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A new look at the pair-production width in a strong magnetic field
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Abstract

We reexamine the processγ → e+ + e− in a background magnetic field comparable toBc ≡m2
e/e. This process is known

to be non-perturbative in the magnetic-field strength. However, it can be shown that themomentsof the above pair production
width are proportional to the derivatives of photon polarization function at the zero energy, which is perturbative inB. Hence, the
pair-production width can be easily obtained from the latter by the inverse Mellin transform. The implications of our approach
are discussed. 2000 Published by Elsevier Science B.V.

PACS:12.20.Ds; 11.55.Fv

The electroweak phenomena associated with an intensive background magnetic field are rather rich. Under
a background magnetic field, a physical photon can decay into ane+e− pair or split into two photons. Such
processes are relevant to the attenuation of gamma-rays from pulsars [1,2]. The study of pair production process
γ + B → e+e− + B was initiated by Toll [3] long time ago. He obtained a rather tedious expression for the
absorption coefficientκ‖,⊥, where‖ and⊥ denote the photon-polarization directions which are, respectively,
parallel and perpendicular to the plane spanned by the magnetic fieldB and the photon momentumq. Writing

(1)κ‖,⊥ = α
2

sinθ

(
eB

me

)
T‖,⊥(λ),

with λ= 3
2(eB/m

2
e)(ω/me)sinθ , Toll obtained

(2)T‖,⊥(λ)= 9

λ

∞∫
(6/λ)2/3

dv

[−(1− 3η‖,⊥/2λv3/2)A′(v)
v5/4(v3/2− 6/λ)1/2

+ (v
3/2− 6/λ)1/2

3v3/4 A(v)

]
,

whereη‖ = 1, η⊥ = 3 and

(3)A(v)= 1

2π

∞+iε∫
−∞+iε

dt eivt+it3/3,
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whereω is the photon energy andθ is the angle between the magnetic-field direction and the direction of photon
propagation. We note that, due to the quantization of electron and positron orbits in the magnetic field,κ‖,⊥ should
contain sawtooth absorption edges. However, forB � Bc ≡m2

e/e andω sinθ � 2me, these absorption edges are
rather closely spaced. Hence it is sensible to define an averaged absorption coefficient which is precisely theT‖,⊥
(with a trivial prefactor) displayed above. In other words, Toll’s result is valid forB � Bc andω sinθ � 2me. It
is interesting to note that, as pointed out by Toll, the functionsT‖,⊥ can not be calculated order by order ineB.
It is essential to use the exact Dirac wave functions for electrons and positrons in the magnetic field such that
the resultingT‖,⊥ are nonvanishing. The non-analytic behaviors ofT‖,⊥ at eB = 0 can be easily seen from its
asymptotic expression forλ� 1:

(4)T‖,⊥ →
√

3

2

(
1

2
,

1

4

)
e−4/λ.

The expression forT‖,⊥ was simplified considerably in the work by Tsai and Erber [5]. The authors computed the
photon polarization function by the proper-time technique [6] and determined the absorption coefficientκ‖,⊥ using
the optical theorem. They obtained

(5)T‖,⊥(λ)= 4
√

3

πλ

1∫
0

dv
(
1− v2)−1

[(
1− 1

3
v2
)
,

(
1

2
+ 1

6
v2
)]
K2/3

(
4

λ

1

1− v2

)
,

whereK2/3 is the modified Bessel function. At the first glance, the result of Tsai and Erber appears very different
from Toll’s result. However, by computing themomentsof T‖,⊥, the former authors were able to show that their
result is in fact equivalent to that of Toll.1 We observe that Tsai and Erber simply utilized themomentsof T‖,⊥ as
a mathematical tool to show the equivalence between two sets of absorption coefficients. The physical significance
of thesemomentswas not studied. In this note, we shall clarify the meaning of these moments and develop a new
method of computing the absorption coefficients. Since our approach is essentially a systematic expansion inB/Bc ,
it will remain valid for a background magnetic field comparable toBc .

We are motivated by the following contour integral, which resembles to the contour integral encountered in the
QCD sum rule calculation ofe+e−→ hadrons [7]:

(6)In =
∫
C

dω2

2πi

Π‖,⊥(ω2)

(ω2+ω2
0)
n+1

,

where the contour of integrationC is shown in Fig. 1.
The functionsΠ‖,⊥ are defined as

(7)Π‖,⊥ = εµ‖,⊥Πµνεν‖,⊥,
whereεµ‖ andεµ⊥ are, respectively, the photon polarization vectors parallel and perpendicular to the plane spanned
by the photon momentumq and the magnetic fieldB. We note that the integralIn may be evaluated in two different
ways. One computesIn either by the residue theorem or by a direct integration along the contourC with the
realization that the contribution from the outer circle vanishes. The equivalence of two integration procedures
gives rise to the relation:

(8)
1

n!
(

dn

d(ω2)n
Π‖,⊥

)∣∣∣∣
ω2=−ω2

0

= 1

π

∞∫
M2‖,⊥

dω2 ImΠ‖,⊥(ω2)

(ω2+ω2
0)
n+1

,

1 To state it more precisely, Tsai and Erber computed themomentsof the averaged functionT ≡ 1/2 · (T‖ + T⊥), which is relevant to the
attenuation of unpolarized photons.
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Fig. 1. The integration contour forIn and the analytic structure ofΠ‖,⊥. In actual calculations, we take the radius of the circle to infinity.

whereM‖,⊥ are the threshold energies of pair productions [3,4] given by

(9)M2‖ sin2 θ = 4m2
e, M2⊥ sin2 θ =m2

e

(
1+

√
1+ 2

B

Bc

)2

,

with θ the angle between the photon momentum and the magnetic field. Sinceκ‖,⊥ = ImΠ‖,⊥/ω by the optical
theorem, the above equation relate the real part of vacuum polarization function to the absorption coefficient.

We observe that the l.h.s. of Eq. (8) can be easily calculated atω2=−ω2
0 = 0, since the threshold behaviors of

Π‖,⊥ are absent at this energy value. With this choice ofω2
0, we recast Eq. (8) into

(10)
1

n!
(

dn

d(ω2)n
Π‖,⊥

)∣∣∣∣
ω2=0
= M

1−2n
‖,⊥
π

1∫
0

dy · yn−1(κ‖,⊥(y)y−1/2),
with y =M2‖,⊥/ω2. One notes that the imaginary part ofΠ‖,⊥(ω2) vanishes for the range 06 ω2 6M2‖,⊥. This
property has been verified in the previous works [3,4]. Therefore one can effectively set the integration range
of Eq. (10) as fromy = 0 to y =∞. Now, it is easily seen that the derivatives ofΠ‖,⊥ at the zero energy are
proportional to the Mellin transform ofκ‖,⊥ · y−1/2≡ κ‖,⊥ · ω/M‖,⊥. Once the l.h.s. of Eq. (10) is calculated, the
absorption coefficientsκ‖,⊥ can be determined by the inverse Mellin transform.

To calculateΠ‖,⊥ and their derivatives, we begin with the proper-time representation of vacuum polarization
functionΠµν in a background magnetic field [8]:

(11)

Πµν(q)=− e3B

(4π)2

∞∫
0

ds

+1∫
−1

dv
{
e−isφ0

[(
q2gµν − qµqν

)
N0−

(
q2‖g‖µν − q‖µq‖ν

)
N‖

+ (q2⊥g⊥µν − q⊥µq⊥ν
)
N⊥

]
− e−ism2

e
(
1− v2)(q2gµν − qµqν

)}
,

where

(12)φ0=m2
e −

1− v2

4
q2‖ −

cos(zv)− cos(z)

2zsin(z)
q2⊥
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with z= eBs, and

N0= cos(zv)− v cot(z)sin(zv)

sin(z)
,

N‖ = −cot(z)

(
1− v2+ v sin(zv)

sin(z)

)
+ v sin(zv)

sin(z)

cos(zv)

sin(z)
,

(13)N⊥ =−cos(zv)

sin(z)
+ v cot(z)sin(zv)

sin(z)
+ 2

cos(zv)− cos(z)

sin3(z)
.

To constructΠ‖,⊥ fromΠµν , we note that only the structures proportional toN‖ andN⊥ contribute toΠ‖,⊥. Since
we only concern with the limitω�me andB <Bc,Π‖,⊥ can be expanded in a series2 of ω andB:

(14)Π‖,⊥ =
∞∑
n=1

2αm2
e

π

(
ω2 sin2 θB2

3m2
eB

2
c

)n
Γ (3n− 1)Γ 2(2n)

Γ (n)Γ (4n)

(
6n+ 1,3n+ 1

4n+ 1

)
+· · · ,

where the neglected terms are of the order(ω2B2 sin2 θ/m2
eB

2
c )
n(B/Bc)

2. Taking the derivatives of
Π‖,⊥, we arrive at

(15)
1

n!
(

dn

d(ω2)n
Π‖,⊥

)∣∣∣∣
ω2=0
= 2αm2

e

π

(
B2 sin2 θ

3B2
cm

2
e

)n Γ (3n− 1)Γ 2(2n)

Γ (n)Γ (4n)

(
6n+ 1,3n+ 1

4n+ 1

)
+ · · · .

Combining the above equation and Eq. (10), the absorption coefficientsκ‖,⊥ can be written in terms of inverse
Mellin transform:

κ‖ = αm
2
e

iπω

+i∞+a∫
−i∞+a

ds(λ′)2s Γ (3s)Γ
2(2s)

Γ (s)Γ (4s)

1

3s − 1
× 6s + 1

4s + 1
,

(16)κ⊥ = 2αm2
e

iπω

1

1+√1+ 2B/Bc

+i∞+a∫
−i∞+a

ds(λ′′)2s Γ (3s)Γ
2(2s)

Γ (s)Γ (4s)

1

3s − 1
× 3s + 1

4s + 1
,

wherea is any real number greater than 1/3; whileλ′ = (ω sinθB/
√

3meBc) andλ′′ = λ′ · (1+√1+ 2B/Bc)/2.
At this moment, we only concern with the leading magnetic-field effect to the absorption coefficients, hence we
may set(1+√1+ 2B/Bc)→ 2 andλ′′ → λ′ in κ⊥. Numerically we find no distinctions between our results and
the results of Tsai and Erber [5]. Forλ′ = 10, we haveκ‖ = 7.2× (αm2

e/πω) while κ⊥ = 4.4× (αm2
e/πω). For

λ′ = 100, the above absorption coefficients become 42× (αm2
e/πω) and 28× (αm2

e/πω), respectively. In the
current approximation,κ‖ is always greater thanκ⊥. For a high-energy photon, i.e.,λ′ � 1, we haveκ‖/κ⊥ = 1.5.
This is already reflected in the above case withλ′ = 100. For the low-energy photon,λ′ � 1, we findκ‖/κ⊥ = 2.
The numerical agreement between Eq. (16) and the result of Ref. [5], as shown in Eq. (5), is not a coincidence. We
shall verify shortly that both expressions are equivalent by comparing their infinite sequences of moments.

As mentioned earlier, in order to establish the equivalence of their result with those of the previous works,
the authors of Ref. [5] computed themomentsC(1)n =

∫∞
0 dχχnT (χ) with T (χ) = 1/2 · (T‖(χ) + T⊥(χ)) and

χ = (4meBc/3ωB). The superscript(1) is used to denote the set ofmomentscomputed from the functionsT‖,⊥
given in Ref. [5]. The superscript(0) will then be used for denoting themomentscomputed from our results for
T‖,⊥. Without taking the average, we obtain themomentsof each individual functionT‖ andT⊥, which we denote

2 In fact, we do not need Eq. (11) to obtain such an expansion. A convenient weak-field expansion technique applicable to the current
problem has been developed in Ref. [9]
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asC(1)n (‖) andC(1)n (⊥), respectively. We obtain

(17)C(1)n (‖,⊥)= 2−2(3/π)1/2
(6n+ 14,3n+ 8)

2n+ 5

Γ (n/2+2/3)Γ (n/2+ 4/3)Γ (n+2)

Γ (n+5/2)
.

To compareC(1)n (‖,⊥) with the momentspertinent to Eq. (10), i.e.,D(0)n ≡
∫∞

0 dy · yn−1 · (T‖,⊥(y)y−1/2), we
employ the relation

(18)D(0)n (‖,⊥)= 2

(
3B

2Bc sinθ

)2n−1

C
(0)
2n−2(‖,⊥),

where C
(0)
2n−2(‖,⊥) is defined in the same way asC(1)2n−2(‖,⊥). Our first goal is to show that

C
(0)
2n−2(‖,⊥)= C(1)2n−2(‖,⊥). In fact, this identity can be established by combining the relation

(19)D(0)n (‖,⊥)= 22n+1

3n

(
B

Bc

)2n−1
Γ (3n− 1)Γ (2n)Γ (2n)

Γ (n)Γ (4n)

(6n+ 1,3n+ 1)

4n+ 1
,

derived from Eqs. (10) and (15), with Eqs. (17), (18) and the identity

(20)
Γ (n− 1/3)Γ (n+ 1/3)

Γ (2n+ 1/2)
= 24n√π

33n−3/2 ×
Γ (3n− 1)Γ (2n)

Γ (n)Γ (4n)
.

Now that we have shownC(0)2n−2(‖,⊥)= C(1)2n−2(‖,⊥), we obtain the identityD(0)n (‖,⊥) = D(1)n (‖,⊥) where

D
(1)
n (‖,⊥) is given by the r.h.s. of Eq. (18) withC(0)2n−2(‖,⊥) replaced byC(1)2n−2(‖,⊥). Since bothDn ’s are

identical, one can show that the absorption coefficient derived from our approach, Eq. (16), is equivalent to the
result of Ref. [5] given by Eqs. (5) and (1), provided that

(21)
∑
n

D
−1/2n
n →∞

according to the Carleman’s theorem [10]. Indeed, this is true since

(22)
∑
n

D
−1/2n
n →

∑
n

1

n
→∞ asDn ∼ 9

8

(
2π

3

)1/2

n2n−3/2e2−2n.

Therefore, we have proven that the leading-order results of our approach agree with the results of Ref. [5]. In
addition, as one can see from the r.h.s. of Eq. (18), only the even moments defined by Tsai and Erber are relevant
to the physics of pair-production in a background magnetic field.

We like to point out the differences between our approach and the approach of Ref. [5]. Tsai and Erber begin
with Πµν given in Eq. (11) and evaluate the imaginary part ofΠµν for ω ≡ q0 greater than the pair production
threshold. They arrive at the asymptotic result, Eq. (5), in the limitB� Bc andω sinθ � 2me. However, their
approach does not provide an estimate of possible corrections asB andω deviate from the above limit. Our
approach has an advantage in that it treats the magnetic-field effects perturbatively forB < Bc . In Eq. (15), the
nth derivative of the vacuum-polarization functionΠ‖,⊥ is expanded in powers ofB2/B2

c . Hence the absorption
coefficient, which is related to the derivatives ofΠ‖,⊥ by an inverse Mellin transform, can also be written in powers
of B2/B2

c . In this way, we are able to compute the absorption coefficient even forB comparable toBc . As for the
low energy regime near the pair production threshold,ω sinθ & 2me, the quantum effects due to the magnetic field
become important. Namely, for givenω andB, the momenta ofe+ ande− along the magnetic-field direction can
only take discrete values, and consequently the absorption coefficientsκ‖,⊥ contain resonant peaks. The spacing
of these peaks increases asω sinθ gradually decreases to the pair-production threshold 2me. A detailed study of
this threshold behavior has been initiated by Daugherty and Harding [11]. In Fig. 6 of Ref. [11], it is shown that
the threshold behavior is non-negligible forξ ≡ ω2Bc/2m2

eB < 103 with sin2 θ = 1. For a generalθ , the relevant
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parameter becomesξ ′ = ω2 sin2 θBc/2m2
eB. It should be understood that our result as well as the result of Ref. [5]

are applicable for a largeξ(ξ ′) where the threshold effect is not significant.
We have mentioned that our results forκ‖,⊥ are written as power series in(B/Bc)2. It is important to compute

the next-to-leading corrections. Let us begin by computing the next-to-leading magnetic-field corrections toΠ‖ and
its derivatives. To do this we perform a weak-field expansion with respect to the exponentφ0 and the amplitude
N‖, along with a rotation of the integration contours→−is:

φ0 = m2
e −

ω2 sin2 θ

48
z2(1− v2)2(1− 1

30

(
3− v2)z2+ · · ·

)
,

−iN‖ →
[

cosh(zv)

sinh(z)
− cosh(z)

sinh(z)

(
1− v2+ v sinh(zv)

sinh(z)

)]
(23)= − z

6

(
1− v2)(3− v2)+ z3

360

(
1− v2)(15− 2v2+ 3v4)+ · · · .

Hence the next-to-leading (NL) corrections to the derivatives ofΠ‖ reads:

(24)
1

n!
(

dn

d(ω2)n
ΠNL‖

)∣∣∣∣
ω2=0
= −2αm2

e

5π

(
B

Bc

)2(
B2 sin2 θ

3B2
c m

2
e

)n
nΓ (3n)Γ 2(2n)

Γ (n)Γ (4n)

(3+ 2n+ 24n2+ 36n3)

(4n+ 1)(4n+ 3)
.

Using Eq. (10), and applying the inverse Mellin transform, we arrive at

(25)κNL‖ =
−αm2

e

10iπω

(
B

Bc

)2 +i∞+b∫
−i∞+b

ds(λ′)2s Γ (3s)Γ
2(2s)s

Γ (s)Γ (4s)

(3+ 2s + 24s2+ 36s3)

(4s + 1)(4s + 3)
,

whereb can be chosen to be any positive number. Numerically, for(B/Bc)
2 = 0.1 andλ′ = 10, we haveκNL‖ =

−1.5×10−3× (αm2
e/πω). We note thatξ ′ ≈ 104 for the current values ofB andλ′. In this case|κNL‖ /κ‖|< 0.1%.

For the same magnetic-field strength withξ ′ = 103 (λ′ ≈ 3), we obtainedκ‖ = 2.0× (αm2
e/πω) and κNL‖ =

7.7× 10−4× (αm2
e/πω). The ratior ≡ |κNL‖ /κ‖| remains to be less than 0.1% in this case. Hence in the energy

regime that the quantum effects of the magnetic field is not essential, the subleading contribution to the absorption
coefficient,κNL

‖ , is rather suppressed. If we extrapolate our analysis down to the energy of pair-production threshold

ω sinθ = 2me while maintaining(B/Bc)2= 0.1, i.e., λ′ = 0.35, we findκ‖ = 6.5× 10−3 × (αm2
e/πω) and

κNL‖ = −2.2× 10−3 × (αm2
e/πω). It is interesting to see thatκNL‖ is of the same order of magnitude as the

leading contribution. This reflects the limitation of our approach and that of Tsai and Erber near the pair-production
threshold.

The next-to-leading correction toκ⊥ is calculated in a similar way. The expansion ofφ0 proceeds as before while

−iN⊥→
[
− cosh(zv)

sinh(z)
+ v cosh(z)sinh(zv)

sinh2(z)
− 2(cosh(zv)− cosh(z))

sinh3(z)

]
(26)= − z

12

(
1− v2)(3+ v2)+ z3

180

(
1− v2)(15− 6v2− v4)+ · · · .

Then the next-to-leading corrections to the derivatives ofΠ⊥ are

(27)
1

n!
(

dn

d(ω2)n
ΠNL⊥

)∣∣∣∣
ω2=0
= −2αm2

e

5π

(
B

Bc

)2(B2 sin2 θ

3B2
c m

2
e

)n nΓ (3n)Γ 2(2n)

Γ (n)Γ (4n)

(3+ 39n+ 60n2+ 18n3)

(4n+ 1)(4n+ 3)
.

Applying the inverse Mellin transform, we obtain

(28)κNL⊥ =
−αm2

e

10iπω

(
B

Bc

)2 +i∞+c∫
−i∞+c

ds(λ′)2s Γ (3s)Γ
2(2s)s

Γ (s)Γ (4s)

(3+ 39s + 60s2+ 18s3)

(4s + 1)(4s + 3)
,
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Fig. 2. The photon absorption coefficients as functions of the photon energy with sin2 θ = 1 and(B/Bc)2= 0.1.

wherec can be chosen as any positive number, and, to isolate theO(B2/B2
c ) corrections, we have made the

identificationsλ′′ → λ′ and (1+ √1+ 2B/Bc)→ 2. Numerically, for(B/Bc)2 = 0.1 andλ′ = 10, we have
κ⊥ = 4.4× (αm2

e/πω) while κNL‖ = 1.3×10−3× (αm2
e/πω). Similar to theκ‖ case,|κNL⊥ /κ⊥|< 0.1% forλ′ = 10.

For λ′ = 3 which corresponds toξ ′ ≈ 103, we findκ⊥ = 1.2× (αm2
e/πω) andκNL⊥ = −4× 10−3× (αm2

e/πω).
In this case|κNL

⊥ /κ⊥| ≈ 0.3%. We observe again that the ratio,|κNL
⊥ /κ⊥|, grows rapidly to 60% at the energy of

pair-production threshold withκNL⊥ being negative.
From the above next-to-leading order calculations, it is quite evident that theO(B2/B2

c )-corrections toκ‖ and
κ⊥ are both rather insignificant. However, one should be reminded that there are stillO(B/Bc)-corrections to
κ⊥ as shown in Eq. (16). Without making the identificationsλ′′ → λ′ and (1+ √1+ 2B/Bc)→ 2, we have
κ⊥ = 3.8× (αm2

e/πω) for λ′′ = 10× (1+ √1+ 2B/Bc)/2 (i.e.,λ′ = 10) with (B/Bc)2 = 0.1. We recall that
κ⊥ = 4.4× (αm2

e/πω) if the above identifications are made. Hence theO(B/Bc)-correction reducesκ⊥ by about
14% at the currentω andB. Essentially, theO(B/Bc)-corrections toκ⊥ relative toκ‖ are kinematic in nature. They
are due to the differences in pair-production threshold resulting from different polarization states of the decaying
photons. For a photon with the‖-polarization, the pair-production threshold corresponds to bothe+ ande− being
in the ground state. On the other hand, for a photon with the⊥-polarization, eithere+ or e− must be in the first
excited state at the pair-production threshold [3].

Since theO(B2/B2
c )-corrections toκ‖,⊥ can be neglected, Eq. (16) are accurate expressions for photon

absorption coefficients even to a magnetic-field strength comparable toBc . In Fig. 2, we plotκ‖,⊥ as functions
of ω with sin2 θ = 1 and(B/Bc)2= 0.1. Here our result forκ‖ is identical to that of Tsai and Erber, whereas our
result forκ⊥ contains the kinematic corrections which were not taken into accounts in previous works. As can be
seen from Fig. 2, bothκ‖ andκ⊥ are rather insensitive toω onceω surpasses 10 MeV. Hence, for a sufficiently
largeω, the kinematic corrections toκ⊥ mainly reside in the factor 1/(1+√1+ 2B/Bc) rather than inλ′′. It
should be noted that the applicability of our result is determined by the parameterξ ′ = ω2 sin2 θBc/2m2

eB [11].
For the parameter set in Fig. 2, i.e.,(B/Bc)2= 0.1 and sin2 θ = 1, we haveω ≈ 25me = 12.5 MeV for ξ ′ = 103.
Hence, one expects the plots in Fig. 2 to be reliable forω > 10 MeV.

At this point, one might conclude that our approach can not describe the threshold behavior of the absorption
coefficient. This is in fact not true. We should stress that it is the weak-field expansion of Eq. (15) that spoils the
threshold behavior of the absorption coefficient, despite such an expansion is useful for computing the absorption
coefficient at much higher energies. To see this, it is instructive to review how Eq. (15) is derived. In this note,
we obtained Eq. (15) by expanding Eq. (11) directly. However, one could also derive Eq. (15) by expanding the
internal fermion propagators inΠ‖,⊥ in powers ofeB. This expansion has been derived in Eq. (47) of Ref. [9].
In that equation, one can see that the weak-field expansion mixes contributions coming from different Landau
levels. Hence the threshold behaviors ofΠ‖,⊥ at any given Landau level are spoiled by the weak-field expansion.
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In fact, the absorption coefficientsκ‖,⊥ calculated fromΠ‖,⊥ do not vanish below the pair-production threshold,
i.e., 06 ω26M2‖,⊥. This can be seen by performing the integration in Eq. (16). Such a behavior is again an artifact
caused by the weak field expansion performed near the pair-production threshold. Indeed, as mentioned before,
κNL‖,⊥ are comparable toκ‖,⊥ with an opposite sign in this energy range. The cancellation of these two contributions
is consistent with the fact that the absorption coefficients should vanish below the pair-production threshold [3,4].

To recover the threshold behavior, one may computeΠµν using electron propagators in the Furry picture [12,13]:

(29)SBF (x
′, x)αβ =

∞∑
n=0

∫
dωdq2dq3

(2π)3
exp(−iω(t ′ − t)+ iq2(x ′2− x2)+ iq3(x ′3− x3))

q2‖ −m2
e − 2neB + iε (Sn;ω,q2,q3)αβ,

whereq2‖ = (q0)2− (q3)2, n is the quantum number for the Landau level, andSn;ω,q2,q3 is a 4× 4 matrix in the
spinor space. In this form, all the poles of the propagator appear explicitly, and the threshold behavior ofΠµν is
preserved throughout the calculation [14]. Clearly, a calculation using the Furry-picture propagators compliments
the weak-field expansion technique we have been discussing so far. The former produces a correct threshold-
behavior of the absorption coefficient but becomes unpractical at larger energies, since, in such a case, contributions
from a great number of Landau levels has to be summed over. Nevertheless, in the scenario thatB � Bc , it is
convenient to use the Furry-picture propagators because the available Landau levels for pair production to occur
are significantly reduced.

In conclusion, we have developed a new method for computing the photon absorption coefficient in a strong
background magnetic fieldB & Bc. Disregarding the next-to-leading magnetic-field corrections, ourκ‖ is identical
to that obtained by Tsai and Erber [5]. Although Tsai and Erber derivedκ‖ under the assumptionB� Bc ≡m2

e/e

andω sinθ � 2me, we have been able to show that such a result is in fact accurate forB comparable toBc , provided
ω (ξ ′) is large enough. Forκ⊥, our result differs from that obtained in Ref. [5]. In this regard, we have identified
certainO(B/Bc) corrections toκ⊥ which are kinematic in nature. We also pointed out that our approach may be
extended to lower photon energies near the pair-production threshold, so long as we calculateΠµν with electron
propagators in the Furry picture [13]. For a supercritical magnetic fieldB � Bc , we argued that it is convenient
to use the Furry-picture propagators. As a closing, we like to emphasize that a better understanding of the current
process is crucial for determining the photon attenuation properties in highly magnetized pulsars [15].
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