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Abstract

We calculate the energy spectrum of hydrogen impurity located in the center of parabolic quantum dot. The energy levels
under this model differ from the previous results for the case of spherical quantum dot. The degeneracy of the energy levels is
quite different as well. However, compared with the spherical quantum dot, the energy plateau under this model is not obvious.
 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to the high progress in scientific technology in
the past few years, people can now make “artificial
atom” or “quantum dots”, as they are called [1,2].
Since the scale of these nano structures has ap-
proached to the size of an atom, physicists are trying to
enclose the quantum mechanism behind. The simplest
model is an hydrogen atom in the center of a spherical
cavity with a discontinuous potential to simulate the
quantum dot. Many results on this model have been
reported [3–5]. Huang et al. first solved the relativistic
version of the model [6]. From application point
of view, the characteristic of level crossing of a
quantum dot provides a new method for controlling
level stability [7–9]. However, the spherical cavity is
still not good enough for a real quantum dot. In this
Letter, another model, a parabolic quantum dot, is
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presented. The eigenenergies and wavefunctions are
also obtained from hydrogen impurity. Some novel
properties under this model are found and compared
with those of a spherical dot.

2. Theory

To study the interesting properties of parabolic
quantum dot, we use parabolic coordinate system.
First we transform the coordinate system from spher-
ical coordinates(r, θ,ϕ) to parabolic coordinates(ξ,
η,ϕ) [10]. Taking the coordinate system as equal-
potential surface in the boundary, we can simulate a
parabolic cavity. The geometry of the parabolic cavity
can be defined through the following relations:

(2.1)ξ = r + z=R0,

(2.2)η= r − z=R0,

whereR0 is the size of the parabolic cavity, or the
radius of a parabolic quantum dot in thex–y plane at
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Fig. 1. The geometry of a parabolic quantum dot.

z = 0. The cavity is rotationally symmetric along the
z-axis as shown in Fig. 1. Let us consider a hydrogen
impurity located in the center of a parabolic cavity.
The Hamiltonian of a hydrogen impurity inside such
a cavity is

(2.3)H =− h̄
2

2µ
∇2− Ze

2

εr
+ V,

where

(2.4)V =
{−V0, ξ 6R0, η6R0,

0, otherwise,

which means that the potential inside the cavity is
shifted by a negative constant,−V0, compared with
the potential of a hydrogen atom. The parametersµ,ε,
andZ are the effective mass, the electrical constant,
and the core charge, respectively. We use the effective
Bohr radius,a = h̄2ε/µe2, as the unit of length, and
the effective Rydberg,R∗y = µe4/2h̄2ε2, as the unit of

energy. For hydrogen atom,a is about 0.53 Å andR∗y
is about 13.6 eV. For a hydrogen impurity in GaAs,a

is about 100 Å andR∗y is about 5.48 meV.
Next, we deal with the Schrödinger equation by

setting

(2.5)Ψ (ξ, η,ϕ)= u(ξ)v(η)eimϕ,
(2.6)Z =Z1+Z2.

Then, let us carry out the separation. Sinceξ andη are
symmetric, we treat the differential equation satisfied
by u(ξ) as follows:

d

dξ

(
ξ
du(ξ)

dξ

)
+
(

1

2
ξ(E − V )− m

2

4ξ

)
u(ξ)

(2.7)=−Z1u(ξ),

whereV is described in Eq. (2.4). Outside the cavity,
this termV shall be dropped. The solutions of the
bound states can be expressed in terms of generalized
hypergeometric function as follows:
Solution regular atr = 0:

(2.8)uin(ξ)∼ e−βξ ξ |m|/21 F1
(−n1, |m| + 1,2βξ

)
,

where

(2.9)β ≡√−(E + V0)/2,

(2.10)n1≡ Z1

2β
− 1

2

(|m| + 1
)
.

Solutions regular atr =∞:

(2.11)

uout(ξ)∼ e−β ′ξ ξn
′
1−|m|/2

2 F0

(
−n′1, |m| − n′1,

−1

2β ′ξ

)
,

where

(2.12)β ′ ≡
√
−E

2
,

(2.13)n′1≡
Z1

2β ′
+ 1

2

(|m| − 1
)
.

Eqs. (2.7)–(2.13) may be applied tov(η) if the
parameterZ1 is replaced byZ2 and the variableξ is
replaced byη, respectively.

For finite confining potentialV0, it is necessary
that both the wavefunction and its first derivatives be
continuous at the boundaryR0. With these boundary
conditions and the requirement shown in Eq. (2.6),
bothu(ξ) andv(η) can be found. The wavefunctions
can then be obtained from Eq. (2.5).

AssumingÔ is an observable operator, its expecta-
tion value is given by

(2.14)
〈
Ô
〉= ∫∞0 dξ

∫∞
0 dη

∫ 2π
0 dφ Ô|ψ|2(ξ + η)∫∞

0 dξ
∫∞

0 dη
∫ 2π

0 dφ |ψ|2(ξ + η)
.

When R0 = 0 or ∞, we find that the expectation
values ofξ, η, r and z can be expressed as analytic
close form, which are given as follows:

(2.15)〈ξ〉 =
(
n2z1(z1+ 2)+ 1−m2

4

)/
Z,

(2.16)〈η〉 =
(
n2z2(z2+ 2)+ 1−m2

4

)/
Z,

(2.17)〈r〉 =
(
n2
(

3

2
− z1z2

)
+ 1−m2

4

)/
Z,
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Fig. 2. The eigenenergies of parabolic quantum dot in low excited statesn= 1,2,3 as functions ofR0. Compared with spherical quantum dot,
the energy plateau is not very clear.

(2.18)〈z〉 =
(

3

2
n2(z1− z2)

)/
Z,

wherezj =Zj/Z.

3. Results and discussion

In our calculation,V0 is chosen to be 3 eV and the
nuclear chargeZ is equal to 1. Different values ofV0
andZ can be used when needed. From Fig. 2, we find
that

(1) At R0 = 0 and∞, it has correct limit. When dot
size is extremely small, the eigenenergyE of the
impurity approaches to the corresponding energy
of a free-space hydrogen:E ∼=−R∗y/n2. When the
radius of the dot is large enough, the eigenenergies
approach to the values which are equal to the
confining potential plus the corresponding energy
of a free-space hydrogen:E ∼=−(Z2R∗y/n2+V0).

(2) The model shows level crossing forn = 2 and
n= 3 states, just like spherical quantum dot does.
But the energy plateau of this model is not so
clear as the one in spherical quantum dot. The
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Fig. 3. Eigenenergies as functions ofR0 for the staten= 4,m= 0 andZ1= 3/8 and 5/8, respectively. The two curves overlap. It follows that
Z1= 3/8 and 5/8 are degenerate states in parabolic quantum dot.

results for principal quantum numbern = 1,2,3
are shown in Fig. 2 for demonstration.

For eachZ1 6= 1/2 state with fixedn andm, there
exists a degenerate state withZ′1 = 1 − Z1. The
degeneracy of this pair can not be destroyed by the size
of the dot. For example, the statesn= 4, m= 0 with
Z1 = 3/8 and 5/8, respectively, are degenerate. This
can be seen from Fig. 3, where we get the same energy
spectrum when plotting the eigenenergies as functions
of R0 for Z1= 3/8 and 5/8.

At R0 = 0 and∞, the eigenenergies are inn2-
degeneracy as the degeneracy of a free-space hydrogen
atom. Between these two extreme situations, then2-
degeneracy disappears. For any specificn, it is found
that the number of the maximum splitting levels is

[(n + 1)/2]2 if n is odd, andn(n + 2)/4 if n is
even. This phenomenon is very different from the
spherical quantum dot [5], where the number of
the maximum splitting levels isn for any principal
quantum numbern. More detailed results are listed in
Table 1.

In Fig. 4, we plotZ1 as functions ofR0. We can see
that even in the regionR0 < 40 Bohr radius, where
the oscillation occurs,Z1 are always complementary
to each other, namely, their summation is equal to 1.
Moreover, they correspond to the same eigenenergy.
Therefore, we expect the same behavior in another
group of degenerate statesZ1= 1/8 and 7/8.

In Fig. 5, we present expectation values ofξ, η, r
andz as functions of the dot size for the pair states of
n= 4, m = 0, Z1 = 3/8 (5/8). When the dot size is
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Table 1
Quantum number and degeneracy of free-space hydrogen are shown in the first four columns. The last column is revealed the maximum energy
levels splitting for eachn of the parabolic quantum dot

n m Z1 Degeneracy Max. splitting

1 0 1/2 1 1

2 0 1/4 3/4 2

±1 1/2

3 0 1/6 1/2 5/6 4

±1 1/3 2/3

±2 1/2

4 0 1/8 3/8 5/8 7/8 16 6

±1 1/4 1/2 3/4

±2 3/8 5/8

±3 1/2

5 0 1/10 3/10 1/2 7/10 9/10 25 9

±1 1/5 2/5 3/5 4/5

±2 3/10 1/2 7/10

±3 2/5 3/5

±4 1/2

6 0 1/12 1/4 5/12 7/12 3/4 11/12 36 12

±1 1/6 1/3 1/2 2/3 5/6

±2 1/4 5/12 7/12 3/4

±3 1/3 1/2 2/3

±4 5/12 7/12

±5 1/2

anyn 0 1
2n

3
2n

5
2n . . .

(2n−1)
2n n2

(
n+1

2

)2
oddn

±1 2
2n

4
2n

6
2n . . .

(2n−2)
2n

n(n+2)
4 evenn

.

.

.
.
.
.

±(n− 1) 1
2

extremely small or extremely large, all the expectation
values satisfy Eqs. (2.15)–(2.18). We notice that the
ξ -expectation value forZ1 = 3/8 is consistent with
theη-expectation value forZ1= 5/8, independent of

the dot size. Similarly,〈ξ〉5/8 is equal to〈η〉3/8. We
also notice that〈r〉3/8 = 〈r〉5/8 for any dot size. The
z-expectation values of this pair are symmetric as a
function of dot size, with extreme point atR0∼= 23a.
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Fig. 4.Z1 as functions ofR0 for the staten= 4,m= 0,Z1 = 3/8 and 5/8 with the same energy. It is found that the two quantum number of
this degenerate state is complementary to each other.

4. Conclusion

This Letter contains new results on the quantum dot.
We apply the parabolic coordinate to study the charac-
teristics of the hydrogen impurity in a parabolic cav-
ity, which has never been studied before. We solve
Schrödinger equation to obtain the system wavefunc-
tions, eigenvalues, and their degeneracy analytically.
We find that the parabolic quantum dot has several
features different from those of a spherical quantum
dot. Since many researchers are now working on the
electronic states in quantum dot, these results would
be helpful for people to understand quantum dot and

manufacture artificial atom. Furthermore, in the par-
abolic coordinates, one can also study the phenomena
of a quantum dot exposed to a constant electric field.
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Fig. 5. The electron probability for different space variables〈η〉, 〈ξ〉, 〈r〉, 〈z〉 as functions ofR0 for the staten= 4,m= 0,Z1= 3/8 and 5/8.
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