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Abstract

Usually each vertex of the (s + 1)-dimensional hypercube is labeled with a unique
integer k with 0 <k <2*! — 1. The supercube Sy of N nodes with 2° < N <2571 is
constructed by merging nodes u and u —2°, with N <u<2**! — 1, in the (s + 1)-di-
mensional hypercube into a single node labeled as u — 2* and leaving other nodes in the
(s + 1)-dimensional hypercube unchanged. In this paper, we give the exact distance
between any two nodes of supercube and present a new shortest path routing algorithm
on Sy. Then we show how to construct x(Sy) disjoint paths between any two nodes of
the supercube, where x(Sy) is the connectivity of Sy. Finally, we compute the wide
diameter and the fault diameter of Sy. We show that both the wide diameter and the
fault diameter are equal to s +2 if N € {21 =2/ +1|0<i<s— 1} and s + 1 other-
wise. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Interconnection networks; Hypercube; Supercube; Container; Wide diam-
eter; Fault diameter

1. Introduction

The rapidly growing need for large scale computation and an ever increasing
density of low cost VLSI circuit have resulted in an increasing demand for
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multiprocessing systems consisting of large numbers of interconnected pro-
cessors. The topology of an interconnection network is a crucial factor for the
performance of the network. Many types of interconnection network topolo-
gies have been studied. Network topology is usually represented by a graph,
where vertices represent processors and edges represent links between proces-
sors. Among these topologies, hypercube has been studied extensively as an
interconnection network for parallel machines because of advantages such as
low message latency and high bandwidth [8]. However, one major constraint of
the hypercube topology is that the number of nodes in the network must be 2*
for some positive integer s and cannot be defined for arbitrary number of
nodes. Although the incomplete hypercube topology introduced in [5] has re-
moved such a restriction, the incomplete hypercube has serious limitations
from the fault-tolerance perspective. A single node failure may disconnect the
network. In [9], Sen proposed a family of networks called supercubes which are
denoted by Sy and can be realized for any number of nodes N. The supercube
contains the hypercube with dimension |log, N | as a subgraph. It is isomorphic
to a hypercube when the number of nodes is a power of 2. In addition, the
supercube has the same excellent characteristics of small diameter and high
connectivity as the hypercube. In [14], Yuan studied some topological prop-
erties of supercube and extended some results known for the hypercube to the
supercube. Some fault-tolerant characteristics are explored in [2,10,11]. In [1],
the computational capabilities of the supercube are studied by graph-embed-
ding techniques.

It is important that an interconnection network routes data efficiently
among nodes. Therefore, a shortest path routing algorithm that finds the
shortest path joining any two nodes is preferred. In [13], Lien and Yuan
proposed a distributed shortest path routing algorithm for the supercube.
However, the algorithm does not estimate the exact length of shortest path
between any pair of nodes of supercube. In this paper, we will present another
shortest path routing algorithm which can compute the shortest distance be-
tween any pair of nodes for supercubes. Efficient routing can be achieved by
using node-disjoint paths. Routing by node-disjoint paths among nodes can
not only avoid communication bottlenecks, but also provide alternative path in
case of node failures. In this paper, we will discuss the disjoint routing paths
among nodes in supercube.

Fault diameter and wide diameter are important measures for intercon-
nection networks. The fault diameter, proposed by Krishnamoorthy and
Krishnamurthy [6], estimates the impact of diameter when fault occurs. The
wide diameter, proposed by Hsu [3,4], measures the performance of multipath
communication. Due to the non-symmetric property and the variation in the
number of vertices, the value of fault diameter of supercube is difficult to
obtain. Assume 2° < N < 2°'! for some positive integer s. In [10], it is proved
that the fault diameter of Sy is at most s + 3. Later, it is claimed in [2] that the
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fault diameter of Sy is exactly s+ 1 if N ¢ {25! — 1,271 — 2 25 4 2571 - 1},
and s + 2 otherwise. However, this is not correct. Recently, Sheu and Hsu [11]
proved that the fault diameter of Sy is s+2 if N {27! -2/
1] 0<i<s— 1}. Thus, the exact value of the fault diameter of the remaining N
values of Sy is questionable. In this paper, we compute the exact values of the
fault diameter and the wide diameter for Sy.

The outline of this paper is as follows. Definitions, notations, and general
graph properties used throughout this paper are introduced in Section 2. In
Section 3, a shortest path routing algorithm is proposed. In Section 4, we
discuss the disjoint routing paths between any two nodes of the supercube. In
Section 5, we compute the wide diameter and fault diameter of the supercube.
The last section gives some concluding remarks.

2. Definitions and notations

Now, we formally introduce the definition of the supercubes and give some
graph terminologies used in this paper. Most of the graph and interconnection
network definitions used in this paper are standard (see, e.g., [7,12]). Let
G = (V,E) be a finite, undirected graph. Throughout this paper, node and
vertex are used interchangeably to represent the element of V. Edge and link
are used interchangeably to represent the element of E. For a vertex u, N(u)
denotes the neighborhood of u which is the set {v | (u,v) € E}. Let u,v be any
two nodes of G, the distance dg(u,v) between u and v is the length of the
shortest path between them. The diameter of G, D(G), is the maximum distance
between any two nodes in G. The connectivity of G, k(G), is the minimum
number of nodes whose removal leaves the remaining graph disconnected or
trivial. Let G = (V,E) be a graph with x(G) = k. It follows from Menger’s
theorem [12] that there are k internally node-disjoint (abbreviated as disjoint)
paths joining any two vertices u and v when k < k.

A container C(u,v) between two distinct nodes u and v in G'is a set of disjoint
paths between u and v. The width of a C(u,v), written as w(C(u,v)), is its
cardinality. The length of a C(u,v), written as /(C(u,v)), is the length of the
longest path in C(u, v). The w-wide distance between u and v is /(C(u, v)), where
C(u, v) is the minimum length container between u and v with width w. Let x be
the connectivity of G. The wide diameter of G, denoted by D,(G), is the
maximum of x-wide distances among all pairs of nodes u, v in G, u # v. The
fault diameter D_, (G) of a connected graph G is the maximum diameter of any
subgraph of G obtained by removing at most x —1 nodes. Obviously,
D/ ,(G)<Dy(G) [3].

In this paper, we assume that N and s are positive integers with 2° <
N< 2S+]. Let u = U(s)U(s—1) * = U1)U(0) and v = U(s)V(s—1) "~ V(1) V(0) be two (S + 1)-
bit strings. Let V denote the string or operator. For example, 11001 vV 01011 =
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11011. Let H(u,v) denote the indices set {i | u( # v(y}. The Hamming distance
h(u,v) between u and v is defined to be |H (u,v)|. The (s + 1)-dimensional hy-
percube consists of all (s + 1)-bit strings as its vertices and two vertices u and v
are adjacent if and only if 4(u, v) = 1. By convention each vertex of the (s + 1)-
dimensional hypercube is labeled with a unique integer k corresponding to its
binary (s + 1)-bit string with 0 <k <2*! — 1. The N-node supercube is con-
structed from the (s + 1)-dimensional hypercube by merging nodes u and
u— 2, with N <u < 2! — 1, in the (s + 1)-dimensional hypercube into a single
node labeled as u —2° and leaving other nodes in the (s + 1)-dimensional
hypercube unchanged.

To be precise, let supercube Sy be the graph (¥, E). The vertex set V consists
of N vertices which are labeled from 0 to N — 1. Each vertex u (O <u <N — 1)

can be expressed as an (s+ 1)-bit string wugyug_y)---uqyue) such that
u=7 . upn2. We use i to denote the string ii_) - - - il(1)i(o) and use u® to
denote the string u)u—1) - - - Uger1) U U1y - - - U). Observe that two nodes u

and v are adjacent in a hypercube if and only if v = u® for some k, 0 <k <s.
The vertex set V' is partitioned into three subsets V;, V5, and V;, where
Vi={ulueVugy=1}h={u|ue€V,uy,y=0, andu® ¢V}, and V=
{u|u€V,uy =0, and u'®) € V'}. The edge set E is the union of E, E», E3, and
Ey, where E; = {(u,v)|u,v€ UV, and h(u,v) =1}, E, = {(u,v) |u,ve€
V3 and h(u,v) =1}, E3 ={(u,v) |u € V3,v € V5 and h(u,v) =2}, and E4=
{(u,v) |u € V3,v €V, and h(u,v) = 1}. As an example, a supercube with 13
nodes is shown in Fig. 1. In this figure, edges in £; are indicated by bold lines.
Let Z° = 13 U ¥, and Z' = V5. Obviously, Z° induces an s-dimensional hyper-
cube.

Let P : xp,x1,...,x; be a path of length k from x, to x; such that nodes x;
and x;,, are adjacent to each other, and x;,; = xf“i) with some index o;, where
0<i<k—1 and 0<o; <s. We also write P as (xq | ao, 0, ...,0%_1). For ex-

ample, let P be u,u®, )V (u®)M)? we denote P by (u|3,1,2).

3. Shortest path routing

In [13], Lien and Yuan proposed a distributed shortest path routing algo-
rithm between any two nodes of supercube. However, their algorithm does not
compute the shortest distance between each pair of nodes. In this section, we
present a new shortest path routing algorithm which computes the distance
between each pair of nodes of supercube. In the following lemmas, we will
discuss the distance between any two nodes of supercube.

Lemma 1. Assume that u = ugue_1)---ue) and v = vs—_1) - Vo) are two
vertices of Sy withu > v. Then there exists a path P of length h(u, v) joining u to v
with all internal nodes less than u. Moreover, P is in Z' if both u and v are in Z'.
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Fig. 1. An example of supercube Si;.

Proof. Let {oc,»}i’fg”H be the decreasing sequence of indices in H(u,v). Since
u>v, we have Uey) = 1, V() = 0, and U U(s—1) " " Ulgy+1) = V(s)Us—1) """ V(g +1)-
Let P : u,u™, (u®)™) (@) .. )®w-D) be a sequence of (s + 1)-bit
strings. Let x be any interior (s + 1)-bit string in P. By our construction, we
have X(og) = 0< Uay) and X(5)X(s—1) " * " X(og+1) = U(s)U(s—1) * = * U(op+1)- Thus x < u <
N — 1, that is, x is a vertex of Sy.

Now, assume that both u and v are in Z'. Then, U = V) =X = 1, 1.e.,
each internal node x is in Z'. Thus we have P € Z'. O

Lemma 2. Assume that both u and v are nodes in either Z° or Z'. Then
ds, (u,v) = h(u,v).

Proof. It is observed that any edge (x,y) in £, U E; U Ey satisfies A(x,y) = 1, and
any edge (x,y) in Ej satisfies /(x, y) = 2 and x() # ). Since both u and v are in
either Z° or Z', u(;) = v(,). There are h(u, v) bits, not including the sth bit, that
are different from u to v. Hence the length of any path joining u and v is at least
h(u,v). Without loss of generality, we assume that u > v. By Lemma 1, we have
ds, (u,v) = h(u,v). O
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Lemma 3. Suppose that u is a node in Z' and v is a node in Z°. Then, ds, (u,v) is
at least h(u,v) if uV v <N, and at least h(u,v) — 1 otherwise.

Proof. It is observed that any edge (x,y) in £, U E, U E, satisfies A(x,y) = 1, and
any edge (x,y) in Ej satisfies: (1) A(x,y) = 2; (2) x;) # y; and 3)x Vy = N. At
least one edge is necessary to change the ith bit with i € H(u,v) — {s} in any
path joining u to v. Thus, ds, (u,v) > h(u,v) — 1 for any u € Z' and v € Z°.

Assume that ds, (u,v) < h(u,v) with u € Z', v € Z°, and uV v < N. Then,
there exists a path P in Sy of length /4(u,v) — 1 that joins u to v. Obviously, P
contains an E; edge, say (x,y), withx € Z', y € Z°, and y**) ¢ Sy. Thus, we may
write P as u,...,x,y,...,v. Obviously, we have xVy = N. Since u Vv <N,
there exists some index j ¢ H(u,v) such that x; = u(; or y;; = u;. Thus, the
length of P is at least A(u,v) — 1 plus 1 to restore the jth bit. We get a con-
tradiction. Thus, ds, (u,v) is at least 4(u,v) if u Vv < N. Hence, the lemma is
proved. 0O

Now we propose the following shortest path routing algorithm in Sy:

Routing algorithm: Let u = u(gu_y - - - u@) and v = vy - - - v) be any two
nodes in Sy with u > v. Construct a shortest path P from u to v as follows:

Case 1. u,v € Z° or u,v € Z': Let {oci}fi'f)‘”)_l be the decreasing sequence of
indices in H(u,v). Construct the path P as: (u | oo, 01, . .., Chuw)-1)-

Case2.u € Z'and v € Z°: Let 4 = {0, 2, ..., 1} be the indices such that
Uy =0 and vy, = 1 for 0<i<z— 1, and let {,}/%"~" be the sequence of
indices in H(u,v) — {s} — 4. Construct the path P joining u to v as:

Case 2.1. uNV v < N: Set P = (u | oo, 01, %158, Bos Bis -+ + s Briuw)—i—2)-

Case 2.2. uNVv>=N: Set P to be xo,Xi,...,Xup-1 With xo=u and
Xpwo—1 = v as follows: For 0<i<t—1, let x;y zxg“") if xE“” e Sy, and
X = (") otherwise; and we set the remaining path from x, to v as

x| Bo, By - - - 7ﬁh(u7v)ft72>'

Obviously, if u V v > N, then by our algorithm we will go from u to a node
Xp_1, 1(<k< t, in Z' such that all of x; for 1 <i<k — 1 are vertices in Z' and
Og—1

X = x4 ) is not in Sy. Thus, one E; edge (xk,l,xf:)) can be taken. And the
remaining path from x,(f) to v can be constructed as in hypercube. This path is
of length %(u,v) — 1. In the other cases, the length of each path is the Hamming
distance between u and v. For example, let u = 11000, » =00110, and
N = 11110. Since u Vv = 11110 > N, we construct a shortest path from u to v
as: u = 11000, 11100, 01110, 00110 = v whose length is A(u,v) — 1 = 3. Note
that (11100,01110) € E;.

Applying the routing algorithm, we have the following theorem.

Theorem 1. ds, (u,v) = h(u,v) =1 if wuy #vy and uVo>N, and
ds, (u,v) = h(u,v) if otherwise.
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4. Containers of supercube

Disjoint paths are useful in transferring large amount of data between
nodes and offering alternative routes in node failure situations. According to
Menger’s theorem [12], there exist k(Sy) disjoint paths between any two
nodes of Sy. In this section, we construct a container C(u,v) with
w(C(u,v)) = k(Sy) for any two nodes u and v in Sy, which will be used in
the next section to compute the wide diameter and the fault diameter of
supercube.

4.1. Container of Sy with 2° < N < 25 4 2571

It is proved in [9] that x(Sy) is s if 2* < N < 2¢ + 257!, The following known
result about s disjoint paths of length at most s 4+ 1 between each pair of nodes
of supercube is proved in [13].

Theorem 2. There exists a container C(u,v) between nodes u and v in Sy with
w(C(u,v)) =s and I(C(u,v)) <s+ 1.

4.2. Container of Sy with 25 + 25~ < N < 25+

It is proved in [9] that x(Sy) is s + 1 if 28 4+ 2571 <N < 251, Tt follows from
Menger’s theorem [12] that there are s + 1 disjoint paths between any two
nodes of Sy for 25 + 25~ < N < 25*!. Therefore, in this section we will discuss
the container problem, i.e., disjoint paths problem, of Sy for the case
25 4 2571 <N < 2°*!. By the definition of Sy, we have the following lemma.

Lemma 4. Let 2°+2' <N <2 If u ¢ Sy, then ui_,) = 1. Moreover, if
V-1 = 1, then v~V € Sy.

Before discussing the disjoint paths problem of the supercube, we need to
know the maximum number of disjoint paths between any two nodes of s-
dimensional hypercube. The following lemma is constructed in [8].

Lemma 5. Assume that u and v are two different nodes in the s-dimensional
hypercube and u > v. There exist s disjoint paths joining u to v, among those,
h(u,v) of them are of length h(u,v), and the others are of length h(u,v) + 2.
Moreover, there exists at least one path of length h(u,v) whose internal nodes are
all less than u.

Proof. Let {oc,-}ﬁ'i‘(‘)‘")_l be the decreasing sequence of indices such that
U(y) 7 U(z), and {ﬁj}j;g(“‘”)_l be the decreasing sequence of indices such that
g, = vgp). For 0<i<h(u,v) — 1 we set B = (u | ooy %agis -+ -, Fnun)—144) With
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the addition of subscripts being performed under modulo A(u, v). Suppose that

Py IS u,X1,X2, .., Xpue)-1,0,  We  set P, for  h(u,0)<j<s—1, as
f‘* u,v }.* u,v i.* u,v . .
u, ) Vo) (Srowo) x(h/( e ) oWri) v, Then Py, Py,..., P, satisfy

our requirement. Moreover, by the similar argument of Lemma 1, it can be
checked that all internal nodes of Py are less than u. [

Now we construct s+ 1 disjoint paths between any two nodes of the
supercube. According to the locations of the source node and the destina-
tion node, we construct s+ 1 disjoint paths in the following three
lemmas.

Lemma 6. Let lu= lu(.g,1)u(x,2) e U(0) and lv= IU(A.,l)U(A.,z) < D(0) be two
nodes of Z'. Then there exist s + 1 disjoint paths Qy, Q1, ..., Qy joining u to v in
Sy such that the length of Q; is h(u,v) for 0 <i<h(u,v) — 1 and the length of O;
is h(u,v) + 2 for h(u,v) <j<s.

Proof. Suppose that lu > 1lv and Z' is a s-dimensional hypercube. Let
0o, 01, ---,0, 1 be the s disjoint paths from lu to 1v constructed by Lemma 5
where all internal nodes of O, are less than lu. Because some internal nodes of
these paths might not be in Sy, we have to modify these paths to be feasible in
SN.

Let 1¢g be any internal node which is not in supercube where ¢ is a s-bit
string. We replace 1g by 0g. Obviously, Og is a node of Z°. By definition of
Sy, there exist two edges joining Og to its two neighboring nodes in this
path. Thus, in this manner, we can get s disjoint paths from lu to lv such
that all nodes are in supercube. Note that such modification does not
change the length of any path. Moreover, since all internal nodes of Q, are
less than lu, we conclude that Qy, written as lu, x|, Lxa, ..., 1xyu0-1, 10, is
in Z'. Finally, we set O, as lu,Ou,Ox;,0x,,...,00,1v. Then Oy, 0;,...,0O,
satisfies our requirement. [

Lemma 7. Let Ou = Ou(_1yu(—2) - - - up and Ov = Ovi_1)v(—2) - - - oy be two nodes
of Z°. There exist s + 1 disjoint paths Py, Py, . . ., P, joining Ou to Ov in Sy with the
following properties:
1. The length of P; for 0 <i< h(u,v) — 1 is h(u,v).
2. The length of P; for h(u,v) <j<s—1is h(u,v) + 2.
3. The length of P, is at most h(u,v) + 3 if h(u,v) <s — 2. Moreover, this path P,
satisfies the following two statements:
If h(u,v) = s: The length of P, is s + 1 if exactly one of lu and 1v is in Sy, and
is s + 2 if both lu and 1v are in Sy.
If h(u,v) = s — 1: The length of P, is at most s + 2 if either 1u or lv is in Sy and
U-1) = V-1 = 1, and is at most s + 1 otherwise.
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Proof. Note that Z° is isomorphic to an s-dimensional hypercube. Let
Py, Py,..., P, be the paths from Ou to Ov constructed in Lemma 5. We are
going to construct the (s + 1)th disjoint path P, such that all of its internal
nodes are in Z' in the following three cases.

Case 1. Both 1u and 1v are vertices of Z': By Lemma 1, there exists a path Q
of length h(u, v) in Z! joining 1u to 1v. We set P, as Ou, lu, Q, 1v, 0v whose length

is h(u,v) + 2.
Case 2. Either 1u or 1vis in Z': Without loss of generality, we assume that 1u
is a node in Z' and 1v is not contained in Sy. By Lemma 4, v(,_j) = 1 and 100~V

is a node of Z'.

Assume that 1v% is a node in Z' with some k € H(u,v). Then (1v®,0v)
is an F; edge. By Lemma 1, there exists a path R of length Z(u,v) — 1 from
lu to 10 in Z'. We set P, as Ou,lu,R, 10 0v whose length is 4 (u,v)
+1.

Now we assume none of 10, for all i € H(u,v), is a node in supercube.
Since 100~ is a node in Z', we have s — 1 & H(u,v). Thus, u(_1) = v-1) = 1
and A(u,v) <s — 1 in this case. By Lemma 1, there exists a path Q of length
h(lu, 1067V = h(u,v) +1 in Z' from 1lu to 1vD. We set P, as
Ou, 1u, Q, 10~V 0v whose length is A(u,v) + 3.

Case 3. Neither lu nor 1v is in Z': By Lemma 4, we have
U1y = V1) = 1, L.e., in this case h(u,v) <s— 1 and both 1u“~V and 1ot~V
are vertices of Z'. By definition of supercube, both (Ou,1u*~") and
(10D 0v) are E; edges. By Lemma 1, there exists a path Q of length h(u, v)
in Z' joining 14~V to 1o0~D. We set P, as Ou, 1u""Y Q, 104D 0v whose
length is A(u,v) + 2.

Obviously, P, forms the (s + 1)th disjoint path joining Ou to Ov whose length
is at most A(u,v) + 3. Suppose that 4(u,v) = s, the length of P, is s + 1 if either
lu or 1v is in Sy; and is s+ 2 if both lu and lv are in Sy. Suppose that
h(u,v) = s — 1. The length of P, is at most s + 2 if either lu or 1v is in Sy and
u_1) = vs—1) = 1, and at most s + 1 otherwise. Hence, this lemma is proved.

g

Lemma 8. Let Ou= Ou(s,])u(s,z) s U(0) and 1lv= 10(371)0(372) = D(0) be

two nodes of Sy with Ou € Z° and 1v € Z'. Then there are s+ 1 disjoint

paths  Qy,01,..., 0, joining Ou to lv in Sy with the following
properties:

1. The length of Q; for 0 <i< h(Ou, 1v) — 2 is at most h(Ou, 1v); and every inter-
nal node q satisfies q; = u for j ¢ H(Ou, 1v).

2. The length of Q; for h(Ou,1v) —1<j<s— 1 is at most h(Ou, lv) + 2.

3. The length of QO is at most h(Ou, 1v) + 1. And every internal node q of Q; is in
Z'. Let h(Ou,1v) =s and t be the unique index such that u = vg. Then,
qu =g only ifuyy =1andt =s—1.

4. If h(Ou, 1v) = s+ 1, all the s + 1 paths are of length at most s + 1.
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Proof. Assume that 4(Ou, lv) = 1. Obviously u = v. For 1 <i<s, we set O; as
O, 0=V 100D 1p if 100D € Z', and Ou, 0u""" | 1v otherwise. And we set O
as Ou, lv. Obviously, Oy, Oy, . . ., Oy satisfy our requirement. Hence, in the rest
of the proof we assume that 4(Ou, lv) > 2.

Obviously, Ou and Ov are nodes of Z°, and Z° is isomorphic to an s-di-
mensional hypercube. Let Py, Py, ..., P,_; be the s disjoint paths constructed by
Lemma 5 joining Ou to Ov. We denote the last internal node of P; be 0/; for every
i

We are going to choose a neighboring node 1z of Ou in Z! and construct a
path Q. of length at most A(u,v) + 1 from 1z to 1v in Z' by Lemma 1. And
then we can set O, as Ou, 1z, 0, lv. Thus, all internal nodes of Q; are in Z!
and Q; satisfies the requirement of statement 3. For simplicity, we discuss
only the choice of 1z and the length of Q' joining 1z to lu in the following
three cases:

Case 1. lu is in Z': We set 1z to be lu. Thus Q. is of length
h(lu, 1v) = h(Ou, 1v) — 1.

Case 2. luis not in Sy and 1u” is in Z' for some index i € H(u,v): We set 1z
to be 1u and thus Q. is of length A(1u", 1v) = h(Ou, 1v) — 2. (In case 1 and 2,
if H(Ou, 1v) = s and ¢ is the unique index such that u() = v(,, then it can be
checked that each node ¢ of O satisfies gy = u() = v(.

Case 3. lu is not in Sy and 1u(¥) are not in Sy for all i € H(u,v): Since lu is
not a node of supercube, by Lemma 5, we have u,_j) =1 and 1u¢~D € Z.
Thus, s — 1 is not contained in H(Ou, 1v), and the Hamming distance A(Ou, 1v)
between Ou and lv is at most s in this case. We set 1z = 1u*~). Thus @/ is of
length 2(1u~Y | 1v) = h(Ou, 1v).

Obviously, the last internal node of Q' is 1/, for some k with 0 <k <s — 1.
We extend P, by appending an edge (Ov, 1v) to it and set Oy to be this new path
joining Ou to 1v. For 0 <i # k <s — 1, we replace the last edge (0/;, 0v) of P; by
two consecutive edges (0/;,1/;) and (17;, 1v) if 1/; is in Z' and by an E; edge
(0/;, 1v) otherwise. And we set Q; to be this new path joining Ou to 1v.

Obviously, Qo, Oy, - .., 0O, form s + 1 disjoint paths. Moreover, the length of
Q; is at most #(Ou, 1v) for 0 <i < h(Ou, 1v) — 2, and the length of Q; is at most
h(Ou, 1v) + 2 for A(Ou, lv) — 1 <i<s — 1. The length of Q, is at most s+ 1 if
h(Ou, 1lv) = s + 1, and is at most A2(Ou, 1v) + 1 otherwise. Let ¢ be any node in
Oy, h(Ou,1v) =5, and ¢ is the unique index such that ug), = v(). It can be
checked that g(;) = i) only in case 3. More precisely, g = i only if uy =1
and t = s — 1. Thus, Qo, 01, . . ., O, satisfy our requirement (see Fig. 2). Hence,
this lemma is proved. [

According to Lemmas 6-8, we have the following theorem.

Theorem 3. There exists a container C(u,v) between nodes u and v in Sy with
w(C(u,v)) =s+ 1 and I(C(u,v)) <s+ 2.
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Fig. 2. Illustration for Lemma 8.

4.3. Container of Sy with 25+ 21N and N #2571 -2+ 1 for
0<i<s — 1

In Theorem 3, we have proposed a container C(u, v) between nodes u and v
in Sy with w(C(u,v))=s+1 and [(C(u,v))<s+2. However, if
N ¢ {2271 =21+ 1| 0<i<s— 1}, it is possible to construct a better container
C(u,v) between nodes u and v in Sy with w(C(u,v)) =s+1 and
[(C(u,v))<s+ 1. Therefore, in this section we consider the case
242 TN 2 and N g {271 =21+ 1| 0<i<s— 1}.

Note that here NV is at most 11--- 10,

—N—
N—-1#11---100---0 for0<i<s—1,

s is at least 4, and the connectivity of Sy is s + 1. Moreover, if N < 2571 — 3,
then N — 1 < 11---100. And if N =2**! =2, then N — 1 = 11---101.

The following lemma describes some constructions which are useful for our
purpose.

Lemma 9. Let u= U(s—1)U(s—2) * * * U(0) and v = U(s—1)V(s—2) = * V(0) be two s-bit
strings with: (1) 0 € H(u,v) and u = vy = 1 for any index t ¢ H(u,v) and (2)
lu is a node in Z'. Let {oc,;g*l be the decreasing sequence of indices in H(u,v)
such that u,,, = 0 and {0, Y2V be the increasing sequence of indices in H(u, v)
such that u) = 1. Set xo = u,x, =x xy =x\") L xer = X Then, the
following statements hold:

1. There exists an integer k with 1 <k <m such that neither lx; nor lx;.| is a

node of supercube, but 1xy,1x1, ..., 1x,_, are all nodes in Z'.
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2. If {0,1,.. ,s —2} C H(u, v) then there exists an zndex y € H(u,v)—

{og, 011, ..., 041} such that lxk | is a node in Z' but lxk is not a node of su-
percube.
3. Let y —x< ) 1 = x| )y = x!" )7...,yk_2:x,<:‘_°i, and yi_i )/,:%2“‘)l then

1y, Iy, ..., Ly are all nodes of Z' and disjoint from 1x;,1x,, ..., 1x;_;
where 1y, = 1u™),

Proof. The proof is through the following steps.

(1) We first prove that statement 1 holds. Obviously, lx;.; is greater than 1x;
since lx;;; = 1x; + 2% for 0 <i<m — 1. Because all 0 bits have been comple-
mented, obviously, 1x, = 11---1 and lx,, is not a vertex of supercube. Thus,
there exists a positive integer k, k is no more than m, such that all

Ix1, 1x5, ..., 1x,_; are vertices in Z! and lx; is not a node of supercube.
Before proving that 1x;,; is not a node of supercube, we claim that «,_; is at
least 1: Assume that N < 2! — 3. Because lx_; = 11+ 10ug, 1)t ,-2) -

uey < N<11---100, we have oy_; >2. Assume that N = 2! — 2. Because
Ixj_1 <N —1=11---101, a4_; = 1. Therefore, we have oy_; > 1.

Now we show that lx;,; is not a node of supercube, i.e., we will show that
Ixi41 = N. Suppose that &k < m. Because 1x;,; > lx;, >N — 1, 1x;,, is not a
node in supercube. Suppose that £ = m. Then, we have «,,_; = o;_; = 1. Note
that o, is the smallest index 7/ of H(u,v) such that u; =0, a,, is the smallest
index j such that u(; = 1, and 0 € H(u,v). Thus, by deﬁmtlon we have o, = 0.
Thus lxq = 1x®) =111 =11---10 >N and we have lx; | & Sy.
Hence, statement 1 holds.

(2) We prove that statement 2 holds in the following two cases: (i)
Ix;.y=N—1 and (ii)) lx,_; <N —1. Note that {oc,-}gfl is decreasing,
{0,1,...,s =2} C H(u,v), and oy =>1. Thus, index y will be in
H(u,v) — {og, a1, .oy 04 1} 1fy is 0 or less than oy_;. Obv1ously, if we can show
that lx,ﬂ )1 <N -1 and lxk > N, then the fact that lxk , is a node in Z' and
1x is not a node of supercube will ensue. Thus statement 2 holds. For sim-
pllClty, we show only lxk*>] <N —1and lxk = N.

Case 1. 1x,_, = N — 1: Note that

i

/—/H
N-1#11-. 0 for0<i<s—1I.

Since lxj—; = 11---10u(, ,—1)l(y, -2 - - - U@), there exists one index y with
0<y <o such that u) = 1. Therefore, lx,(c 1 =1y —2"<N -1 and
1) = 1 — Z_MH+W“—T>N—L

Case 2. Ixy <N —1: Suppose that 1x; > N. We set y=0. Then,
1xk | < lxk 1+1<N -1 and lxk > lx; — 1 > N. Suppose lx; = N. Since
Lo =11+ lugy, —1yU@,_,—2)- - ue) and N <11---10, there exists one index y
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with 0 < 7 < oy—; such that u) = 0. Therefore, lx,(;’fl = lx;, —2%1 + 2V < N
and lx = Ix;+2">N.

3) Flnally, we claim that statement 3 holds. It can be checked that: (i)
1y, = Ix;y — 2% for 1<i<k—2; (i) 1y is 1u®); and (iii) 1y, # 1x; for any

1<i,j<k—1. Now we show that 1y, 1y,,..., 1y, are vertices in Z!: Since
1y, = Ix;y —2% and lx;; is a node of Z' for 1<i<k—2, we have
1y, < lx;y; < N. Thus 1y, is a node in Z'. Now we consider 1y,_;, which is
defined to be 1 yk”h “-1) Note that the %) 1th bit of 1y, is equal to ug,, ).
Here we consider two cases:

Case 1. If u (1) = = 1: Since ly;_, < N, we have ly,_| = ly;_, — 2%wo-1 <
N. Thus ly,_; is a node in Z'.

Case 2. If u,,, ) = 0: Because {o;}]" B is the decreasing sequence of indices
in H(u,v) such that u(,), = 0, we have m = h(u,v). Thus, o, is the smallest

index in H (u,v), i.e. ach<“) 1 = 0. Because 1y,_; = 1y +2° = 1x;_; — 2% 429,
we have 1y, < lxk,l < N and thus 1y;_; is a node in Z!.
Therefore, this lemma is proved. [

In Lemma 6, we have proposed s + 1 disjoint paths of length no more than
s+ 1 between any two node lu and lv for i(u,v) < s. In the following lemma,
we will propose s + 1 disjoint paths P, 0 <i<s, of length at most s + 1 from 1u
to lv for A(u,v) = s. We first construct P, and Py, and then construct the other
s — 1 paths Py, Ps, ..., P, such that these s — 1 paths are “parallel” to the two
paths Py and P, i.e., all the s + 1 paths are disjoint.

Lemma 10. Let lu = lug_nyu_z) - -uey and 1v = lo_1yvi_a) -+ vy be two
nodes in Z'. Then, there exists a container C(lu, 1v) with w(C(lu, 1v)) = s + 1
and 1(C(lu, 1v)) <s+ 1.

Proof. By Lemma 6, this lemma holds if %(u, v) # s. Thus, we prove the lemma
for h(u,v) =s, ie., H(u,v) ={0,1,...,s — 1}. Without loss of generality, we

assumethatu>v Then w1 —luél =0, and u; ) for 0<i<<s — 1.
Let {o}o be the decreasing sequence of 1ndlces such that u(,) = 0. Let
Xo=u,x1 =x3", % = xﬁ X3 = x(2 D X = " ). By Lemma 9, there exists

an index k with 1 <k <m such that lxk is not contalned in Sy and all 1x;, for
0<i < k, are vertices in Z'. By definition of supercube, (lx;_;,0x;) is an E;
edge. Moreover, by Lemma 9 there exists an 1ndex y in H(u,v)—
{ag, 01y -« ., 01} such that lxk | is a node in Z' and 1x is not contained in Sy.
By Lemrna 4, we have (1x\")¢-1 is in Z'. Thus, (Ox" ,(1x,(;))(571)) is an E; edge.
From Lemma 1, we can find a path W of length s — k£ — 2 joining (lxk ) =Dt
lv in Z'. Let W be 1z, = (1x ,E>)< Az, 120, .00 1ze 4 = 1v. We set W' as
0z9,0z1,0z5,...,0z,_4_, = 0v. Note that W can also be written as
(lzy | do,d), ..., ds_4—_3) where d;, for 0<i<s—k—3,is a one to one corre-
spondence to the s — k — 2 indices in H(u,v) — {og, 001, ...,0%_1,7,5 — 1}.
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Now we construct the required s + 1 d1sj01nt paths from 1u to 1v as follows.
We set Py to be lu, 1x, 1xs, ..., Lx_ I,Oxk,Oxk ,(ox}j 1) —oz W', Ouv, 1o
and Py to be lu,0u, 0x,, 00, . .., 0%, 0xt” |, 0xt ) (1D = — 1z, W 1p (see
Fig. 3). It is clear that P, and Pl are of length s+ | and disjoint.

Let Oy =09,01 =ap,...,0 1 = 01,0k =y, 0001 =5 — 1,0, 0 = do, O3 =
dy,...,0_1=d_;5. Then, for 2<i<s, we construct P as
(lu | O94i, 0144, - .., 0511;) where the addition of subscripts being performed
under modulo of s. Note that there might exist some nodes which are not
contained in supercube. For any lq ¢ Sy of any Q;, we replace 1¢q by 0g. By
definition of supercube, we can get a feasible Path of the same length in su-
percube. Thus, all internal nodes (except for Oxk , and Ox,iY b ) of Py and P1 are
dlSJOlIlt from those of P, Ps,...,P,. Thus, we have to prove that Oxk , and
()xks Y are not contained in PZ,P3, .., P,. Obviously, an internal node Og 6 Z0
appears in F;, for 2 < z <s, if and only 1f lg ¢ Sy. Because both lxk , and lxk
are in Z', neither Oxk | nor Oxk Yis in P, for 2<i<s. Hence, Py, P,,. .., P, are
disjoint and satisfy our requirement. [J

Fig. 3. Illustration for Lemma 10.
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In Lemma 7, we have proposed s + 1 disjoint paths of length no more than
s+ 1 between any two node Ou and Ov except for two cases: (a) 2(u,v) = s and
both lu and 1v are nodes in Z!, and (b) A(u,v) = s — 1, U1y = U(s—1) = 1, and
either lu or lv is in Sy. In the following lemma, we will propose s + 1 disjoint
paths P, 0 <i<s, of length at most s + 1 from 1u to 1v for these two cases. We
first construct s disjoint paths Py, Py, ..., P,_;. And then we will construct two
new paths, P and P}, by modifying 5.

Lemma 11. Le Ou = Ou(_1yu—2) - - u©) and 0v = 0v_1)vi_2) - - - vy be two
nodes of Sy with Ou € Z° and Ov € Z°. Then, there exists a container C(Ou,0v)
with w(C(0u,00)) = s+ 1 and 1(C(O0u,0v)) <s+ 1.

Proof. By Lemma 7, this lemma is true except: (a) #(u,v) = s and both lu and
lv are in Sy, and (b) A(u,v) = s — 1, u(,_1) = v(,—1) = 1, and either lu or lv is in
Sy. We assume that lu is a vertex in Z'. Let {oc,}0 be the decreasing sequence
of indices in H(u,v) such that u,),=0. Set xo=u and x; ., = X for
0<i<m—1. By Lemma 9, there exists an integer k, k<m, such that
Ixy, 1x,, ..., lx;_ are all vertices in supercube and lx; is not a node in super-
cube Moreover, there exists an index 7 m H(u,v) — {og, a1, ...,04_1} such that
lxk , is a vertex in Z' and 1x;;; = lxk 1s not a node of SN Because lx,i)1
differs from 1x,,; only at (oy_;)th bit, (lxk 1> 0x41) Is an E5 edge.

Set o; for k+1<i<h(u,v) —1 as a one to one correspondence to the
h(u,v) —k—1 indices in H(u,v) — {oo,00,...,0-1,7}. We construct
P = (Ou | ot %14y - - - Hnuw)—14+4) With the addition of subscripts being per-
formed under modulo A(u,v) for 0 <i< h(u,v) — 1 Obviously, P is the path
Ou = 0xo, Ox1,0x5, . . ., Oxy,) = Ov, where x;4 —x ) for 0<i<h(u,v) —1.

We construct two new paths based on P, in the following cases:

Case A. h(u,v) = s and both lu and 1v are in Sy: Without loss of generality,
we assume that u > v and thus u;_;) = 1, v,y = 0. Thus, s — 1 is not con-
tained in {oco,ocl, .. o1} and the (s — I)th bit of lx; is the same as u_y).
By Lemma 4, lxk is a node in Z!. According to definition of supercube,
(Oxe, 1x™ )) 1s an E; edge. By Lemma 1, there exists a path R of
length A(1x'"" 1) =s —k — 1 in Z' between 1x\""" and 1. Obviously, each
node ? of R satlsﬁes qs-1) = Us-1) =0. We set P} to be Ou,Ox;,0xs,...,
Ox;, 1x"" R, 1v,00. Thus, PO is of length s+ 1 We set Pl to be
Ou, lu, lxl,lxz,.. Ix;_ l,lxk I,Oxk+1,0xk+27...,0xs = Ov. Obviously, PO1 is of
length s+ 1 and each internal node p in Z' satisfies p;;_1) = u(_1) = 1. There-
fore, P) and P, are disjoint (see Fig. 4).

Case B. 1) = v _1 luez' and lv ¢Sy, and H(u,v)=
{0,1,...,s — 2}: Obv1ously, 1xk “Yis in Z' and (Ox;, lx,(f_l)) is an Ej edge.
By Lemma 1, there exists a shortest path R of length s — k — 1 in Z' from lx,f_1
to 104D with each node g satisfies g —v(b 1 —0 We set P} to be
Ou, 0xy, 0x5, . . ., Oxy, lxk ) R, 107D, 0. Then P is of length s + 1. We set P}
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Ou P’ Ox,, Ox, Ox,, Ov

(5-1)
Ix W Ix 00 e
Case B
Fig. 4. Illustration for Lemma 11.
to be Ou, lu, 1x;, Ixy, . .., Lxe_y, 1xl | Oxgsy, Oxpia, . .., Oxg_; = Ov. Obviously,
Py is of length s and each internal node p in Z' satisfies p_1) = u(_1) = 1.

Therefore, Py and P, are disjoint.
Hence, P} ,P0‘7P1,P2, ..., P,_y satisfy our requirement (see Fig. 4). Thus, this
lemma is proved. [

Then, we discuss the final case. In Lemma 8, we have proposed s + 1 disjoint
paths, Oy, Oy, ..., Q;, of length no more than s 4+ 1 between any two nodes Ou
and lv for A(Ou, 1v) # s. Note that if #(Ou, 1v) = s, then all these paths except
for Q, | are of length s+ 1. In the following lemma, we will propose s + 1
disjoint paths of length at most s + 1 from lu to Ov for A(Ou, lv) = s. We will
discuss the following two cases: (1) If 04 v 10 > N and (2) 04 v 10 < N.
For case (1), we will construct a new path O, | such that Q, ; is of length at
most s+ 1 and disjoint from the s paths Qy, Oy, ..., 0, >, O, constructed in
Lemma 8. For case (2), we will reconstruct the s + 1 disjoint paths as follows:
We first build s — 1 disjoint paths, Qy, 0y, ..., O, », of length s — 1 from Ov to
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Ou in Z°. Then based on the path Q,, we construct two paths Py and P,_;. And
we set P, by modifying O, for 1 <i<s — 2. Finally, we construct the path 7,
such that all these s + 1 paths Py, Py, ..., P, are disjoint and of length at most
s+ 1.

Lemma 12. Let Ou = Oug_yyug—2) - - @) and 1v = 1o, 12y - vy be two
nodes of Sy with Ou € Z° and 1v € Z'. Then, there exists a container C(Ou, 1v)
with w(C(Ou, 1v)) = s + 1 and 1(C(Ou, 1v)) <s + 1.

Proof. By Lemma 8, this lemma is true if 4(Ou, 1v) # s. Hence, we focus our
attention on /(Ou, 1v) = s. Let ¢ be the unique index such that u) = v,.

According to Lemma 8, we can find s disjoint paths, Qy, Oy, ..., 0O 2, O;,
from Ou to lv such that: (a) the length of Q;, 0 <i<s — 2, is at most s and each
node ¢ of Q; satisfies gy = u(; (b) the length of Q; is at most s + 1 and every
internal node p of Q; is in Z'; and (¢) p;) =i, only if t =s— 1 and u(,) = 1.
Now we will prove this lemma by the following two cases:

(1) If 0u'” v 101 > N: Note that

0u) v 10 =11+ laggy 11--- 1.

Assume that 1 =5 — 1 and u() = v = 1. Then, 0u v 1o = 1011---1 < N.
We get a contradiction. Thus, each node ¢ of Qqy, Oy,...,0, >, O, satisfies
g = up. To construct O,_;, we first choose a neighboring node z of 1v. Let z
be 10 if 101" is a node in Z', and be 0v”) otherwise. Obviously, (z, 1v) is an
edge of supercube. Let Q' be the path constructed by our shortest path routing
algorithm from Ou'”) to z. Then, we set Q,_; as Ou, 0u'”, O, z, 1v. Obviously, Q,_;
is of length A(u,v) + 1 and each internal node p of Q,_, satisfies that ¢, = #,.
Hence 0Oy, Oy, ..., Q; are disjoint and satisfy our requirement.

(2) If 0u v 101 < N: In this case, we will reconstruct s + 1 disjoint paths,
Py, Py,... P, of length at most s + 1 from 1v to Ou. Since

t s

—
0u v 10" =11+ lagy11--- T < N< 11--- 10,

we have u() = v, = 1 and 7 > 1. Obviously, 10!, 1u) < N in this case and thus
both 10 and 1u(? are vertices in Z'. Let {;}; ' be the decreasing sequence of
indices in H (u,v) such that v, = 0. And let {0;}57% be the increasing sequence
of indices in H(u,v) such that v, = 1. Then, for 0<i<s —2 we set Q; as
(00 | oty 014y - - - 5 024y With the addition of subscripts being performed un-
der modulo s — 1. Thus, we get s — 1 disjoint paths of length #(Ov,Ou) =5 — 1
from Ov to Ou in Z°.

Let O, be written as Oxo=0v,0x;,0x,,...,0x,_; = Ou. Note that
x;i(t) = v =1 for every i. By Lemma 9, there exists an integer k, 1 <k <m,
such that 1x; and 1x;,; are not in Sy and 1x; for 0 <i <k — 1 are all vertices in
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Z'. Moreover, 1y, 1y,,...,1y; are nodes in Z' and disjoint from
Lxy, L, .., Lye_y, where 1y = 100, 1y = 1y and 1y, = 1x%), for
1<ig<k—-2.

Now we set P, and P,_;. Obviously, 1x§t) is a vertex of Z! for every i because
1) < gll DY = 0u v 10 < N. Since 1x; and lx;,; are not vertices of Sy
and lx,(;r1 is a node in Z', we have (Ix;_;,0x;) € E3 and (1x,ﬁ’il,0xk+1) € E;. We
set Py as 1o, 1o, 1x\" 1Y, . lx;(’ll, 0x4+1, 0442, - .., Ox,_; = Ou and set P,_; as

t

1o, 1x;, Lxa, .., Dy, Ox, Ox” Ox) .o, 0x” | = 0w, 0u. Obviously, P, and

P,_; are of length s + 1.

We now construct P, for 1 <i<s — 2 by replacing the subpath Ov, 0v*) of Q;
as follows: We replace the subpath 0v, 00 of O, by 1v, 0v, 0v'*) and set P, to
be this new path joining lv to Ou. For 2 <i<s— 2, we replace the subpath
0v, 00) of Q; by 1v, 1v®), 00*) if 1v*) is a node of Z', and by 1v, 1v*) oth-
erwise. Then, we set P; to be this new path joining 1v to Ou.

Then we construct P,. We choose a neighboring node z of Ou as follows: If
lu € Z', we set z = lu; otherwise, because 1u") is a node, we set z = 1u". By
Lemma 1 there exists a path R of length at most 4(u,v) =s —k + | joining
ly,_; to z in Z'. We construct P, as 1v, 1y, 13, ..., 131, R, z, Ou. Therefore,
Py, Py,..., P, are disjoint and satisfy our requirement (see Fig. 5). Hence, this
lemma is proved. [

According to Lemmas 10-12, we get the following theorem.
Theorem 4. There exists a container C(u,v) between any two nodes u and v in Sy

with w(C(u,v)) =s+1 and 1(C(u,v))<s+1 if 22+21<NL2™ and
Ng{2 -2+1|0<i<s—1}.

5. Wide diameter and fault diameter

In this section, we compute the wide diameter and the fault diameter of the
supercube Sy. Let F be the set of faulty nodes. We discuss the problem into
three cases: (1) 22 <N <2+ 2L Q) N e {2 -2+ 1]0<i<s—1}; and
(3) the remaining cases.

5125 <N <25 4251
In this case, the connectivity of Sy is s. By Theorem 2, there exists a con-
tainer C(u,v) between nodes u and v in Sy with w(C(u,v)) =s and

[(C(u,v)) <s+ 1. Therefore, we have the following corollary.

Corollary 1. D, (Sy) <s+ 1 if 2° <N <28 4 2571,
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Fig. 5. Illustration for Lemma 12.

Because N < 2 + 257! each vertex in Sy is less than

s—1

—
1011---1.

In this following lemma, we discuss the lower bound for the fault diameter of
the supercube with at most s — 1 faulty nodes.

Lemma 13. D/ [(Sy) =s+1if2° <N <25 251,

Proof. Let
K s—1

—N— —N—
Ou=011---1 and Ov=0100---0.

Obviously, 1u & Sy and 1u") ¢ Sy for 0 <i<s — 1. Therefore, Ou has not any
adjacent node in Z'. Thus, the degree of Ou in Sy is s. Let F = {0u® | 0<
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i <s—2} be the set of faulty nodes. Obviously, |F| =5 — 1 and 0u“~Y is the
only fault-free node that is adjacent to Ou. By Lemma 2, the length of each path
from 0u®*~Y to Ov is at least s, i.e., each the fault-free path from Ou to Ov is of
length at least s + 1. Therefore, D/_(Sy) =s+1. O

By Corollary 1, Lemma 13, and the fact that D/_,(G) < D,(G), we have the
following theorem.

Theorem 5. D/ (Sy) =D.(Sy) =s+1if 2 <N <2542,
522N e {2t -2+ 1| 0<i<s — 1}

In this case, the connectivity of Sy is s + 1. In Theorem 3, we have proposed
a container C(u,v) between nodes u and v in Sy with w(C(u,v)) =s+ 1 and
1(C(u,v)) <s+ 2. Thus, we get the following corollary.

Corollary 2. D, (Sy) <s+2if 25 + 271 <N < 25F1,

In the following lemma, we discuss the lower bound for the fault diameter of
the supercube with at most s faulty nodes.

Lemma 14. D/ (Sy) =s+2if N € {277 =21 4+ 1]0<i<s — 1}.

Proof. Because N € {21 —2/+1|0<i<s— 1}, we have
t

—N—
N—-1=11---100---0

with 0 <¢r<s—1. Let
t t

— —
Ou=011---100---0 and Ov=00---011---1.

Then Ou, Ov € Z° and h(u,v) = s. Let F be the set of all neighboring nodes of Ou
in Z°. Thus |F| = s. Let P : Ou,x;, X2, .. .,0v be any path in Sy — F joining Ou to
t

7 N 0) . . .
Ov. Then, x; =11---100---0 and x, = x;’ for some i such that x, is a node in

Z'. Since xik) > N — 1 for every k with 0<k < ¢, xgk) is not a node of the su-

percube. Hence, we have x, = x@ for some j with j >t Therefore,
t
@) ;
xVOoy=(11---1) <11---100---0 < N. By Lemma 3, the shortest distance
from x, to Ov is at least A(x,,0v) = s. Hence, the length of P is at least s + 2.

Therefore D/ (Sy) =s+2. O

By Corollary 2 and Lemma 14, we get the following theorem.
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Theorem 6. D’

K—1

(Sy) =D (Sy) =s+2if Ne {2 -2+ 1]0<i<s—1}.
5.3. The remaining cases

Finally, we discuss the case that 2°+ 27! <N 2! and N ¢ {27'—
214+ 1]0<i<s—1}. In this case N is at most 11---10, s is at least 4, and the
connectivity of Sy is s + 1. Moreover, if N < 2! — 3, then N — 1 < 11---100.
Andif N =2*1 —2 then N —1=11---101.

The following lemma computes the lower bound for the fault diameter of
the supercube with at most s faulty nodes.

Lemma 15. D/ (Sy) =s+1if N g {2 -2 +1[0<i<s—1}.

Proof. Note that x(Sy) =s+ 1. Let Ou =00---0, 0v =011--- 1, and F be the
set of all neighboring nodes of Ou in Z°. Obviously, |F| = s and 1u is a node in
Z'. Let P : Ou,x;,xs,...,00 be any path in Sy — F joining Ou to Ov. Obviously,
x; = lu. By Lemma 3, the path from Ou through lu to Ov is of length at least
1+ (h(1u,00) — 1) =s + 1. Hence, D._(Sy) =s+1. O

By Theorem 4, there exists a container C(u,v) between nodes u and v in Sy
with w(C(u,v)) =s+1 and [(C(u,v))<s+1 if Ng {21 -214+1]0<
i <s — 1}. Thus, we have the following corollary.

Corollary 3. D, (Sy)<s+ 1 if N g {2 =2+ 1]0<i<s — 1},
Therefore, by Corollary 3 and Lemma 15 we have the following theorem:

Theorem 7. If Ne{i|2+27'<i<2} — {21 =274+ 1]0<i<s — 1},
then D,f671 (SN) = D,C(SN) =5+ 1.

6. Concluding remarks

Various topological properties of supercubes have been studied. The
shortest path routing algorithm which can estimate the exactly shortest dis-
tance between any two nodes for supercubes has not been discussed though. In
this paper, we have proved that ds, (u,v) = h(u,v) —1 if wuy # v, and
uVov =N, and ds,(u,v) = h(u,v) otherwise. And we have proposed a new
shortest path routing algorithm on supercubes. We also have constructed «(Sy)
disjoint paths for any pair of vertices and computed the wide diameter and the
fault diameter of the supercubes Sy. As a conclusion, both the wide diameter
and the fault diameter are equal to s +2 if N € {21! =21+ 1| 0<i<s— 1}
and s + 1 otherwise.
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