‘H 7 December 2000

ﬁ PHYSICS LETTERS B

ELSEVIER Physics Letters B 495 (2000) 105-113

www.elsevier.nl/locate/npe

A new look at the pair-production width in a strong magnetic field
W.F. Kao, Guey-Lin Lirr, Jie-Jun Tseng

Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan

Received 26 August 2000; received in revised form 12 October 2000; accepted 17 October 2000
Editor: T. Yanagida

Abstract

We reexamine the procegs— T + ¢~ in a background magnetic field comparableBo= mg/e. This process is known
to be non-perturbative in the magnetic-field strength. However, it can be shown tmabdithentf the above pair production
width are proportional to the derivatives of photon polarization function at the zero energy, which is perturbatikience, the
pair-production width can be easily obtained from the latter by the inverse Mellin transform. The implications of our approach
are discussedl 2000 Published by Elsevier Science B.V.

PACS:12.20.Ds; 11.55.Fv

The electroweak phenomena associated with an intensive background magnetic field are rather rich. Under
a background magnetic field, a physical photon can decay intetan pair or split into two photons. Such
processes are relevant to the attenuation of gamma-rays from pulsars [1,2]. The study of pair production proces:
y + B — eTe” 4+ B was initiated by Toll [3] long time ago. He obtained a rather tedious expression for the
absorption coefficienk) ., where| and L denote the photon-polarization directions which are, respectively,
parallel and perpendicular to the plane spanned by the magneti8faid the photon momentuq Writing
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wherew is the photon energy arilis the angle between the magnetic-field direction and the direction of photon
propagation. We note that, due to the quantization of electron and positron orbits in the magnetig fieddpuld

contain sawtooth absorption edges. However,HoK B, = mg/e andwsind > 2m,, these absorption edges are
rather closely spaced. Hence it is sensible to define an averaged absorption coefficient which is predigely the
(with a trivial prefactor) displayed above. In other words, Toll's result is validek B, andw sing > 2m,. It

is interesting to note that, as pointed out by Toll, the functifins can not be calculated order by ordereiB.

It is essential to use the exact Dirac wave functions for electrons and positrons in the magnetic field such that
the resulting7j, 1 are nonvanishing. The non-analytic behaviorsIpfi ateB = 0 can be easily seen from its
asymptotic expression for« 1:

3/1 1\ _
T”’L_)\/;(E’ZJE Y, (4)

The expression fof 1 was simplified considerably in the work by Tsai and Erber [5]. The authors computed the
photon polarization function by the proper-time technique [6] and determined the absorption coefficiersing
the optical theorem. They obtained

1
fam=57 [an-9(1-37). (5 8) Jrosl( ) ©)
0

whereK>,3 is the modified Bessel function. At the first glance, the result of Tsai and Erber appears very different
from Toll's result. However, by computing theomentf 7j  , the former authors were able to show that their
result is in fact equivalent to that of Toll We observe that Tsai and Erber simply utilized thementof Ty,1 as
a mathematical tool to show the equivalence between two sets of absorption coefficients. The physical significance
of thesemomentsvas not studied. In this note, we shall clarify the meaning of these moments and develop a new
method of computing the absorption coefficients. Since our approach is essentially a systematic exp&risign in
it will remain valid for a background magnetic field comparabléto

We are motivated by the following contour integral, which resembles to the contour integral encountered in the
QCD sum rule calculation afte~ — hadrons [7]:

dw? 17||,L(a)2)
]I‘l = 2 . 2 2 l’ (6)
T (w + wo)n+
where the contour of integratiafi is shown in Fig. 1.
The functiong’T), . are defined as
MyL=e  Mue 1 (7)

whereel’l‘ andeﬁ are, respectively, the photon polarization vectors parallel and perpendicular to the plane spanned
by the photon momentupand the magnetic fielB. We note that the integrd)}, may be evaluated in two different
ways. One computes, either by the residue theorem or by a direct integration along the codtowith the
realization that the contribution from the outer circle vanishes. The equivalence of two integration procedures
gives rise to the relation:

1 d" 1'[
a d(a)z)” L

1 To state it more precisely, Tsai and Erber computeditbenentof the averaged functiof = 1/2 - (T + T), which is relevant to the
attenuation of unpolarized photons.

2
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Fig. 1. The integration contour fdf, and the analytic structure @1} | . In actual calculations, we take the radius of the circle to infinity.

whereM| , are the threshold energies of pair productions [3,4] given by

B 2
MZsiPo =4am?, ~ MIsinfo=m <1+ /1+2B> (9)
C

with 6 the angle between the photon momentum and the magnetic field. §ince: Im 17,1 /w by the optical
theorem, the above equation relate the real part of vacuum polarization function to the absorption coefficient.

We observe that the |.h.s. of Eq. (8) can be easily calculated at —wg =0, since the threshold behaviors of
T, are absent at this energy value. With this choice@nfwe recast Eq. (8) into

1
i \d@2n I+

with y = M? | /w?. One notes that the imaginary part@f i (»?) vanishes for the rangeQ »® < M? | . This
property has been verified in the previous works [3,4]. Therefore one can effectively set the integration range
of Eq. (10) as fromy = 0 to y = co. Now, it is easily seen that the derivatives@j, , at the zero energy are
proportional to the Mellin transform afj | - y Y2 =« 1 - @/M 1. Once the L.h.s. of Eq. (10) is calculated, the
absorption coefficientg), . can be determined by the inverse Mellin transform.

To calculatelT;, 1 and their derivatives, we begin with the proper-time representation of vacuum polarization
functionI1,, in a background magnetic field [8]:

Ml n 1
L i
” / Yiep L (y™?), (10)
0

633 00 +1 .
My (q) = —Wdefdv{f’w"[(nguv — quqv) No = (a8 — q1nq1v) N
0 -1
+ (g% gL — QL/LQLU)NL] — e (1= ?) (g — quqv)}, (11)
where
po=m? 1-v? , cogzv) —Ccogz7) , (12)
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with z = eBs, and

No— cogzv) — v cot(z) sin(zv)
0= sin(z) '

N = —cot(z) (1— v? +

v Sin(zv) vSin(zv) coqzv)
sin(z) ) sin(z)  sin(z) ’
_cogzv) | vcol(z) sin(zv) co9qzv) — c0Yz)

- 2 . 13
Ny sin(z) + sin(z) + Sint(z) ~

To constructT),; from I7,,,, we note that only the structures proportionaMpandN | contribute tof7) ; . Since
we only concern with the limi» <« m, andB < B, IT}, 1 can be expanded in a serfesf w andB:

o0

M=y 2am? (w?siPOB2\" I'(3n — 1)I'?(2n) (6n+1,3n +1
b= 3m2B2 T(n) T (4n) dn+1 ’

(14)
n=1 T

where the neglected terms are of the orderB?sir?6/m2B2)"(B/B.)?. Taking the derivatives of

Iy 1, we arrive at
1 a . 2am? ( B2si?0\" I'(3n — )I'2(2n) (6n+1,3n+1
a\d@2n I+ 3B2m?2 ()T (4n) dn+1

Combining the above equation and Eq. (10), the absorption coefficgigntcan be written in terms of inverse
Mellin transform:

(15)

®?2=0 T
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irw 14 /14 2B/B. () (4s) 3s—1 4s+1°
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whereaq is any real number greater thapdt while 1’ = (wsind B/~/3m.B.) and)” =)' - (1+ 1+ 2B/B.)/2.
At this moment, we only concern with the leading magnetic-field effect to the absorption coefficients, hence we
may set(1+ /1+2B/B.) — 2 andA” — )" in «. Numerically we find no distinctions between our results and
the results of Tsai and Erber [5]. Fat =10, we haveq = 7.2 x (amf/na)) while k; =4.4 x (amg/m). For
A’ =100, the above absorption coefficients becomed(amf/na)) and 28x (amg/m), respectively. In the
current approximatiork is always greater than, . For a high-energy photon, i.e/,>> 1, we havec /x; = 1.5.
This is already reflected in the above case wiite= 100. For the low-energy photoR’, <« 1, we findx) /x| = 2.
The numerical agreement between Eq. (16) and the result of Ref. [5], as shown in Eq. (5), is not a coincidence. We
shall verify shortly that both expressions are equivalent by comparing their infinite sequences of moments.

As mentioned earlier, in order to establish the equivalence of their result with those of the previous works,
the authors of Ref. [5] computed thmomentf,(,l) = ]a’o dxx"T(x) with T(x) =1/2- (T)(x) + TL(x)) and
x = (4m.B./3wB). The superscripfl) is used to denote the set mlomentsomputed from the functions; |
given in Ref. [5]. The superscrigd) will then be used for denoting theomentsomputed from our results for
Tj, .. Without taking the average, we obtain tmement®f each individual functiorf) and7 , which we denote

2 In fact, we do not need Eq. (11) to obtain such an expansion. A convenient weak-field expansion technique applicable to the current
problem has been developed in Ref. [9]
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asC,(Zl)(H) andC,(,l)(J_), respectively. We obtain

1261+ 14,30+ 8) I'(n/2+2/3) (n/2+ 4/3)I" (n+2)

CP (Il L) =272@3/7) 2n+5 I (1+5/2)

17)

To compareCy” (||, L) with the momentspertinent to Eq. (10), i.eD\” = [°dy -y (Ty 1 (y)y~?), we
employ the relation

pOG H=2( =3 "o 41 (18)
n AT\ 2B, sing =23 0

where C§212(||,L) is defined in the same way asﬁ)fz(n,L). Our first goal is to show that

Cg:),z(ll, 1) = CSLZ(M, 1). In fact, this identity can be established by combining the relation

2n+1 -1 _
Dflo)(H’ 1= 2 (£> I'Gn—1)Ir@2n)I(2n) 6n+1,3n+ 1)’ (19)
3 B, I'(n)I"(4n) dn+1
derived from Egs. (10) and (15), with Egs. (17), (18) and the identity
Fn—1/3r(n+1/3) 2" /m I'Gn—1I'(2n) (20)

rn+1/2 332" I (4n)

Now that we have showi®y (||, L) = CS" ,(|l, L), we obtain the identityD{’ (||, L) = D" (|l, L) where

D,(,l)(n,J_) is given by the r.h.s. of Eq. (18) with?é?ﬁﬂ”,J.) replaced bngLZ(M,J_). Since bothD,’s are
identical, one can show that the absorption coefficient derived from our approach, Eq. (16), is equivalent to the
result of Ref. [5] given by Egs. (5) and (1), provided that

> D o0 (21)
n
according to the Carleman’s theorem [10]. Indeed, this is true since
1/2
—1/2n 1 9(2n 21-3/2 2-2n
D, — asD, ~ - — . 22
LD h e ash (7)) )

Therefore, we have proven that the leading-order results of our approach agree with the results of Ref. [5]. In
addition, as one can see from the r.h.s. of Eq. (18), only the even moments defined by Tsai and Erber are relevan
to the physics of pair-production in a background magnetic field.

We like to point out the differences between our approach and the approach of Ref. [5]. Tsai and Erber begin
with 17, given in Eq. (11) and evaluate the imaginary parthf, for o = ¢° greater than the pair production
threshold. They arrive at the asymptotic result, Eq. (5), in the liBnik B, andwsind > 2m,.. However, their
approach does not provide an estimate of possible correctiols asd w deviate from the above limit. Our
approach has an advantage in that it treats the magnetic-field effects perturbativ@lyf8g. In Eq. (15), the
nth derivative of the vacuum-polarization functiéfy, ; is expanded in powers cBZ/BCZ. Hence the absorption
coefficient, which is related to the derivativesidf | by an inverse Mellin transform, can also be written in powers
of BZ/BE. In this way, we are able to compute the absorption coefficient eveB tmmparable taB.. As for the
low energy regime near the pair production threshelsing = 2m,, the quantum effects due to the magnetic field
become important. Namely, for givemand B, the momenta oé™ ande~ along the magnetic-field direction can
only take discrete values, and consequently the absorption coeffigientsontain resonant peaks. The spacing
of these peaks increasesasing gradually decreases to the pair-production thresheig. 2 detailed study of
this threshold behavior has been initiated by Daugherty and Harding [11]. In Fig. 6 of Ref. [11], it is shown that
the threshold behavior is non-negligible toe= w?B./2m2B < 10° with sir?0 = 1. For a genera, the relevant
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parameter becomés = wzsinzeBc/meB. It should be understood that our result as well as the result of Ref. [5]
are applicable for a largg¢’) where the threshold effect is not significant.
We have mentioned that our results &qr, are written as power series B/ B.)2. It is important to compute
the next-to-leading corrections. Let us begin by computing the next-to-leading magnetic-field corredipmasitb
its derivatives. To do this we perform a weak-field expansion with respect to the expg@nand the amplitude
Ny, along with a rotation of the integration contour> —is:
2 i
2 WSO , 2\2 1 2).2
= m?— 1- 1- —(3- ),
o = n? = TSl 2 (1o (3= P)e
cos coshz sinh(z
_iny— | Hzv) : hz) 1_,24 08 h(zv)
sinh(z) sinh(z) sinh(z)
3
= —Z (1)) (3= 1)+ 5o5(1 - ) (15— 207 + 3% + - (23)
Hence the next-to-leading (NL) corrections to the derivative§pfeads:

1 " _ —2umZ( B\?(B?sir?6)\"nI"Gn)['(2n) (3+ 21 + 24n® + 361°) (24)
n\d@?m I )| ..o 5t \B. 3B2m2 I (n)T" (4n) (4n +1)(4n +3)
Using Eq. (10), and applying the inverse Mellin transform, we arrive at
—am? (B\2 T [ (35)I2(25)s (34 25 + 2452 + 365
(NL T B / ds(V)% (35)1"°(2s)s (3+ 25 + 24s° + ) (25)
I 7 10irw \ B, rs)Cds)  @Gs+Dds+3)
—ioo+b
NL _

whereb can be chosen to be any positive number. Numerically( ByB.)? = 0.1 and)’ = 10, we have<” =
—1.5x 1073 x (@mZ/mw). We note that’ ~ 10* for the current values a and)’. In this casexN- /x| < 0.1%.
For the same magnetic-field strength with= 10° (3’ ~ 3), we obtainedc; = 2.0 x (am2/7w) and k" =
7.7 x 1074 x (am? /7 w). The ratior = |/<|'|\'L/K||| remains to be less thanl® in this case. Hence in the energy
regime that the quantum effects of the magnetic field is not essential, the subleading contribution to the absorption
coefficient,:cl’l“'-, is rather suppressed. If we extrapolate our analysis down to the energy of pair-production threshold
wsind = 2m, while maintaining(B/B.)?> =0.1, i.e., A’ = 0.35, we findxj = 6.5 x 1072 x (em?/ww) and
KNt = =22 x 1073 x (am?/7w). It is interesting to see that)'- is of the same order of magnitude as the
leading contribution. This reflects the limitation of our approach and that of Tsai and Erber near the pair-production
threshold.

The next-to-leading correction kg is calculated in a similar way. The expansiorpgfproceeds as before while

VN [_ coshizv)  wvcoshz)sinhizv)  2(coshzv) — COSf(z))]
P sinh(z) sink(z) sink?(z)

= —i(l—vz)(3+u2) + i
12 180

Then the next-to-leading corrections to the derivativeE ofare

(1-v)(15-60% —vH) +---. (26)

1/ d" w ~ —2um? ( B\?( B2sir?0\" nI(3n)I'2(2n) (3+ 3% + 60n? + 181°%) 27)
m\d?r '+ w20 57 B, 3B2m? I'(n)I" (4n) (4n+1)(4n+3)
Applying the inverse Mellin transform, we obtain
2 2 +ioco+c 2 2 3
N —oams (B ;25 T (3s) 4 (2s)s (34 39 + 60s- + 185°)
N = — ds(\)) , (28)
10i7w \ B I (s)I"(4s) (4s +1)(4s + 3)

—ioo+c
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Fig. 2. The photon absorption coefficients as functions of the photon energy wWith-sit and(B/B.)% =0.1.

wherec can be chosen as any positive number, and, to isolate)mEZ/Bcz) corrections, we have made the
identificationsA” — A’ and (1 + /I + 2B/B.) — 2. Numerically, for(B/B.)? = 0.1 and1’ = 10, we have
K1 =4.4x (am?/mw) while Kl'l‘“- =13x 1073 x (am?2/ww). Similar to thex case |« /i1 | < 0.1% fora’ = 10.
For A’ = 3 which corresponds ' ~ 10%, we findk | = 1.2 x (am?/7w) andx\t = —4 x 1073 x (am?/7w).

In this caselkNt /x| | ~ 0.3%. We observe again that the ratio}'" /« | |, grows rapidly to 60% at the energy of
pair-production threshold witk " being negative.

From the above next-to-leading order calculations, it is quite evident tha® (B&/B)-corrections toc; and
k1 are both rather insignificant. However, one should be reminded that there ar@ (®illB.)-corrections to
k1 as shown in Eg. (16). Without making the identificatiods— A’ and (1 4+ /1+ 2B/B.) — 2, we have
k| =3.8x (oamf/na)) for A" =10 x (1+ I+ 2B/B.)/2 (i.e.,»’ = 10) with (B/B.)? = 0.1. We recall that
Kk =44 x (amf/nw) if the above identifications are made. Hence ¢hg3/ B.)-correction reduces,; by about
14% at the currenb andB. Essentially, the (B/B.)-corrections tac | relative tox are kinematic in nature. They
are due to the differences in pair-production threshold resulting from different polarization states of the decaying
photons. For a photon with thepolarization, the pair-production threshold corresponds to botAnde~ being
in the ground state. On the other hand, for a photon withlth@olarization, eithee™ or e~ must be in the first
excited state at the pair-production threshold [3].

Since theO(BZ/Bcz)—corrections tox, 1 can be neglected, Eq. (16) are accurate expressions for photon
absorption coefficients even to a magnetic-field strength comparalsle. tm Fig. 2, we plotk | as functions
of @ with sir?9 = 1 and(B/ B,)?> = 0.1. Here our result fok is identical to that of Tsai and Erber, whereas our
result fork; contains the kinematic corrections which were not taken into accounts in previous works. As can be
seen from Fig. 2, botk and« are rather insensitive t® oncew surpasses 10 MeV. Hence, for a sufficiently
large w, the kinematic corrections to; mainly reside in the factor A1 + /1+ 2B/B.) rather than in.”. It
should be noted that the applicability of our result is determined by the paraghetebzsinzeBc/meB [11].

For the parameter set in Fig. 2, i.éB/B.)2 = 0.1 and sif 6 = 1, we havew ~ 25m, = 12.5 MeV for &’ = 10°.
Hence, one expects the plots in Fig. 2 to be reliablesfor 10 MeV.

At this point, one might conclude that our approach can not describe the threshold behavior of the absorption
coefficient. This is in fact not true. We should stress that it is the weak-field expansion of Eq. (15) that spoils the
threshold behavior of the absorption coefficient, despite such an expansion is useful for computing the absorption
coefficient at much higher energies. To see this, it is instructive to review how Eq. (15) is derived. In this note,
we obtained Eq. (15) by expanding Eq. (11) directly. However, one could also derive Eq. (15) by expanding the
internal fermion propagators ifY;, | in powers ofeB. This expansion has been derived in Eq. (47) of Ref. [9].

In that equation, one can see that the weak-field expansion mixes contributions coming from different Landau
levels. Hence the threshold behaviorsf ;| at any given Landau level are spoiled by the weak-field expansion.
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In fact, the absorption coefficientg | calculated from/7 ; do not vanish below the pair-production threshold,

ie., 0<w? < MZL. This can be seen by performing the integration in Eq. (16). Such a behavior is again an artifact

caused by the weak field expansion performed near the pair-production threshold. Indeed, as mentioned before

Klll\f!‘_ are comparable to;, | with an opposite sign in this energy range. The cancellation of these two contributions

is consistent with the fact that the absorption coefficients should vanish below the pair-production threshold [3,4].
To recover the threshold behavior, one may compijte using electron propagatorsin the Furry picture [12,13]:

o 27,3 : / 2 2012 2 : 30,3 3
dwdgdqg® exp(—io —t) +ig(x'c—x°) +ig>(x"° — x°))
B X)ap = / Spogzgtas (29)
n=0

(27)3 qf —m2 —2neB +ic

whereqf = (¢%? — (¢®?, n is the quantum number for the Landau level, &g, ,2 ;3 is a 4x 4 matrix in the
spinor space. In this form, all the poles of the propagator appear explicitly, and the threshold behakjpn®f
preserved throughout the calculation [14]. Clearly, a calculation using the Furry-picture propagators compliments
the weak-field expansion technique we have been discussing so far. The former produces a correct threshold
behavior of the absorption coefficient but becomes unpractical at larger energies, since, in such a case, contribution
from a great number of Landau levels has to be summed over. Nevertheless, in the scen@is-ti®at it is
convenient to use the Furry-picture propagators because the available Landau levels for pair production to occur
are significantly reduced.

In conclusion, we have developed a new method for computing the photon absorption coefficient in a strong
background magnetic fieldl > B.. Disregarding the next-to-leading magnetic-field correctionsgpis identical
to that obtained by Tsai and Erber [5]. Although Tsai and Erber dekiyeohder the assumptioB < B, = mf/e
andw sind > 2m,., we have been able to show that such a result is in fact accurakecimmparable t@,., provided
o (&) is large enough. For ., our result differs from that obtained in Ref. [5]. In this regard, we have identified
certainO (B/B,) corrections toc; which are kinematic in nature. We also pointed out that our approach may be
extended to lower photon energies near the pair-production threshold, so long as we calgulatith electron
propagators in the Furry picture [13]. For a supercritical magnetic fiejgt B., we argued that it is convenient
to use the Furry-picture propagators. As a closing, we like to emphasize that a better understanding of the curren
process is crucial for determining the photon attenuation properties in highly magnetized pulsars [15].
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