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On a General Optimal Algorithm for Multirate 
Output Feedback Controllers of Linear Stochastic 

Periodic Systems 

Nie-Zen Yen and Yung-Chun Wu 

Abstmct-A modified optimal algorithm for multirate output feedback 
controllers of linear stochastic periodic systems is developed. By combin- 
ing the discrete-time linear quadratic regulation (LQR) control problem 
and the discrete-time stochastic linear quadratic regulation (SLQR) 
control problem as the extended h e a r  quadratic regulation (ELQR) 
control problem, one derives a general optimal algorithm to balance the 
advantages between the optimal transient response of LQR control 
problem and the optimal steady-state noise regulation of SLQR control 
problem. In general, the solution of this algorithm is solved from a set of 
coupled matrix equations. Special cases for which the coupled matrix 
equations can be reduced to a discrete-time algebraic Riccati equation 
are also discussed. A reducible case is the well-known optimal algorithm 
derived by AGRahmani and Franklin 111, where the system has com- 
plete state information, and the discrete-time quadratic performance 
index is transformed from a continuous-time quadratic performance 
index. 

I. INTRODUC~ON 
In a recent paper [l], AL-Rahmani and Franklin presented an 

optimal multirate state feedback control scheme for linear peri- 
odic systems based on the linear quadratic regulation (LQR) 
control problem. They show that the continuous-time LQR 
control problem subject to the multirate structure can be trans- 
formed into a discrete-time LQR control problem, and the 
solution can simply be solved from a discrete-time algebraic 
Riccati equation. As a matter of fact, the use of multirate 
sampling not only makes it easy to solve the LQR control 
problem, but also produces better response characteristics and 
less LQR cost than that of single rate sampling (if the state is 
sampled at the same rate). Colaneri and De Nicolao [8] have 
presented an optimal filter-based multirate control scheme for 
linear stochastic systems with incomplete state measurements 
based on the linear quadratic and Guassian (LQG) control 
problem. Due to the possibility of more freedom in sampling 
period selection, it is easy to implement a multirate control 
scheme by digital computers. 

In this note, a modified multirate control scheme for linear 
stochastic periodic systems is developed. Such a control scheme 
is constructed by using instantaneous output feedback (i.e., a 
zero-order controller). A fact to be noted is that in the optimal 
periodic control theory using the classical separation principle 
(e.g., Bittanti et al. [6] and Colaneri and De Nicolao [8]), the 
LQG control problem can be considered as a direct extension of 
the LQR control problem. However, this fact is not true in our 
approach unless the system has complete state information. To 
overcome this difficulty, one combines the discrete-time linear 
quadratic regulation (LQR) control problem and the discrete- 
time stochastic linear quadratic regulation (SLQR) control prob- 
lem as the extended linear quadratic regulation (ELQR) control 
problem, then by solving this problem, one derives a general 

Manuscript received April 12, 1991; revised December 6, 1991 and 
May 18, 1992. This research was supported by the National Science 
Council of ROC under Grant CS81-0210-D009-503. 

N.-Z. Yen is with the Institue of Electronics, National Chiao Tung 
University, Hsinchu, Taiwan, 30050, Republic of China. 

Y.-C. Wu is with the Department of Control Engineering, National 
Chiao Tung University, Hsinchu, Taiwan, 30050, Republic of China. 

IEEE Log Number 9205250. 

algorithm to extend the LQR and the SLQR algorithms simulta- 
neously. This algorithm allows one to choose ratios on the LQR 
and the SLQR control problems, so that the presented multirate 
output feedback controller can balance the advantages between 
the optimal transient response of LQR control problem and the 
optimal steady-state noise regulation of SLQR control problem. 

11. PRELIMINARY 

A. Periodic System 
Consider a multivariable linear sotchastic periodic system 

i ( t )  = A ( t ) x ( t )  + B ( t ) u ( t )  + ( ( t )  

Y ( k T )  = Y A W  + 4 k T )  

(1.a) 

YS(t> = C ( t ) x ( t )  (1 .b) 

(1 -c> 

where x ( t )  E R "  is the state, u(t )  E R"' is the input, ys( t )  E R' 
is the output, y ( k T )  (T is a positive real, and k = 0,1,2, ... is 
the practical output measurement, & ( t )  E R" and u(kT)  E R' 
are independent white noise with zero means and correlations 
described by 

E( t ( t ) t ' ( t o ) )  = G ( t ) S ( t  - t o )  (2.a) 

E(u(kT)u'(k0T)) =Rq(k - k o )  (2.b) 

where 7 denotes the transpose operation of a matrix, G(t)  E 
RnX" and R E R r X r  are positive semidefinite matrices, 6(*) 
denotes the continuous-time delta function, q(. )  denotes the 
discrete-time pulse function, ( ( t )  and u(kT) are independent of 
x(O), and the parameters A(t), E(?) ,  C( t ) ,  and G(t)  are piece- 
wise continuous and satisfy the periodical property that A( t )  = 
A(t - T) ,  B ( t )  = B(t - T ) ,  C( t )  = C(t  - T) ,  and G ( t )  = G(t 
- T) .  

B. Multirate Output Feedback Controller 

periodic system (1) (see Fig. 1) is given by 
A multirate output feedback controller of the linear stochastic 

u(kT + iT/f + 0 )  = L , y ( k T )  (3) 

where f is a selected positive integer, 0 E [0 T / f ) ,  and L j  E 
Rmxr for i = 0, 1,2;.-, f - 1 are the controller gains. By substi- 
tuting the multirate control (3) into the system (11, one can 
obtain the following closed-loop sampled-data system: 

x ( ( k  + 1)T) = (x+ n L C ) x ( k T )  + a ( k T )  

in which x= +(T,O), C = C(O), and 

R = [no n, .*. n f - , ]  E R n x m f ,  

v ( k T )  = L T + ( T , s ) t ( k T + s ) d r  + R L u ( k T )  

where +(t ,  s) denotes the state transition matrix, and 
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system -2 (1)  

Fig. 1. A multirate output feedback controller of linear periodic 
systems. 

Notice that q(kT)  is also a white noise with zero mean and 
correlation described by 

E(q(kT)q'(k,T))  = ( S  + RLRL'R')q(k - k, )  (8) 
where 

S = kT4(T, s )G(s )+(T ,  s)' h. (9) 

Remark I :  In the presented approach, the output is sampled 
at the rate 1/T (if necessary, the initial time t = 0 can be 
moved). A caution to such sampling is that the detectability may 
be lost (that is, CO),&)) is detectable but ( C , A )  is not 
detectable, see [2], [lo]). If this condition occurs, one needs to 
sample the output faster than 1/T. In general, a faster output 
sampling would result in a more complicate (e.g., time varying or 
higher order) closed-loop sampled-data system which is beyond 
the scope of this note. 

C. The ELQR Control Problem 

on ~ ( 0 ) .  By the stochastic closed-loop system (4), one has 
Let x,(t> = E[x(t)lx(Oll denote the conditional mean of x ( t )  

x, ( (k  + 1)T) = ( X +  RLC)x , (kT) .  (10) 
Thus, from the viewpoint of the conditional mean, the transient 
response due to x(0)  can be considered as a deterministic 
regulation problem. One can define the following two perfor- 
mance indexes 

Jd = E[x; (kT) (Q,  + C'L'Q; 
m 

~ r =  n 

stable, and the index J = YdJd + y,J, (yd and 7, are nonnega- 
tive real numbers) subject to the deterministic closed-loop sys- 
tem (10) and the stochastic closed-loop system (4) is minimized. 

Remark 2: It can be shown (see [l]) that a continuous-time 
quadratic performance index subject to the multirate structure 
can be transformed to an equivalent discrete-time quadratic 
performance index, so that it does not lose the generality to 
select discrete-time quadratic performance indices for multirate 
controller designs of a linear continuous-time periodic system. 

111. SOLVING THE ELQR CONTROL PROBLEM 
By the deterministic closed-loop system (10) and the stochas- 

tic closed-loop system (4), the general index J = ydJd + y,J, 
equals to (see 1121, [141, 1111) 

J = yd Tr VdE[ X ( O ) x ' ( o ) ]  

+ ys Tr As( Q, + C'L'QZ + Q2 LC + C'L'Q,LC) (12) 
where v d  and A, are positive semidefinite matrices solved from 
the following Lyapunov equations, respectively, 

(b+ RLC)A,(X+ RLC) ' -  A, + (S + RHLL'R') = 0. 
(13.b) 

Now, let Ad E R"'" be a positive semidecnite matrix solved 
from the following Lyapunov equation (if A + RLC is stable, 
such a solution must exist): 

(X+ R L C ) A d ( x +  RLC) ' -  A, + E[x(O)x'(O)] = 0. (14) 

By (14) and (13.a), one can obtain 

Tr VdE[X(o)X'(o)] 

= Tr Ad(Q, + C'L'Q; + Q2LC + C'L'Q3LC). (15) 
._ - 

Thus, by defining A = ydAd + y,A,, the index (12) can be rear- 

J = Tr A(Ql + C'L'Q; + Q2LC + C'L'Q3LC). (16) 

+ezLc + C'L'Q3LC)xdkT)I (ll.a) 
ranged by 

J, = k-. LimE[x'(kT)(Q, m + CTLTQ; 

+Q,LC + CTLTQ3LC)x(kT)] (1l.b) 

where Q ,  ER"'", Q2 E Rnxmf, Q3 E R m f X m f ,  and Q, and Q3 
are positive semidefinite. Notice that Jd serves as a measure of 
the transient response due to x(O), and J, serves as a measure of 
the steady-state noise regulation. Corresponding to the indexes, 
the following two control problems can be considered. 

+ R LC is 
stable (i.e., all eigenvalues lie inside the unit complex circle), and 
the index Jd subject to the deterministic closed-loop system (10) 
is minimized. 

SLQR control problem: Find a gain L,  such that 2 + R LC is 
stable, and the index J, subject to the stochastic closed-loop 
system (4) is minimized. 

In general, the LQR and the SLQR control problems cannot 

LQR control problem: Find a gain L ,  such that 

On the other hand, by combining (13.b) and (14), one can obtain 

(A+ RLC)A(X+ RLC)'- A + ydE[x(O)x'(O)] 

+ y,(S + RLRL'R') = 0. (17) 
Main Theorem: A necessary condition for L to solve the 

ELQR control problem is that L satisfies the following coupled 
matrix equations: 

(X+ RLC)'V(X+ RLC) - V 

+(e ,  + C'L'Q; + Q2LC + CTLTQ3LC) = 0 (18.a) 

have the same solution unless the system has complete state 
information (as will be clear later). To balance the advantages of 
LQR and SLQR control problems, an extended control problem 
can be introduced as follows. 

ELQR controlproblem: Find a gain L, such that x+ RLC is 

R'V(x+ RLC)AC' + y,R'VRLR 

+(Q;ACT + Q3LCAC') = 0 (18.c) 

where V E R"'" and A E R"'" are positive semidefinite matri- 
ces. 
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Proof To minimize the index (16) subject to (17), one can 
give an augmented cost function as follows (see [7]): 

J, = Tr A( Q, + C'L'Q; + Q2 LC + C'L'Q, L C )  

+ Tr V{(x+ R L C ) A ( X +  RLC)' - A 

+ydE[x(O)x'(0)] + y,(S + RLRL'R')} (19) 

where the multiplier V E Rnx" is positive semidefinite. By tak- 
ing dl, /dA = 0 and dlc/dV = 0, one obtains (18.a) and (18.b), 
respectively. Also, by taking dlc/dL = 0, one obtains (18.c). 

0 
Now, let ydE[x(O)x'(O)l + y,S be positive definite, the follow- 

ing two corollaries are easily obtained from main theorem. 
Corol lq  1: If rank[C] = n, R = 0, Q3 is positive definite, 

and (Q,,  A, 0) is stabilizable and detectable, then there exists a 
unique solution of the ELQR control problem. Moreover, the 
unique solution is given by 

L = -(R'VR + Q3)-'(R'Vx+ Q;)C-' (20.a) 

where V is a positive semidefinite matrix solved from the follow- 
ing discrete-time algebraic Riccati equation: 

Z V X -  V +  Q, - (RTVx+ QZ)'(WVR + e,)-' 

Hence, the theorem is proved. 

.(R'VJ+ Q ; )  = 0. (20.b) 

Proof Since rank[AC'] = n and R = 0, (18.c) can be re- 
duced to 

R'V(x+ R L C )  + Q; + Q,LC = 0 (21) 

which leads to (20.a). By substituting (20.a) into (18.a), one 
obtains (20.b). Thus, the necessity of (20) is proved. Besides, by 
(18.a) and (18.b), one has J = Tr A(Q, + C'L'Q; + Q2LC + 
C'L'Q,LC) = Tr V('(ydE[x(O)x'(O)] + yJ). It is known (see [91, 
[15]) that the algebraic Riccati equation (20) exists a unique 
stable minimal solution. Hence, the corollary is proved. 0 

Corollary 2: If rank [ R] = n, rank [ C] = r, Q,  is positive def- 
inite, Q2 = 0, Q3 = 0, and (C, x) is detectable, then the ELQR 
control problem can be solved by 

L = - R ~ ~ A C ~ ( C A C ~  + ?,R)-' (22.a) 

where Rt E R m f x n  is a matrix to satisfy R a t  = I,, and A is a 
positive definite matrix solved from the following discrete-time 
algebraic Riccati equation: 

XALT - A + ydE[x(O)x'(O)] + 'y,S 

-xAC'(CAC'+ y , R ) - ' C A z  = 0. (22.b) 

hf Since rank[R'V] = n,  Q2 = 0 and Q3 = 0, (18.c) 
can be reduced to 

(x+ RLC)AC' + y,RLR = 0 (23) 

which leads to (22.a). By substituting (22.a) into (18.b), one 
obtains (22.b). Hence, the necessity of (22) is proved. On the 
other hand, the algebraic Riccati equation (22) exists a stable 
minimal solution. Hence, the corollary is proved. 

IV. SOLVING THE LQR AND SLQR PROBLEMS 

A. LQR Control Problem 

ing result. 
Let y, = 1 and y, = 0, the main theorem leads to the follow- 

Corollary 3: A necessary condition for L to solve the LQR 
control problem is that L satisfies the following coupled matrix 
equations: 

( X +  RZLc)'v,(x+ R L C )  - V, 

+ ( Q ,  + C'L'QZ + Q2 LC + C'L'Q, L C )  = 0 (24.a) 

(A+ R L C ) A , ( ~ +  RLC)' - A, + E [ ~ ( O ) Y ( O ) ]  = o 
(24.b) 

n'v,(X+ RLC)h,C'+ Q;AdC' + Q3LCAdC' = 0 (24.c) 

where Vd E R" and A, E R" " are positive semidefinite ma- 
trices. 

Let E[x(O)x'(O)] be positive definite, corollaries 1 and 2 lead 
to the following results. 

Cor&lary 4: If rank[C] = n,  Q, is positive definite, and 
( Q , , A , R )  is stabilizable and detectable, then there exists a 
unique solution of LQR control problem. Moreover, the unique 
solution is given by 

L = -(n'Vdn + Q3)- ' (nTVdx+  Q ; ) c - '  (25.a) 

where V, is a positive semidefinite matrix solved from the 
following discrete-time algebraic Riccati equation: 

Z V d X -  V, + Q ,  - ( n ' V d x +  QZ)'(n'Vdn 

-(R'V,x+ QZ) = 0. (25.b) 

Corollary 5: If rank [ RI = n,  rank [ C] = r, Q ,  is positive def- 
inite, Q,  = 0, Q3 = 0, and (C,  x) is detectable, then the LQR 
control problem can be solved by 

L = -R~~A,c~(cA,c~)-~ (26.a) 

where at E R m f x n  is a matrix to satisfy ant = I,, and Ad is a 
positive definite matrix solved from the following discrete-time 
algebraic Riccati equation: 

xA,z - Ad + E[X(O)X'(O)] - xA,C'(Ch,C')-lChdA = 0. 
(26.b) 

B. SLQR Control Problem 
Let y, = 0 and 7, = 1, the main theorem leads to the follow- 

ing result. 
Corollary 6: A necessary condition for L to solve the SLQR 

control problem is that L satisfies the following coupled matrix 
equations: 

(x+ R L C ) A , ( ~ +  RLC)' - A, + (s + R L R L ~ R ~ )  = o 
(27.a) 

(x+ RLC)'V,(X+ R L C )  - V ,  + ( Q ,  + C'L'Q; 

+Q,LC + C'L'Q,LC) = 0 (27.b) 

R'V,(x+ RLC)A,C'+ R'V,RLR + Q;A,C' 

+ Q3LCA,C' = 0 (27.~)  

where V ,  E R n x n  and A, E Rnx" are positive semidefinite ma- 
trices. 

Let S be positive definite, corollaries 1 and 2 lead to the 
following results. 

Corollay 7: If rank[C] = n, R = 0, Q3 is positive definite, 
and (Q,,  A, R) is stabilizable and detectable, then there exists a 
unique solution of SLQR control problem. Moreover, the unique 
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solution is given by 

L = -(R'V,n + Q3)-'(RTV,K+ Q;)C-' (28.a) 

where V ,  is a positive semidefinite matrix solved from the 
following discrete-time algebraic Riccati equation: 

xV,Z- V ,  + Q, - (WV,x+ Q;)'(R'V,R + QJ' 

*(n'KX+ Qz) = 0. (28.b) 

Corollary 8: If rank [ RI = n, rank [ C ]  = r, Q, is positive def- 
inite, Q, = 0, Q3 = 0, and (C, 4 is detectable, then the SLQR 
control problem can be solved by 

L = -~~+XA,C(CA,C~ + RI- '  (29.a) 

where Rt E RmfXn is a matrix to satisfy Ofit = I,, and A, is a 
positive definite matrix solved from the following discrete-time 
algebraic Riccati equation: 

X A , ~  - A, + s - ~ A , c ~ ( c A , c ~  + R)-'cA,A' = 0. (29.b) 

Remark 3: Although it is necessary that all the solutions of 
LQR, SLQR, and ELQR control problems be solved from a set 
of coupled matrix equations, however, an admissible solution 
may not exist even if the set N = { L I Z +  RLC is stable} is not 
empty. To guarantee the ELQR algorithm to be solvable, a 
simple way is by assuming Q,, Q3, and y,E[x(O)x(OYI -1- 7,s to 
be positive definite. Notice that by (16) and (17), the index J can 
be expressed by 

J = Tr A(Ql + CTLTQz + Q,LC + CTL"Q3LC) (30) 
where 

m 

A (x+ nLC)k{'ydE[x(o)x(o)'] + 7,(s + RLm'R')) 
k = O  

*(A' + C'L'RT)k (31) 
so that by assumption, a gain L with finite index must be 
bounded and contained in N.  Since for every compact subset # 
of U, J is continuous and bounded in L over # (a proof can be 
found in [14]), so that by Weierstrass theorem, # contains a 
minimal point. Hence, it is clear that if and only if N is not 
empty, the ELQR control problem is solvable (the LQR and 
SLQR control problems are two special cases). 

Remark 4: By main theorem and corollaries 3 and 6, it is clear 
that in general, the LQR, SLQR, and ELQR algorithms have 
distinct solutions. However, by corollaries 1, 4, and 7, all three 
control problems have the same solution if the system has 
complete state information. 

V. EXAMPLE 
Consider a periodic system as follows: 

YJt) = t1 O 1 4 t )  (32.b) 

Y(kT) =y,(kT) + 4 k T )  (32 .c) 
where u(kT) k = 0,1,2, represents the measurement errors 
which are uniformly distributed in the interval (-0.1 0.1) (i.e., 
the correlation is R = 0.0033). Assume T = 1, E[x(O)x'(O)] = I,, 
f = 2, and a discrete-time performance index as follows: 

x;(kT)Q,x,(kT) + y,LimE[x'(kT)Q,x(kT)]. 

(33) 

] k + m  

- 1  :m 0 10 20 30 kT 40 

(a) 
vs 

2, I 

0 10 20 30 40 

kT 
(C) 

Fig. 2. The outDut resDonses of 

$4 
2 ,  I 

- I '  I 
0 10 20 30 40 

kT 0)) 
2, I 

YI 

-e - 
0 10 20 30 40 

kT 
(d) 

linear Deriodic svstem (32) with the - 
multirate output feedback Eontroller 135). 

By (51, one has 

0.5403 0.8415 0.1952 -0.0845 
(-0.8415 0.5403) = (0.1811 -0.2525). (34) 

By (31, the multirate output feedback controller is taken by 

L,y(kT); 
L,y(kT); 

for 0 I 0 < T/2 
for T/2 I 8 < T (35) u(kT + e )  = 

where the gain L = [Lo L,]' E R2 is solved from the discrete- 
time algebraic Riccati equation (22). Four cases a): yd = 1, 
y, = 0, b): yd = 1, y, = 600, C): yd = 1, y, = 6oO0, d): yd = 1, 
y, = 30000 are solved. Their responses are also plotted in Fig. 2 
(where x(0) is given by [l l]' for simulation). Notice that case a) 
is the LQR case. Although this case can yield a fast response, 
however, noise interruption is the worst. Also notice that by 
increasing the ratio ys, the ability of noise rejection is improved 
but the response becomes slow. 

VI. CONCLUSION 
In this note, a modified optimal algorithm for multirate output 

feedback controllers of linear stochastic periodic systems is 
developed. By combining the discrete-time LQR and SLQR 
control problems as the ELQR control problem, one derives a 
general optimal algorithm to extend the LQR and the SLQR 
algorithms, simultaneously. Such an algorithm allows one to 
choose ratios on the LQR and the SLQR control problems, so 
that the presented multirate output feedback controller can 
balance the advantages between the optimal transient response 
of LQR control problem and the optimal steady-state noise 
regulation of SLQR control problem. 

In general, all the solutions of LQR, SLQR, and ELQR 
algorithms are solved from a set of coupled matrix equations. 
Important special cases for which the coupled matrix equations 
can be reduced to a discrete-time algebraic Riccati equation are 
also discussed. The most significant case is the multirate state 
feedback control scheme derived by AL-Rahmani and Franklin 
[l], where the discrete-time quadratic performance index is 
transformed from a continuous-time quadratic performance in- 

1 

I 

~ 
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dex. However, complete state information may be a necessary 
condition for the reduction of coupled matrix equations if a 
continuous-time quadratic performance index is selected. This 
difficulty can be overcome by using the classical separation ;:( zg) ~ ~ ~ ~ ~ ~ : ~ ~ a ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~  
principle to give an optimal filter [8]. 

NOTATION: 

The complex Plane. 

The vertex set of P”. 

plynomials‘ 

E 
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Schur Stability of Interval Polynomials 

Y. K. Foo and Y. C. Soh 
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The exposed edge set of P“. 
A special subset of E;. 
:= ([n/2]), the truncation of (n/2). 
A simply-connected region which is symmetrical with respect to 
the real axis. 

- 

I. INTRODUCTION 

The main contribution of the Kharitonov’s result [l] is the 
simplicity with which one can check the Hunvitz property of a 
family of interval polynomials. Several extensions of the 
Kharitonov-type results to other stability regions are also inter- 
esting and useful [2]-[5]. Unfortunately, the Kharitonov-type 
result does not apply to Schur stability [4], [5] unless the order of 
the interval polynomials is less than six [7]. Hence, in general 
one has to rely on the edge theorem [6], [9] to check the Shur 
property of interval polynomials. However, the computational 
load for checking the edges can be prohibitive since one gener- 
ally has to examine (n + 112” edges! Recently, Kraus et al. [8] 
have shown that the number of edges to be checked can be 
reduced to KH where K = 2”-” and H = (E + 1)2”. In this 
note, we shall show that the critical edges can be drastically 
reduced to the order of 2n2. 

11. PRELIMINARIES 

For real coefficient interval polynomials, our stability region 
D is symmetrical with respect to the real axis. This means that 
we only have to consider the Nyquist image of the whole family 
of polynomials on the upper plane since the Nyquist image on 
the lower plane is just the mirror image of the Nyquist image on 
the upper plane. For extensions to a family of complex coeffi- 
cient interval polynomials, we need to derive two sets of bound- 
ing polynomials, one for the upper plane and one for the lower 
plane. Our first preliminary result states that the Nyquist image 
of P” at any z ,  E @ is a 2(n + 1)-sided parpolygon. 

Proposition 2.1: Let P“ denote a family of real coefficient 
nth-order interval polynomials, i.e., 

pn = p ( z )  : p ( z )  = akzk ] (2.1) 

where, in general, ak E [a , ,aL] ,  k = O,l;.*,n, and 0 E 
[ a ; ,  a,’]. Then the Nyquist image of P” at any z ,  E @, i.e., 
Pn(z , ) ,  is a 2(n + 1)-sided convex parpolygon (may be degener- 
ate) whose edges are at angles kOz0, k = 0, l;.., n, with respect 
to the positive real axis; Oz, denotes the phase of z,. 

n i k =  0 

Pro05 For any z ,  = ~ x p ( j O z 0 ) x  E @, the Nyquist image of 
Abstnrcl-h this note, we shall present a result for checking the 

Schur stability of interval polynomials. In particular, we are interested 
in the number of critical vertex and edge polynomials that are sufficient 
for inferring robust Schur stability. 

p n  is given by 
n 

P(exp ( j e z , ) x )  = uk(cos kezo + j sin kezo)Xk. 
k =  0 
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Clearly, the Coefficients Of P(exp(JOzO)x) always lie On phase 
lines with angles kOzo, k = O,l;..,n, in the complex plane. 
Hence, P(exp( jOz,)x) is a 2(n + 1)-sided parpolygon whose 
edges are at angles kOz0, k = 0, l;.., n, with respect to the 
positive real axis. To identify the critical vertexes, we basically 
select uk to be either a; or a: to maximize (minimize) the 
imaginary part of exp(- jk ,O,~)P”(exp( jO,~)x)  for each kl E 
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