
Distributed and Parallel Databases, 10, 269–288, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Hypergraph Based Approach
to Declustering Problems

DUEN-REN LIU dliu@iim.nctu.edu.tw
MEI-YU WU annie@iim.nctu.edu.tw
Institute of Information Management, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

Recommended by: Ahmed Elmagarmid

Abstract. Parallelizing I/O operations via effective declustering of data is becoming essential to scale up the
performance of parallel databases or high performance systems. Declustering has been shown to be a NP-complete
problem in some contexts. Some heuristic methods have been proposed to solve this problem. However, most
methods are not effective in several cases such as queries with different access frequencies or data with different
sizes. In this paper, we propose a hypergraph model to formulate the declustering problem. Several interesting
theoretical results are achieved by analyzing the proposed model. The proposed approach will allow modeling
a wide range of declustering problems. Furthermore, the hypergraph declustering model is used as the basis to
develop new heuristic methods, including a greedy method and a hybrid declustering method. Experiments show
that the proposed methods can achieve better performance than several declustering methods.

Keywords: declustering, data allocation, parallel databases, hypergraph, high performance systems

1. Introduction

The declustering problem is to partition data across multiple disks which can be accessed
in parallel to reduce the query response time. This problem is very important in the appli-
cations of spatial databases or high performance Geographic Information Systems (GIS)
which often need to access complex and large amount of spatial data. With an increas-
ing performance gap between processors and I/O systems, parallelizing I/O operations via
effective data declustering [8, 21] is becoming essential to scale up the performance of
such applications. Many other high performance applications, including decision support
systems, parallel databases, temporal databases, multimedia databases or object-oriented
databases, etc., can also benefit from effective data declustering.

The declustering problem can be stated as follows: Given a set of atomic data-items,
N disks, and a set of queries, divide the set of data items among the N disks, respecting
the disk capacity constraints, to minimize response time for the given set of queries. In
this research, we address the declustering problem in a single processor with a multi-disk
environment. We abstract the properties of multi-disk secondary storage systems in terms
of their capability of carrying out N-independent disk operations in parallel. The storage
system is viewed as a collection of logical disks which use a high bandwidth I/O bus to
transfer data to/from the processor’s memory. Disk block accesses over different logical
disks are independent and can be carried out in parallel. Thus the storage system can reduce

270 LIU AND WU

the response time for large I/O volumes by a factor of N, where N is the number of disks
in the system. We focus on I/O cost only. Furthermore, the data items are assumed to be
atomic, i.e., a data item will not be split across disks. This assumption excludes strategies
such as splitting a data item across disks.

Unfortunately, the declustering problem is NP-complete in several contexts, which in-
clude partial match queries on Cartesian product files [8] and join queries on a set of
relations [21]. Thus any method to solve this problem in polynomial time will be heuristic.
Some heuristic methods have been proposed to solve this problem. However, most meth-
ods assume that data items are of equal size (retrieval time) or queries have same access
frequency, and thus they are not effective in cases such as queries with different access
frequencies or data with different sizes, etc. The sizes of data-items can vary a great deal
in databases containing data items like composite application objects, spatial objects (e.g.
polygons), maps (vector or raster), images, multimedia objects, etc. For example, a spatial
range query needs to access a set of qualified spatial objects within the spatial range. A
Web-page (hypermedia node) request needs to access a set of multimedia objects defined
within the Web-page. Declustering techniques therefore need to be generalized to handle
data items of different sizes. Furthermore, most methods can be applied to some specific
declustering problems, but they may not be suitable to adapt to a wide range of declustering
problems. This work proposes a hypergraph model to formulate the declustering on general
cases where data items might have different sizes or queries might have different access
frequencies.

1.1. Related work

Various approaches have been proposed on declustering index-specific data, including
B-tree [22], R-tree [13] and the temporal index [17], etc. These approaches are incremental
in nature to balance the load (e.g. storage, I/O time) in various partitions for a local window
(i.e. a subset of existing data-items in partitions) around the new data-item. The incremen-
tal nature of the load-balancing methods allows them to work well with indexing methods
(e.g. B-tree, R-tree) in the face of updates, non-uniform data distributions and non-uniform
access frequencies to data-items. However, they do not take advantage of query distribution
information, beyond looking at the access frequencies of the individual data-items.

Considerable research has also been carried out in the design and evaluation of techniques
for declustering multidimensional and spatial data. Various mapping-function-based meth-
ods have been proposed to reduce the response time for multidimensional range queries and
partial match queries. These methods provide a mapping function from the domain of data-
items to the set of disk-ids, assuming that all data-items and queries are equiprobable. Several
single-attribute functions including round robin, hash-partitioning, key-range partitioning
[5, 10], and a hybrid of these [11] have been proposed and evaluated. Moreover, multi-
attribute functions including grid-based multidimensional key-range-partitioning [12], disk
modulo [6, 18], generalized disk modulo (linear) [6, 23], field-wise-XOR [16], Hilbert [7],
error-correcting code [8], latin-square [15, 23], vector-based declustering [3] and lattice [23]
have been proposed and evaluated. A survey of multi-attribute functions can be found
in [7, 8]. In addition, a hierarchical technique has been proposed to construct efficient

HYPERGRAPH DECLUSTERING 271

declustering schemes for range queries [1]. A general class of cyclic declustering meth-
ods [20] and a declustering scheme based on golden ratio sequences [2] have also been
proposed and evaluated. In general, these methods are limited in the case of managing
updates, non-uniform data-distributions and non-uniform data-sizes. Furthermore, they are
limited in their ability to adapt to available information about the access frequency and size
constraints.

Moreover, a max-cut declustering scheme has been proposed for declustering prob-
lems [19]. The proposed declustering scheme is based on max-cut partitioning of a simi-
larity graph that has data-items as nodes. The edges have weights that represent similarity
between the end nodes. The similarity between two data-items measures the likelihood that
the pair will be accessed together by queries in the query set of interest. Max-cut partition-
ing maximizes the chances that a pair of data-items that are frequently accessed together
by queries are allocated to distinct disks. However, the max-cut declustering scheme is a
heuristic formulation for declustering problems.

1.2. Our research achievements

We present a hypergraph theoretic model to formulate the declustering problems. On the
basis of the hypergraph formulation, we present a theorem to prove that the declustering
problem is a NP-complete problem. A novel greedy declustering technique based upon
the hypergraph model is proposed. We also propose a hybrid method which combines
the greedy hypergraph and max-cut declustering approach. Unlike most previous methods
assuming that all data items and queries are equiprobable, the proposed methods can be
applied to cases such as data with different sizes (access time) or queries with different
access frequencies.

Experiments are conducted to compare the performance of various declustering methods,
by varying the number of time units required to retrieve data items such as variable-size
polygons or objects. In previous literatures, all assume that data items have the same amount
of size and same number of time units required to retrieve them. Our experiment result shows
that the proposed methods outperform max-cut declustering methods, round-robin and load
balance methods.

1.3. Outline of this paper

The remainder of this paper is organized as follows. Section 2 illustrates the basic concepts
and definitions. Section 3 presents our hypergraph approach for declustering problems.
To compare the hypergraph approach with other declustering methods including the max-
cut declustering methods proposed in [19], we briefly describe the max-cut declustering
scheme in Section 4. A hybrid approach combining the greedy hypergraph scheme and
max-cut declustering scheme is also presented in in Section 4. Theoretical analysis of the
proposed scheme is presented in Section 5. Section 6 describes experiments conducted to
compare the performance of various declustering methods. Finally, Section 7 presents the
conclusions and suggests future work.

272 LIU AND WU

Table 1. Symbols and definitions.

Symbol Meaning

N The number of disks.

R(q) The set of data-items that qualify for the given query.

π(V) A partitioning of data set V.

t (v) The number of time units required to retrieve the given data item v.

f (q) The relative frequency of the occurrence of the query q.

r t (q) The response time of the given query q.

T π The expected query response time under a partitioning π(V).

RT (Hj) The response time required to retrieve all the data items in Hj ,
where Hj represents a hyperedge.

W (Hj) The access weight (frequency) of hyperedge Hj .

w(u, v) The relative frequency that u and v are likely to be accessed together.

Ec The set of edges e(u, v) whose end points u and v fall in
different groups of a partitioning π(V).

S(π(V)) The degree of similarity among groups of a partitioning π(V),
i.e., the sum of the weights on all the edges in Ec .

2. Basic concepts and definitions

In this section, we describe some basic concepts and give the definitions of the problem.
The symbols and their definitions are listed in Table 1. The declustering problem can be
stated as Definition 1.

Definition 1 (Declustering Problem). Given a set of atomic data-items, N disks, and a set
of queries, divide the set of data items among the N disks, respecting the disk capacity
constraints, to minimize expected response time for the given set of queries.

We consider a data set V with R data items, a set of M queries, {q1, . . . , qM}, and number of
disks N. We assumed that for each query the following statistics are available: its frequency
of occurrence, the identifiers of the data items which satisfy the query. {q1, . . . , qM} is the
set of all possible queries containing the most frequently requested queries. The objective
function we want to minimize is the sum of f (qi) ∗ r t (qi), where f (qi) is the frequency of
query qi and r t (qi) is the query response time of query qi .

Definition 2. A data set V is a collection of data-items. Each data-item v in V is associated
with size(v), representing the storage required to contain it. A group of data-items from V is
a subset of V. A partitioning of data set V, π(V), is a collection of mutually disjoint groups,
Gπ

1 , Gπ
2 , . . . , Gπ

N , such that their union is equal to V, i.e., ∪N
i=1Gπ

i = V , and Gπ
i ∩ Gπ

j = ∅.

Definition 3. A query-set Qs = {q1, q2, . . . , qk} is a set of queries over data-set V. The
query response set R(q) to a query q is the set of data items that qualify for the given

HYPERGRAPH DECLUSTERING 273

query q . Query distribution f is a function that maps query set Qs to a relative frequency,
i.e., f (q) provides the relative frequency of the occurrence of query q. If all queries are
equiprobable, then f (q) = 1

|Qs | for all q ∈ Qs .

Definition 4. The retrieval time t (v) of a given data item v is the number of time units re-
quired to retrieve v. The response time rt(q) on a query q is defined as max{T1, T2, . . . , TN },
where Ti (1 ≤ i ≤ N) is the total number of time units required to retrieve qualifying data
items on disk i , i.e., Ti = ∑

t (v) over all v ∈ R(q) and v on disk i . If all data items are
of equal size, and the retrieval time of a data item is assumed to be one unit of time, then
t (v) = 1 for all v ∈ V and rt(q) = max{|R1(q)|, |R2(q)|, . . . , |RN (q)|}, where |Ri (q)|
(1 ≤ i ≤ N) is the number of qualifying data items on disk i .

The retrieval times can vary for data items of different sizes. In general, the retrieval time
of an atomic data item is a step function in terms of the size of the data item. The definitions
of t (v) and rt(q) take into account data items of different sizes, i.e., different retrieval times.
We note that most existing methods assume that data items are of equal size and that the
retrieval time of a data item is assumed to be one unit of time. We have generalized our
proposed scheme to the case where atomic data items might have different sizes.

In the declustering problem, the objective function we want to minimize is the expected
query response time, which is defined in the following definition.

Definition 5 (Expected query response time). The expected query response time, T π ,
under a partitioning π(V), is the sum of f (q) ∗ rt(q), for all q ∈ Qs , where f (q) is the
frequency of query q and rt(q) is the query response time of query q.

3. Hypergraph framework for declustering problems

3.1. Formulation based on hypergraph model

We use a hypergraph model to formulate our problem definition. The relative frequency of
the occurrence of the query are quantified as the weight on the hyperedge connecting them.
The formulation of the problem is presented next.

Definition 6 (Weighted HyperGraph (WHG)). Let WHG = (V, H) be a weighted hyper-
graph, where V is a set of data items and H is a set of query response set with associated
weight defined as follows:
V = {v1, v2, . . . , vn}. The data items v1, v2, . . . , vn of V are called vertices of the hyper-
graph. H = {H1, H2, . . . , Hm} is a family of subsets (hyperedges) of V such that

Hi
= ∅ (i = 1, 2, . . . , m) and
m⋃

i=1

Hi = V .

Each Hi represents the set of data items which are to be accessed in parallel in a query, and
has associated weight W(Hi) = f (q), where q is the query corresponding to Hi . The sets
H1, H2, . . . , Hm are the edges of the hypergraph.

274 LIU AND WU

Generalized hypergraph declustering: Given a weighted hypergraph WHG = (V, H), the
number of disks N and the disk-load size constraint Li , for each disk i

Find a partition π(V) = (G1, G2, . . . , G N) among N disks that satisfies the disk-load size
constraints, i.e.,∑

v∈Gi

size(v) ≤ Li , for i = 1, 2, . . . , N

To minimize the expected response time T π , defined as∑
Hj ∈H

W (Hj) ∗ RT (Hj), where RT (Hj) = max
1≤i≤N

∑
v∈Hj ∩Gi

t (v)

Let the weighted hypergraph, with respect to the query set Qs , be WHG = (V, H), where
V = { v | v ∈ R(q j), for all q j ∈ Qs}, H = {Hj | each Hj is a hyperedge corresponding
to a query q j , for all q j ∈ Qs , and Hj contains data items v ∈ R(q j)}. The weight on
hyperedge Hj , W (Hj), is equal to f (q j). In addition, RT (Hj) is equal to r t (q j), according
to the definition of r t (q j) and RT (Hj). The generalized hypergraph declustering minimizes∑

Hj ∈H W (Hj) ∗ RT (Hj). That is, it minimizes the sum of f (q j) ∗ r t (q j). Therefore, the
formulation models the objective function of declustering problems, which is to minimize
the expected query response time.

The proposed formulation models different sizes of atomic data items and queries with
different access frequencies. The sizes of data-items can vary a great deal in databases
containing data items like composite application objects, spatial objects (e.g. polygons),
maps (vector or raster), images and multimedia objects. Such databases include geographical
information systems (GIS), statistical and scientific databases, object-oriented databases,
multimedia databases, etc. The retrieval time can vary for data items of different sizes.
Declustering techniques therefore need to be generalized to handle data items of different
sizes. The scheme also makes no assumption about the semantics of the data items in
terms of dimensionality or domain. Thus the formulation framework can model a diverse
range of declustering problems. If the size of each data item is the same, it takes the same
amount of I/O unit time to retrieve each data item. We have the following. RT(Hj) =
max1≤i≤N |Hj ∩ Gi |.

3.2. Greedy approach based on hypergraph formulation

Based upon the hypergraph model, this work proposes a novel greedy hypergraph declus-
tering method. The method is a new heuristic approach to allocate data items to the disks
in a greedy manner. The approach aims at minimizing the expected query response time
by allocating a data item to the disk with the lowest hypergraph declustering measure.
The measure represents the incremental computed response time, with the consideration
of allocating the new data item under existing allocations. The detailed descriptions of the
measure will be presented in the illustration of the GreedyHyperAllocOne() algorithm.

The GreedyHyperGraph() algorithm in figure 1 starts by sorting the set of hyperedges,
H , into a descending order, H1, H2, . . . , Hm , according to the weight of the hyperedge,

HYPERGRAPH DECLUSTERING 275

Figure 1. Greedy hypergraph declustering algorithm.

such that W (Hi) ≥ W (Hj) for all i < j . The algorithm then contains three phases, Initial,
Adjust and FineTune phases. In the Initial-phase, an initial allocation of data items is created
according to the following. For each hyperedge Hi , which is processed in the descending
order, all the unallocated data items in Hi are allocated to disks one by one in a greedy
manner by using the GreedyHyperAllocOne() algorithm.

In the Adjust-phase, the top Q number of hyperedges (queries) are selected to adjust
the allocation of data items accessed by those queries. The number Q can be set to be a
fraction of the total number of queries. The top Q number of hyperedges have higher weight
and thus represent queries with higher access frequency. The algorithm tries to minimize

276 LIU AND WU

the expected response time by adjusting the allocation of data items for top Q number
of hyperedges. The adjustment is processed one by one for each of the top Q number of
hyperedges, in the descending order. For each hyperedge Hi , NumOfAdjust data items in Hi

are randomly selected to be removed from disks. Then, each data item in Hi is re-allocated.
The re-allocation depends on whether the data item is previously removed. If the data item

is already removed, the data item is allocated to a disk using the GreedyHyperAllocOne()
algorithm. Otherwise, the data item is removed first, then allocated to a disk using the
GreedyHyperAllocOne() algorithm. The number, NumOfAdjust, is set to be a fraction of
the number of data items accessed by the query. In the FineTune-phase, all data items are
re-allocated to disks one by one to fine tune the declustering result. The step is performed
for T number of passes.

The GreedyHyperAllocOne() algorithm is described in figure 2. Given the data item u
to be allocated, the weighted hypergraph WHG = (V, H), and the number of disks N,
the algorithm allocates u to a disk such that the hypergraph declustering measure, which
is computed within the set of allocated data items and u, is the lowest. For every disk k,
we compute the hypergraph declustering measure, HMk , by considering date item u to
be allocated on disk k. HMk is defined as the summation of W (Hj) ∗ RT ′

u(Hj) for each
Hj ∈ H and u ∈ Hj . RT ′

u(Hj) represents the response time required to retrive u and all the
allocated data items which are in Hj , if u is to be allocated on disk k. RT ′

u(Hj) is defined

Figure 2. Greedy hypergraph allocation algorithm for one data item.

HYPERGRAPH DECLUSTERING 277

as the following.

max
1≤i≤N

(∑
v∈Hj and v on disk i t (v) if i
= k

t (u) + ∑
v∈Hj and v on disk i t (v) if i = k

)

Notably, the measure HMk denotes the expected query response time of queries which
access data item u and the allocated data items. The measure reflects the computation of
the response time incrementally corresponding to the incremental allocation of data items
one by one.

The data item u is allocated to the disk that has the lowest hypergraph decluster-
ing measure, in an attempt to minimize the expected response time. We use two data
structures, RT ′(Hj) and Tk(Hj), to implement the GreedyHyperAllocOne() algorithm.
Tk(Hj) is defined as the total number of time units required to retrieve data items which
are in Hj and on disk k, i.e., Tk(Hj) = ∑

v∈Hj and v on disk k t (v). RT ′(Hj) is defined as
the response time required to retrieve all the allocated data items which are in Hj , i.e.,
RT ′(Hj) = max1≤k≤N Tk(Hj). Both the RT ′(Hj) and Tk(Hj) are updated when a data
item is allocated or removed. The computation is efficient, since only the access time of
the allocated (or removed) data item is required to recompute the RT ′(Hj) and Tk(Hj). By
this approach, the hypergraph declustering measures can be obtained efficiently, without
the need to check all data items to compute the measures.

The RemoveData() algorithm is described in figure 3. Both the RT ′(Hj) and Tk(Hj) are
updated according to the removal of data item u.

Complexity analysis. Let h be the maximum number of hyperedges in data item v’s hyper-
edge list, for any v ∈ V . N is the number of disks (partitions) and |V | is the total number of
data items. The complexity of GreedyHyperAllocOne() algorithm is O(N ∗ h). The running

Figure 3. Algorithm for removing one data item.

278 LIU AND WU

time of RemoveData() algorithm also takes O(N ∗ h). The complexity of GreedyHyper-
Graph() algorithm is analyzed as follows. Sorting the hyperedges takes O(|H |log|H |),
where |H | is the total number of hyperedges. The complexity of the Initial-phase is
O(|V | ∗ N ∗ h). Let g be the maximum number of data items contained in a hyperedge.
In the Adjust-phase, the number of adjust data items, NumOfAdjust, is less than g. The
complexity of the Adjust-phase is O(Q ∗ g ∗ N ∗ h), where Q is the number of selected
hyperedges for the re-allocation of data items. Since g is less than |V |, the complexity of
the Adjust-phase can be bounded by O(Q ∗ |V | ∗ N ∗ h). The complexity of the FineTune-
phase is O(T ∗ |V | ∗ N ∗ h), where T is the number of passes for re-allocation of data
items in FineTune-phase. Therefore, the complexity of the GreedyHyperGraph() algorithm
is O(|H |log|H | + (T + Q) ∗ |V | ∗ N ∗ h).

4. Other declustering methods

In this section, we briefly describe the declustering methods compared in the experiments,
including the max-cut declustering methods, load-balancing and round-robin. We summa-
rize the max-cut declustering scheme and max-cut declustering methods in Section 4.1 and
Section 4.2, respectively. Interested readers please refer to [19] for more detailed descrip-
tions about the max-cut declustering scheme and methods. In Section 4.3, we also propose
a hybrid approach which combines the max-cut declustering scheme and the greedy hyper-
graph approach.

4.1. Max-cut declustering scheme

The max-cut declustering scheme is a heuristic formulation based on a weighted similarity
graph model. A weighted similarity graph can be created from the weighted hypergraph
to capture the similarity relationship between data items. The weighted similarity graph is
formally defined as the following [19].

Definition 7 (Weighted Similarity Graph (WSG)). Let WSG = (V, E) be a weighted simi-
larity graph, where V is a data set and E = {e(u, v) | u ∈ V, v ∈ V, and u and v are qualified
to be accessed together in a query}. Each edge e(u, v) in E is associated with a weight
w(u, v). The weight w(u, v) represents the relative frequency with which data items u and
v are likely to be accessed together by a query of interest. The weight on an edge e(u, v),
contributed from a query set Qs , is equal to

∑
f (q), over all q ∈ Qs , where u ∈ R(q) and

v ∈ R(q).

We note that the weight w(u, v) is also equal to
∑

W (Hj), over all Hj ∈ H , where
u ∈ Hj and v ∈ Hj . The similarity between data-items u and v is measured by w(u, v),
the weight on edge e(u, v). Thus data-items with a high degree of similarity are likely to
be accessed together. S(π(V)), the degree of similarity among groups Gπ

1 , Gπ
2 , . . . , Gπ

N of
a partitioning π(V), is formalized as the sum of the weights on all the edges in the cut-set.

The basic idea behind max-cut partitioning approach is as follows. Since maximizing
parallelism in retrieval is desirable, the end-nodes u and v of an edge e(u, v) with a high

HYPERGRAPH DECLUSTERING 279

weight (similarity) should be allocated into different disks. Thus, maximizing S(π(V))

under disk number and disk capacity constraints should generally provide good concurrency
in retrieval. Let t (v) be the number of time units required to retrieve the given data item v.
The possible savings in response time achieved by putting data items u and v into different
disks vs. putting them into the same disk is equal to the minimum of t (u) and t (v). With
the objective of minimizing the expected response time over the query set of interest, it is
highly desirable to maximize possible savings in response time. The generalized max-cut
declustering scheme [19] includes the similarity measure and the possible response time
savings in the cost metric.

Generalized max-Cut partitioning of the WSG: Given a weighted similarity graph WSG =
(V, E), the number of disks N and disk-load size constraint Li , for each disk i

Find a partition π(V) = (G1, G2, . . . , G N) among N disks that satisfies the disk-load size
constraints, i.e.,∑

v∈Gi

size(v) ≤ Li , for i = 1, 2, . . . , N

To maximize possible response time savings, φπ , denoted as∑
e(u,v)∈Ec

w(u, v) ∗ min{t (u), t (v)},

where Ec = {e(u, v) | e ∈ E, u ∈ Gi and v
∈ Gi }.

WSG’ can be created by changing the weight on any edge e(u, v) in WSG, to be w′(u, v),
where w′(u, v) = w(u, v) ∗ min{t (u), t (v)}. The max-cut declustering scheme (general-
ized max-cut partitioning of the WSG) maximizes S′(π(V)), the total weight on the edges
in the cut-set of WSG’. The expected query response time can be reduced, since data-items
with higher similarity are more likely to be distributed into different groups. The objective
of maximizing S′(π(V)) is referred to as the max-cut similarity criterion [19].

4.2. Heuristic techniques for max-cut declustering

4.2.1. Incremental max-cut declustering. The incremental max-cut allocates data items to
the disks in a greedy manner, using the max-cut similarity criterion and local load-balancing
[19]. Incremental max-cut declustering aims at allocating a data item to a disk, such that
the max-cut similarity criterion within a local window is best fulfilled. The GreedyMaxCut-
Alloc() algorithm is described in figure 4. Given the data item u to be allocated, a local
window P around a data item u defines a subset of data items which are likely to be accessed
together with u via many queries. For every disk i , the method computes the similarity
measure, Mi , by considering u to be allocated on disk i . Mi is defined as the summation
of w(u, v) ∗ min{t (u), t (v)}, where v ∈ P , and v is stored in disk i . The data item u is
allocated to the disk that has the lowest similarity measure. A simple way to decluster a set
of data items is to allocate all unallocated data items to disks one by one in a greedy manner
by using the GreedyMaxCutAlloc() algorithm.

280 LIU AND WU

Figure 4. Greedy max-cut allocation algorithm.

4.2.2. Global max-cut graph partitioning. The global max-cut graph partitioning tech-
nique is based on partitioning a single similarity graph over all data items [19]. The technique
uses a heuristic N-way max-cut graph-partitioning algorithm to partition the nodes of WSG
into N groups that satisfy the disk-load size constraints, such that the total weight on all
the edges in the cut-set is maximized. Those data items which belong to the same group
are allocated to the same disk. The global max-cut declustering algorithm starts by finding
an initial partition into N subsets. Then, it repeatedly applies the 2-way-maxcut-partition
procedure to pairs of subsets and makes the partition as close as possible to being pair-
wise optimal (pairwise max-cut). Pairwise optimization is performed by choosing pairs of
subsets and applying the 2-way-max-cut-partition to these pairs.

4.3. Hybrid approach

In this work, we also propose a hybrid approach which combines the max-cut declustering
scheme and the greedy hypergraph approach.

The hybrid approach is similar to the greedy hypergraph algorithm presented in figure 1,
except that the initial allocation is created by using the max-cut declustering techniques
described in Section 4.2. The hybrid technique compared in the experiments is implemented
as follows. In the Initial-phase, the incremental max-cut technique is used to create an
initial allocation. Next, the Adjust-phase and FineTune-phase are applied as in the greedy
hypergraph algorithm. We note that the hybrid approach will be especially useful when
only part of the queries (e.g. most important queries) are known, and statistical information
about the relative frequency with which pair of data items are likely to be accessed together
is available.

4.4. Load-balancing and round-robin methods

The load-balancing based technique allocates data items to the disk with the lowest storage
load. The round-robin method allocates data items to disk in a round robin manner.

HYPERGRAPH DECLUSTERING 281

5. Theoretical analysis

In this section, we present the theoretical analysis of the hypergraph declustering scheme.
Theorem 1 demonstrates that generalized hypergraph declustering is a NP-complete prob-
lem. We also illustrate some interesting analyses regarding the max-cut declustering scheme.
Corollary 1 shows that the generalized max-cut declustering is a special case of the hyper-
graph declustering scheme.

Theorem 1. Generalized hypergraph declustering is a NP-complete problem.

Proof: The proof is achieved by restriction, which proves a problem belongs to NP by
showing that the problem contains a known NP-complete problem as a special case [9]. We
prove by restricting the generalized hypergraph declustering problem to the instance that
the number of data items in each Hj , i.e., |Hj |, equals 2, for all Hj ∈ H . Let G = (U, E)

be created from WHG = (V, H), where U = V , E = {e(u, v) | u ∈ Hj , and v ∈ Hj ,
for Hj ∈ H }. The weight on edge e(u, v), w(u, v) is equal to

∑
W (Hj), where Hj ∈ H ,

u ∈ Hj , and v ∈ Hj . For the case that |Hj | equals 2, w(u, v) = W (Hj), for u ∈ Hj and
v ∈ Hj . Let the cut-set under the partition of π(V) be denoted by Ec, where Ec represents
the set of edges e(u, v) whose end points u and v fall in different groups of π(V).

The generalized hypergraph declustering of WHG = (V, H) under a partition π(V), is
to minimize T π , which is derived in the following.

T π =
∑

Hj ∈H

W (Hj) ∗ RT (Hj)

=
∑

e(u,v)∈Ec

w(u, v) ∗ max{t (u), t (v)} +
∑

e(u,v)∈ E−Ec

w(u, v) ∗ (t (u) + t (v))

=
∑

e(u,v)∈Ec

w(u, v) ∗ max{t (u), t (v)} +
∑

e(u,v)∈E

w(u, v) ∗ (t (u) + t (v))

−
∑

e(u,v)∈Ec

w(u, v) ∗ (t (u) + t (v))

Since t (u) + t (v) is equal to min{t (u), t (v)} + max{t (u), t (v)}, we can further derive the
following equation

T π =
∑

e(u,v)∈E

w(u, v) ∗ (t (u) + t (v)) −
∑

e(u,v)∈Ec

w(u, v) ∗ min{t (u), t (v)}. (1)

From Eq. (1), we show that T π is minimized when
∑

e(u,v)∈Ec
w(u, v) ∗ min{t (u), t (v)} is

maximized, given the fact that
∑

e(u,v)∈E w(u, v) ∗ (t (u) + t (v)) is a constant.
Let G ′ be created by changing the weight on any edge e(u, v) in G, to be w′(u, v), where

w′(u, v) = w(u, v) ∗ min{t (u), t (v)}. Then, T π is minimized when
∑

e(u,v)∈Ec
w(u, v) ∗

min{t (u), t (v)} is maximized, i.e., the total weight on the edges in the cut-set of G ′ is
maximized. Maximize the total weight on the edges in the cut-set of G ′ is a max-cut graph-
partitioning problem. Thus, generalized hypergraph declustering problem with the case that
each |Hj | equals 2, is reduced to a max-cut graph-partitioning problem.

282 LIU AND WU

The max-cut graph-partitioning problem, as stated, remains NP-complete which can be
shown by reducing it to the complementary min-cut graph partitioning problem [14]. The
min-cut graph partitioning problem is to partition the nodes of a graph with weights on its
edges into subsets of given sizes, so as to minimize the sum of the weights on all of the edges
in the cut-set. It is known that the graph and network partitioning problem with specified
bound on the sizes of the resulting subsets belongs to the class of NP-complete [4, 9].
Kernighan and Lin [14] have shown that by changing the signs of all the edge weights, the
max-cut graph partitioning problem can be transformed into the min-cut graph partitioning
problem.

Therefore, the generalized hypergraph declustering problem is a NP-complete problem,
since max-cut graph-partitioning problem is a NP-complete problem. The proof is achieved
by restriction [9]. We have shown that the generalized hypergraph declustering problem
contains a known NP-complete problem, the max-cut graph partitioning problem. ✷

Corollary 1. The generalized max-cut declustering is a special case of generalized hy-
pergraph declustering where each |Hj | equals 2, for all Hj ∈ H.

Proof: The proof can be derived by referring to Eq. (1) in the proof of Theorem 1. The
generalized hypergraph declustering with the case that each |Hj | equals 2, is reduced to
generalized max-cut declustering. ✷

6. Experimental evaluations

We compare greedy hypergraph declustering method and max-cut declustering methods
with other methods including round-robin and load balance method. The experiments focus
on modeling the query set and data items accessed by each query, without regarding to what
particular access method is used. Mapping function based methods assume that data items
are of equal size, and they are not effective on the case where atomic data items might have
different sizes (retrieval times). Thus, mapping function based methods are not compared.

6.1. Experimental layout

We compare various declustering techniques under the effect of the number of data items
in queries, the retrieval time of data items, the number of disks and the number of queries.
Each query is processed by retrieving the qualifying data items in each disk, in order to
compute the response time. In the experiment result, the response time for each query is
computed by counting the maximum number of time units required to retrieve all qualified
data items on the disk. The expected query response time is computed by definition 5. We
assume that the number of time units required to retrieve the data item is equal to the size
of the data item.

Data and query. The experiments are conducted on randomly generated data and queries.
We also randomly generate the frequency of query. The total frequency of queries equals 1.
Each data item may represent a polygon. Each query may represent a spatial range query

HYPERGRAPH DECLUSTERING 283

which may access a set of qualified polygons located within the spatial range. We assume
that the entire data item is not split across multiple disks. We compare the declustering of
data items with different scales of sizes such that the retrieval time can vary for different
data items. Various parameters of data are explored in the experiments. The number of size
units of each data item is varied from 1 to the number of maximum size units of data items.
The total number of data items in the data set is varied from 100 to 800. Various parameters
of query are also explored in the experiments. The total number of queries in the query set
is varied from 200 to 6400. Different scales of number of data items accessed in queries
are explored, which are in the range of 4 to 8, 16 to 32, 36 to 72, 66 to 132, respectively.
Experiments are also conducted on different number of disks, i.e., 8, 16, and 32, to examine
the effect on the performance. In the experiment, we use the query set that the number of
data items accessed in each query is ranged from 1 to 64.

Declustering methods. We compare the proposed declustering methods, G-HYPER and
HYBRID, with SM-INCR, SM-GMAX, R-ROBIN and LoadBal. G-HYPER represents the
greedy hypergraph declustering technique described in Section 3.2. HYBRID represents
the hybrid technique described in Section 4.3. SM-GMAX denotes the declustering method
using the global max-cut graph partitioning technique, described in Section 4.2.2. SM-INCR
is the incremental max-cut declustering technique which is described in Section 4.2.1. The
load-balancing based technique, LoadBal, allocates data items to the disk with the lowest
storage load. The round-robin method, R-ROBIN, allocates data items to disk in a round
robin manner.

6.2. Varying the number of data items in queries

In this subsection, we examine the effect of varying the number of data items in queries.
The variable parameters are the number of qualified data items accessed by each query, i.e.,
4 to 8, 16 to 32, 36 to 72 and 66 to 132 data items, respectively. Table 2 shows the expected
query response time for four different scales of qualified data items accessed by queries.
The experiment is performed with 400 data items, 1600 queries, 8 disks, and the size of a
data item is between 1 to 8, i.e., the number of time units required to retrieve a data item is
between 1 to 8.

We can see an increase in the expected response time as the number of qualified data items
accessed in each query increases. G-HYPER (greedy hypergraph declustering method) and

Table 2. Response time for varying the number of data items in queries.

DataItems G-HYPER HYBRID SM-GMAX SM-INCR R-ROBIN LoadBal

4 to 8 8.3765 8.4647 8.6511 9.0131 10.5302 10.7028

16 to 32 22.2990 22.3563 23.0663 23.6465 26.4260 26.5567

36 to 72 43.2375 43.3769 43.6012 44.9040 47.9075 47.7394

66 to 132 72.0399 72.2337 72.1545 73.9286 77.6358 76.9329

284 LIU AND WU

Table 3. Response time for varying the retrieval time of data items.

TimeUnits G-HYPER HYBRID SM-GMAX SM-INCR R-ROBIN LoadBal

1 9.3672 9.3842 9.2787 9.5878 10.2399 10.3011

2 13.8990 13.8826 14.0017 14.4734 15.3807 15.3109

4 23.8358 23.9353 24.0135 24.9032 26.4348 26.4979

8 43.2375 43.3769 43.6012 44.9040 47.9075 47.7394

16 81.7180 81.8475 82.4409 85.1430 90.8798 91.0031

HYBRID (hybrid technique) performs better than SM-GMAX (max-cut graph partition-
ing). G-HYPER performs slightly better than HYBRID. The performance of SM-INCR
(incremental max-cut declustering) follows the performance of SM-GMAX. G-HYPER,
HYBRID, SM-GMAX and SM-INCR outperform LoadBal (load balance method) and
R-ROBIN (round robin method) consistently for all four cases.

6.3. Effect of varying the retrieval time of data items

We now evaluate the performance of various methods by varying the retrieval time of data
items. This experiment uses 400 data items, 8 disks, 1600 queries, 36 to 72 data items in each
query, and the maximum size (retrieval time) of data items is 1, 2, 4, 8 and 16, respectively.
For a maximum size, 16, the experiment generates data items with sizes ranging from 1 to
16. We assume that the number of time units required to retrieve the data item is equal to the
size of the data item. We report the expected response time under various sizes of data items
and various declustering methods. The result is shown in Table 3. The expected response
time increases as the retrieval time (size) of data item increases. The experiment shows that
G-HYPER is competitive with HYBRID. In general, G-HYPER and HYBRID perform
better than SM-GMAX, SM-INCR, R-ROBIN and LoadBal methods. The result shows that
the round-robin and load-balancing methods perform poorly on all sizes of data items.

6.4. Effect of varying the number of queries

In this subsection, we examine the effect of varying the number of queries, i.e., 200, 400, 800,
1600, 3200 and 6400 queries, respectively. Figure 5 shows the expected query response time
for six different number of queries. The experiment is performed on 400 data items, 8 disks,
36 to 72 data items in queries, and the sizes of data items are from 1 to 8. We can see an in-
crease in the expected response time for SM-INCR, SM-GMAX, G-HYPER and HYBRID,
as the number of queries increases. It shows that the ability for those methods to adjust the
declustering in order to satisfy the objective function, i.e., maximizing the cut or minimizing
the expected response time, is decreased as the number of queries increases. Since more
common data items are accessed by queries as the number of queries increases. Thus, it is
more difficult to satisfy the objective function. In general, the performance of G-HYPER and
HYBRID are very close. Both G-HYPER and HYBRID perform better than SM-GMAX
and SM-INCR, and they outperform LoadBal and R-ROBIN consistently for all six cases.

HYPERGRAPH DECLUSTERING 285

Figure 5. Varying the number of queries.

6.5. Effect of varying total number of data items

In this subsection, we examine the effect of varying the total number of data items, i.e., 200,
800, 1600, and 2400 data items, respectively. Figure 6 shows the expected query response

Figure 6. Varying total number of data items.

286 LIU AND WU

time for four different number of data items. The experiment is performed on 1600 queries,
8 disks, 12 to 24 data items in queries, and the sizes of data items are from 1 to 8. We can
see a decrease in the expected response time for SM-INCR, SM-GMAX, G-HYPER and
HYBRID, as the total number of data items increases. It shows that the ability to satisfy
the objective function is increased as the total number of data items increases. Since fewer
common data items are accessed by queries as the total number of data items increases.
Thus, it is easier to satisfy the objective function. Notably, in the extreme case, each data
item may be accessed by only one query when the total number of data items approximates
to infinity, by fixing the number of queries and the number of data items accessed by queries.
In general, the performance of G-HYPER and HYBRID are very close. Both G-HYPER and
HYBRID perform better than SM-GMAX and SM-INCR, and they outperform LoadBal
and R-ROBIN consistently for all four cases.

6.6. Effect of varying the number of disks

We also examine the performance of various methods under the number of disks 8, 16 and
32, respectively. Figure 7 shows the experiment result performed on 400 data items, 3200
queries, 1 to 64 data items in queries, and the sizes of data items are from 1 to 8. We can see
a decrease in the expected response time as the number of disks increases. The performance
of G-HYPER and HYBRID are very close. Both G-HYPER and HYBRID perform better
than SM-GMAX. G-HYPER, HYBRID, SM-GMAX and SM-INCR outperform LoadBal
and R-ROBIN consistently for all three number of disks.

Figure 7. Varying the number of disks.

HYPERGRAPH DECLUSTERING 287

7. Conclusions

In this work, a generic framework for general declustering problems is presented. The frame-
work formulates the declustering problem as a hypergraph optimization model. Theoretical
analysis is carried out to analyze the hypergraph model. Based upon the hypergraph model,
new heuristic methods are developed. The greedy-hypergraph method allocates data items
in a greedy manner, aiming at minimizing the expected query response time. The hybrid
method combines the greedy-hypergraph scheme and the max-cut declustering approach.
Experiments are conducted to compare the performance of various declustering methods, by
varying the number of time units required to retrieve data items. The result shows that both
the greedy-hypergraph method and the hybrid method outperform max-cut declustering
schemes, round robin and load-balance methods.

In the future, we plan to evaluate our scheme for GIS applications combined with spatial
access methods (e.g. R-tree or Grid file), and other applications including decision support
systems or multimedia applications. In addition, the scalability of declustering techniques
for very large data sets and query sets is an issue. We are currently investigating multilevel
scheme and incremental scheme for hypergraph-based techniques to handle very large data
sets and query sets. Moreover, we address the declustering problem in multi-disk systems.
In future work, multi-processor systems should be investigated in order to process queries
in a massively parallel way.

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China for
financially supporting this research under Contract No. NSC 86-2213-E-009-031.

References

1. R. Bhatia, R. Sinha, and C.-M. Chen. “Hierarchical declustering schemes for range queries,” in Proc. of 7th
Intl Conference on Extending Database Technology, EDBT, Konstanz, Germany, 2000, pp. 525–540.

2. R. Bhatia, R.K. Sinha, and C.-M. Chen. “Declustering using golden ratio sequences,” in Proc. of the 16th Intl
Conference on Data Engineering, IEEE, San Diego, California, USA, 2000, pp. 271–280.

3. L.T. Chen and D. Rotem, “Declustering objects for visualization,” in Proc. of Intl Conference on Very Large
Data Bases, 1993, pp. 85–96.

4. C.K. Cheng and Y.C. Wei, “An improved two-way partitioning algorithm with stable performance,” IEEE
Trans. on Computer-Aided Design, vol. 10, no. 12, pp. 1502–1511, 1991.

5. D.J. DeWitt et al., “The gamma database machine project,” IEEE Trans. on Knowledge and Data Engineering,
vol. 2, no. 1, 1990.

6. H.C. Du and J.S. Sobolewski, “Disk allocation for product files on multiple disk systems,” ACM Trans. on
Database Systems, vol. 7, no. 1, pp. 82–101, 1982.

7. C. Faloutsos and P. Bhagwat, “Declustering using fractals,” in Proc. of Intl. Symposium on Databases in
Parallel and Distributed Systems, 1993, pp. 18–25.

8. C. Faloutsos and D. Metaxas, “Disk allocation methods using error correcting codes,” IEEE Trans. on
Computers, vol. 40, no. 8, pp. 907–914, 1991.

9. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman: San Francisco, 1979.

288 LIU AND WU

10. S. Ghandeharizadeh and D.J. DeWitt, “A multiuser performance analysis of alternative declustering strategies,”
in Proc. of the 6th Intl. Conference on Data Engineering, IEEE, 1990, pp. 466–475.

11. S. Ghandeharizadeh and D.J. DeWitt, “Hybrid-range partitioning strategy: A new declustering strategy for
multiprocessor database machine,” in Proc. of Intl. Conference on Very Large Databases, VLDB, 1990,
pp. 481–492.

12. S. Ghandeharizadeh, D.J. DeWitt, and W. Qureshi, “A performance analysis of alternative multiattribute
declustering strategies,” in Proc. of Intl. Conference on Management of Data, ACM SIGMOD, 1992, pp. 29–
38.

13. I. Kamel and C. Faloutsos, “Parallel R-trees,” in Proc. of Intl. Conference on Management of Data, ACM
SIGMOD, 1992, pp. 195–204.

14. B.W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell Syst. Tech. J.,
vol. 49, no. 2, pp. 291–307, 1970.

15. K. Kim and V.K. Prasanna, “Latin squares for parallel array access,” IEEE Trans. on Parallel and Distributed
Systems, vol. 4, no. 4, pp. 361–370, 1993.

16. M.H. Kim and S. Pramanik, “Optimal file distribution for partial match queries,” in Proc. of SIGMOD
Conference on Management of Data, ACM, 1988, pp. 173–182.

17. V. Kouramajian, R. Elmasri, and A. Chaudhry, “Declustering techniques for parallelizing temporal access
structures,” in Proc. of the Tenth Intl. Conference on Data Engineering, IEEE, 1994, pp. 232–244.

18. J. Li, J. Srivastava, and D. Rotem, “CMD: A multidimensional declustering method for parallel database
systems,” in Proc. of Intl. Conference on Very Large Data Bases, 1992, pp. 3–14.

19. D.R. Liu and S. Shekhar, “Partitioning similarity graphs: A framework for declustering problems,” Information
Systems: An International Journal, vol. 21, no. 6, pp. 475–496, 1996.

20. S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. El Abbadi. “Cyclic allocation of two-dimensional data,”
in Proc. of the 14th Intl Conference on Data Engineering, IEEE, Orlando, Florida, USA, 1998, pp. 94–101.

21. D. Rotem, G.A. Schloss, and A. Segev, “Data allocation for multidisk databases,” IEEE Trans. on Knowledge
and Data Engineering, vol. 5, no. 5, pp. 882–887, 1993.

22. B. Seeger and P.A. Larson, “Multi-disk B-trees,” in Proc. of Intl. Conference on Management of Data, ACM
SIGMOD, 1991, pp. 436–445.

23. Y. Zhou, S. Shekhar, and M. Coyle, “Disk allocation methods for parallelizing grid files,” in Proc. of the Tenth
Intl. Conference on Data Engineering, IEEE, 1994, pp. 243–252.

