint). Furthermore, it is clear that for any $1 \leq k \leq m-1$, $f^{-1}[f(A_k)+1, f(A_k)+r] \subseteq C_k \cup I'_k$, since if $f(A_k) < f(x) \le f(A_k)+r$, then $x \in C_k \cup I'_k$. Similarly, $f^{-1}[f(A_{k+1})-r, f(A_{k+1})-1] \subseteq D_{k+1} \cup I''_k$. Hence we have $c_k + i'_k \geq r$ and $d_{k+1} + i''_k \ge r$, implying that $i_k \ge \max\{i'_k, i''_k\} \ge \max\{(r - c_k)^+, (r - d_{k+1})^+\} = q_k$ for $1 \leq k \leq m-1$. Therefore,

(**)
$$
|I| \geq \sum_{k=1}^{m-1} i_k \geq \sum_{k=1}^{m-1} q_k = q(\Pi).
$$

This completes the proof of (b).

Now we have $f^{-1}[f(A_k) + 1, f(A_k) + r] \subseteq C_k \cup I'_k \subseteq C_k \cup I_k$ and $f^{-1}[f(A_{k+1})$ $r, f(A_{k+1})-1] \subseteq D_{k+1} \cup I''_k \subseteq D_{k+1} \cup I_k$. Because $C_k \cap D_{k+1} = \emptyset$, at least $r-i_k$ colors of $[f(A_{k+1})-r, f(A_{k+1})-1]$ are not in $[f(A_k)+1, f(A_k)+r]$. Thus $f(A_{k+1})-f(A_k) \ge$ $r + (r - i_k) + 1 = 2r + 1 - i_k$ for $1 \leq k \leq m - 1$. Summing up, we get (c): $n s p_r(G) \ge f(A_m) - f(A_1) \ge (m-1)(2r+1) - |I|.$

Now consider the case that $B' \neq \emptyset$; i.e., there exists some $w \in B$ such that $wA_k \notin \mathcal{A}$ $E(G)$ for all $1 \leq k \leq m$. Hence $|f(w) - f(A_k)| \geq r + 1$ for all $1 \leq k \leq m$. Assume

 $f(A_p) < f(w) < f(A_{p+1})$ for some $1 \le p \le m-1$. Then $f(A_{p+1}) - f(A_p) \ge 2r+2$, so $I'_p \cap I''_p = \emptyset$, implying that $i_p \geq i'_p + i''_p \geq (r - c_p)^+ + (r - d_{p+1})^+ = q_p + q'_p$. Replacing $i_p \ge q_p + q'_p$ to the last summation in (**), we get $|I| \ge q(\Pi) + q'_p \ge q(\Pi) + q'(\Pi)$. This proves (d).

Because $f(A_{p+1}) - f(A_p) \geq 2r + 2 \geq 2r + 1 - i_p + q_p + 1$, we have, from the first inequality, nsp_r(G) $\geq f(A_{p+1}) - f(A_p) \geq 2r + 2$. Using the second inequality, similar to the proof of (c), one can get $n s p_r(G) \ge (m-1)(2r+1) - |I| + q_p + 1 \ge (m-1)(2r+1) - |I| + s(\Pi) + 1$. This proves (e) $(m-1)(2r+1) - |I| + s(\Pi) + 1$. This proves (e).

In the next result, we complete the solution of $nsp_r(G)$ for bipartite graphs $G =$ (A, B, I, E) with $|I| = r-2$. Let $s(G) = \min s(\Pi)$, where Π runs over all arrangements of A satisfying Lemma 3.5(b) and (d).

THEOREM 3.6. Suppose $G = (A, B, I, E)$ is a bipartite graph with $2 \le m = |A| \le$ $|B|, 0 \leq |I| = r - 2$, and G-has no P_4 . Then, $nsp_r(G) < \infty$ if and only if G-satisfies Lemma 3.5(a), (b), and (d). In this case,

$$
\text{nsp}_r(G) = \begin{cases} (2r+1)(m-1) - r + 2 & \text{if } B' = \emptyset, \\ 2r+2 & \text{if } B' \neq \emptyset \text{ and } m = 2, \\ (2r+1)(m-1) - r + s(G) + 3 & \text{if } B' \neq \emptyset \text{ and } m \ge 3. \end{cases}
$$

Proof. The necessity follows from Lemma 3.5. For the sufficiency, suppose $\Pi=(A_1, A_2, \ldots, A_m)$ is an arrangement of A satisfying Lemma 3.5(a), (b), and (d). Moreover, assume $s(\Pi) = s(G)$ when $B' \neq \emptyset$. By Lemma 3.5(a), any two Avertices have disjoint sets of neighbors in G . Then by Lemma 3.5(b), we can label the neighbors of A_k in G-by $C_{k,1}, C_{k,2},...,C_{k,c_k}$ and $D_{k,1}, D_{k,2},...,D_{k,d_{k+1}}$, respectively, for $1 \leq k \leq m$. In addition, since $|I| \geq \sum_{k=1}^{m-1} q_k$, there exist distinct *I*-vertices $I_{k,1}, I_{k,2},...,I_{k,q_k}$ for all k.

We shall complete the proof by considering the three cases.

Case 1. $B' = \emptyset$. That is, B is the union of all the C-and D-vertices. It suffices to find an N_r-coloring of G with span $(2r + 1)(m - 1) - r + 2$. (Then we not only prove that $N_r(G) < \infty$ but also confirm that the span is optimal by Lemma 3.5(c).) We first replace q_{m-1} by $|I| - \sum_{j=1}^{m-2} q_j$. Then $q_{m-1} \ge \max\{(r - c_{m-1})^+, (r - d_m)^+\}\$ and $|I| = \sum_{j=1}^{m-1} q_j$. Indeed, letting B represent the C- and D-vertices and I for I-vertices (without indicating the indices), we can line up all vertices of G as an Hamiltonian r-path in G^c as

$$
P = A_1 \underbrace{BB \cdots B}_{c_1} \underbrace{II \cdots I}_{q_1} \underbrace{BB \cdots B}_{d_2} A_2 \cdots A_{m-1} \underbrace{BB \cdots B}_{c_{m-1}} \underbrace{II \cdots I}_{q_{m-1}} \underbrace{BB \cdots B}_{d_m} A_m.
$$

Note that $d_1 = c_m = 0$. Define a coloring on G by the following three steps. (The idea is to use each I-vertex to reduce the span by 1.)

(1) A-vertices: $f(A_1) = 0$ and $f(A_{k+1}) = f(A_k) + 2r + 1 - q_k$ for $1 \le k \le m - 1$. (2) B-vertices: for all $1 \leq k \leq m-1$,

$$
f(C_{k,j}) = \begin{cases} f(A_k) + j & \text{for } 1 \le j \le r - q_k - 1, \\ f(A_k) + r - q_k & \text{for } r - q_k \le j \le c_k, \end{cases}
$$

$$
f(D_{k+1,j}) = \begin{cases} f(A_k) + r + j & \text{for } 1 \le j \le r - q_k - 1, \\ f(A_k) + 2r - q_k & \text{for } r - q_k \le j \le d_{k+1}. \end{cases}
$$

(3) I-vertices: $f(I_{k,j}) = f(A_k) + r - q_k + j$ for all $q_k > 0$ and $1 \leq j \leq q_k$.

One can easily verify that f is an N_r-coloring for G with span $(2r+1)(m-1) - |I| =$ $(2r+1)(m-1)-r+2.$

Case 2. $B' \neq \emptyset$ and $m = 2$. Similar to Case 1, by Lemma 3.5(e), it suffices to find an N_r-coloring of G with span $nsp_r(G)=2r+2$. Define a coloring by $f(A_1) = 0$, $f(A_2) = 2r + 2$, and $f(z) = r + 1$ for all vertices z in B'. Since $|I| \geq q(\Pi) + q'(\Pi) =$ $q_1 + q_1' = (r - c_1)^+ + (r - d_2)^+$, there are enough I-vertices to use the colors between 0 and $2r + 2$. Thus one can verify that this is an N_r-coloring of G with span $2r + 2$.

Case 3. $B' \neq \emptyset$ and $m \geq 3$. Again, by Lemma 3.5(e), it suffices to find an N_r-coloring with span $(2r + 1)(m - 1) - |I| + s(G) + 1$. Suppose $s(\Pi) = q_p$ for some $1 \le p \le m-1$ with $q'_p \le |I| - q(\Pi)$. As before, we replace q_i by $q_i + |I| - q(\Pi) - q'_p$ for some $i \neq p$. Then $|I| = q_1 + q_2 + \cdots + q_{p-1} + (r-c_p)^+ + (r-d_{p+1})^+ + q_{p+1} + \cdots + q_{m-1}$. All the C-, D-, and I-vertices are labeled the same as before, except the I-vertices between A_p and A_{p+1} are labeled as $I'_{p,1}, I'_{p,2}, \ldots, I'_{p,(r-c_p)+}, I''_{p,1}, I'_{p,2}, \ldots, I'_{p,(r-d_{p+1})+}.$ Apply the same three-step coloring method used for the Case 1, except the colors for the vertices between A_p and A_{p+1} are defined by $f(I'_{p,j}) = f(A_p) + r - (r - c_p)^+ + j$ for $1 \le j \le (r - c_p)^+$; $f(w) = f(A_p) + r + 1$ for all $w \in B'$; $f(I''_{p,j}) = f(A_p) + r + 1 + j$ for $1 \le j \le (r - d_{p+1})^+$; $f(A_{p+1}) = f(A_p) + 2r + 2$; and

$$
f(C_{p,j}) = \begin{cases} f(A_p) + j & \text{for } 1 \le j \le r - (r - c_p)^+ - 1, \\ f(A_p) + r - (r - c_p)^+ & \text{for } r - (r - c_p)^+ \le j \le c_p, \end{cases}
$$

$$
f(D_{k,j}) = \begin{cases} f(A_p) + r + 1 + (r - d_{p+1})^+ + j & \text{for } 1 \le j \le r - (r - d_{p+1})^+ - 1, \\ f(A_p) + 2r + 1 & \text{for } r - (r - d_{p+1})^+ \le j \le d_{p+1}. \end{cases}
$$

This gives an N_r-coloring for G with span $(2r+1)(m-1) - |I| + s(G) + 1 = (2r +$ $1)(m-1)-r+s(G)+3.$ \Box

Based on Lemma 3.5, using a similar process in the proof of Theorem 3.6, we can also completely settle the case that $I = \emptyset$ and $r \geq 2$. In this case, Lemma 3.5(b) means that $q_k = 0$ for all k, or, equivalently, that G has two A-vertices of degree at least r and the rest $(m-2)$ A-vertices of degree at least $2r$. Furthermore, Lemma 3.5(d) holds automatically, and $s(\Pi) = 0$. This implies that the lower bound in Lemma 3.5(e) is simply $(m-1)(2r+1)+1$. Hence the same labeling procedure used in Theorem 3.6 gives the following result.

THEOREM 3.7. Let $G = (A, B, I, E)$ be a bipartite graph with $2 \leq m = |A| \leq |B|$, $I = \emptyset$, and G contains no P_4 . If $r \geq 2$, then ${\rm nsp}_r(G) < \infty$ if and only if Lemma 3.5(a) holds and G-has two A-vertices of degree at least r and the other $(m-2)$ A-vertices of degree at least 2r. In this case,

$$
n s p_r(G) = \begin{cases} (2r+1)(m-1) & \text{if } B' = \emptyset, \\ (2r+1)(m-1) + 1 & \text{if } B' \neq \emptyset. \end{cases}
$$

By Corollary 3.4 and Theorems 3.3 and 3.7, we obtain the complete solutions of $nsp₂(G)$ for bipartite graphs.

THEOREM 3.8. If $G = (A, B, I, E)$ is a bipartite graph with at least one edge and $1 \leq m = |A| \leq |B|$, then

$$
\text{nsp}_2(G) = \begin{cases} 3 & \text{if } |I| \ge 2; \\ 4 & \text{if } |I| = 1 \text{ and } E(\widehat{G}) \neq \emptyset; \\ 5 & \text{if } |I| = 0 \text{ and } \widehat{G} \text{ has a } P_4; \\ 5m - 5 & \text{if } |I| = 0, B' = \emptyset, \text{ and } \widehat{G} \text{ is a disjoint union of } m \\ \text{stars, centered at } A \text{ except that two of the stars have at least } 2 \text{ edges, each star has at least } 4 \text{ edges}; \\ 5m - 4 \quad \text{same as the above, except } B' \neq \emptyset; \\ \infty & \text{other than any of the above.} \end{cases}
$$

Figure 3.3 shows examples of Theorem 3.8.

Fig. 3.3. Five examples for Theorem 3.8.

Remark. This article is aimed at computing the values of $nsp_T(G)$ for bipartite graphs when $T = \{0, 1, \ldots, r\}$. Another article by Chang, Juan, and Liu [1] deals with the values of $nsp_T(G)$ for unit-interval graphs when $T = \{0, 1\}$. The no-hole T-colorings for some other T-sets and different families of graphs were studied by Liu and Yeh [13]. It was proved [13] that if T is r-initial or $T = [a, b]$, $1 \le a \le b$, then for any large n, there exists some graph on n vertices such that $nsp_T(G)$ equals the upper bound $n-1$.

Acknowledgment. The authors are grateful to the two anonymous referees for valuable comments.

REFERENCES

- [1] G. J. Chang, S. Juan, and D. Liu, No-hole 2-distant colorings for unit interval graphs, Ars Combinatoria, to appear.
- [2] G. J. CHANG, D. D.-F. LIU, AND X. ZHU, *Distance graphs and T-coloring*, J. Combin. Theory Ser. B, 75 (1999), pp. 259–269.
- [3] M. B. COZZENS AND F. S. ROBERTS, *T*-colorings of graphs and the channel assignment problem, Congr. Numer., 35 (1982), pp. 191–208.
- [4] M. B. COZZENS AND F. S. ROBERTS, Greedy algorithms for T-colorings of complete graphs and the meaningfulness of conclusions about them, J. Combin. Inform. System Sci., 16 (1991), pp. 286–299.
- [5] J. R. GRIGGS AND D. D.-F. LIU, The channel assignment problem for mutually adjacent sites, J. Combin. Theory Ser. A, 68 (1994), pp. 169–183.
- [6] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68 (1980), pp. 1497– 1514.
- [7] S. J. Hu, S. T. Juan, and G. J. Chang, T-Colorings and T-edge spans of graphs, Graphs Combin., 15 (1999), pp. 295–301.
- [8] S. T. Juan, The No-Hole T-Coloring Problem, Master Thesis, Department of Applied Math., National Chiao Tung University, Hsinchu, Taiwan, 1996.
- T. A. LANFEAR, Radio Frequency Assignment and Graph Coloring, presented at the Third Advanced Research Institute in Discrete Applied Mathematics, RUTCOR, Rutgers University, New Brunswick, NJ, 1988.
- [10] D. D.-F. Liu, T-colorings of graphs, Discrete Math., 101 (1992), pp. 203–212.
- [11] D. D.-F. Liu, On a conjecture of T-colorings, Congr. Numer., 103 (1994), pp. 27–31.
- [12] D. D.-F. Liu, T-graphs and the channel assignment problem, Discrete Math., 161 (1996), pp. 197–205.
- [13] D. D.-F. Liu AND R. YEH, Graph homomorphism and no-hole T-coloring, Congr. Numer., 138 (1999), pp. 39–48.
- [14] J. H. RABINOWITZ AND V. K. PROULX, An asymptotic approach to the channel assignment problem, SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 507–518.
- [15] A. RAYCHAUDHURI, Further results on T-coloring and frequency assignment problems, SIAM J. Discrete Math., 7 (1994), pp. 605–613.
- [16] F. S. Roberts, No-hole 2-distant colorings, Math. Comput. Modelling, 17 (1993), pp. 139–144.
- [17] D. SAKAI AND C. WANG, No-hole $(r+1)$ -distant colorings, Discrete Math., 119 (1993), pp. 175– 189.
- [18] B. A. Tesman, T-Colorings, List T-Colorings and Set T-Colorings of Graphs, Ph.D. Dissertation, Department of Math., Rutgers University, New Brunswick, NJ, 1989.