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Optimal Fuzzy Controller Design
in Continuous Fuzzy System:

Global Concept Approach
Shinq-Jen Wu and Chin-Teng Lin, Senior Member, IEEE

Abstract—In this paper, we propose a systematic and theo-
retically sound way to design a global optimal fuzzy controller
to control and stabilize a continuous fuzzy system with free- or
fixed-end point under finite or infinite horizon (time). A linear-like
global system representation of continuous fuzzy system is first
proposed by viewing a continuous fuzzy system inglobal concept
and unifying the individual matrices into synthetical matrices.
Based on this, the optimal control law which can achieve global
minimum effect is developed theoretically. The nonlinearseg-
mental two-point boundary-value problem (TPBVP) is derived
for the finite-horizon problem and a forward Riccati-like differ-
ential equation (DE) for the infinite-horizon problem. To further
simplify the computation, a segmentalRiccati-like DE is derived
in solving the finite- or infinite-horizon issues. Moreover, in the
case of time-invariant fuzzy systems, we show that the optimal
controller can be obtained by just solving algebraic Riccati-like
equations. Grounding on this, several fascinating characteristics
of the resultant closed-loop fuzzy system can be elicited easily. The
stability of the closed-loop fuzzy system can be ensured by the
designed optimal fuzzy controller. The optimal closed-loop fuzzy
system cannot only be guaranteed to be exponentially stable, but
also be stabilized to any desired degree. Also, the total energy
of system output is absolutely finite. Moreover, the resultant
closed-loop fuzzy system possesses an infinite gain margin; that is,
its stability is guaranteed no matter how large the feedback gain
becomes. An example is given to illustrate the proposed optimal
fuzzy controller design approach and to demonstrate the proved
stability properties.

Index Terms—Degree of stability, finite energy, global min-
imum, Riccati-like equation, two-point boundary-value problem
(TPBVP).

I. INTRODUCTION

A LTHOUGH the research in fuzzy modeling and fuzzy con-
trol has been quite matured [1]–[9], it seems that the field

of optimal fuzzy control is nearly open [10]. The goal of this
work is to propose a systematic and theoretically sound scheme
for designing a global optimal fuzzy controller to control and
stabilize a continuous-time fuzzy system with free- or fixed-end
point under finite or infinite horizon.
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Stabilityandoptimalityare the most important requirements
for any control system. Most of the existed works on the stability
analysis of fuzzy control are based on Takagi–Sugeno (T–S)
type fuzzy model combined with parallel distribution compen-
sation (PDC) concept [1] and apply Lyapunov’s method to do
stability analysis. Tanakaet al. [2], [4] reduced the stability
analysis and control design problems to linear matrix inequality
(LMI) problems. They also dealt with uncertainty issue [3]. This
approach had been applied to several control problems such
as control of chaos [4] and of articulated vehicle [6]. A fre-
quency shaping method for systematic design of fuzzy con-
trollers was also done by them [11]. Sunet al. [7] developed
a separation scheme to design fuzzy observer and fuzzy con-
troller independently. Methods based on grid-point approach
[12] and circle criteria [13], [14] were introduced to do stability
analysis of fuzzy control, too. Wang adopted a supervisory con-
troller and introduced stability and robustness measures [15].
Cao proposed a decomposition principle to design a fuzzy dis-
crete-time control system and an equivalent principle to do sta-
bility analysis [9]. Even with the aforementioned research re-
sults on the theoretic aspect of fuzzy control, Tanaka and others’
works mentioned in the above always treat the stability of gen-
eral linear feedback fuzzy controllers.

On the issue of optimal fuzzy control, Wang developed an
optimal fuzzy controller to stabilize a linear time-invariant
system via Pontryagin maximum principle [10]. However,
although fuzzy control of linear systems could be a good
starting pointfor a better understanding of some issues in fuzzy
control synthesis, it does not have much practical implications
since using the fuzzy controller designed for a linear system
directly as the controller may not be a good choice [10].
Moreover, the cited stability criteria may be simple, but rough
to do systematic analysis and also may result in a controller
with less flexibility. Tanakaet al. [5], [16], [17] tried to obtain
a fuzzy controller to minimize the upper bound of the quadratic
performance function by the LMI approach based on the
assumption of local-linear-feedback-gain control structure.
Nevertheless, no theoretical analysis on this design scheme
of optimal-fuzzy-control structure was proposed. All of these
works viewed the fuzzy system by individual rules, i.e., from
local concept. It is, however, difficult for researchers to provide
a theoretical demonstrationon that the designed controller can
reachglobal minimum effect, if the design scheme is based on
local concept approach.

Technical contributions of this paper can be described as
follows. Theentire fuzzy system representation is proposed to
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maturate theformulation and simplification of thequadratic
optimal fuzzy controlproblem. This global-concept approach
might initiate and activate the research inglobal optimalfuzzy
controller design. Further, a tricky unification of individual
matrices intosyntheticalmatrices generates alinear-likeglobal
system representation of a fuzzy system. Thislinear-like
representation motivates us to develop the design scheme of
a global optimal fuzzy controller in the way of general linear
quadratic (LQ) approach. Moreover, a multistage-decompo-
sition approach is adopted to transform the optimal control
problem into an on-going stage-by-stage dynamic issue. This
decomposition operation can speed up numerical solution,
and keep the global optimality at the same time. The design
scheme meets thenecessary and sufficientcondition of global
optimum. The derived continuous fuzzy control law is theoreti-
cally demonstrated to be the best for the entire system to reach
the optimal performance index. Finally, the in-depth analysis
(controllability, observability, stability, degree of stability, and
gain margin) in Section IV gives the complete perspective of all
facets of the resultant closed-loop fuzzy system; we elicit that
this kind of fuzzy controller can stabilize a continuous fuzzy
system to any prescribed degree of stability; the corresponding
closed-loop fuzzy system possesses an infinite gain margin;
and the total energy of the system output of the closed-loop
fuzzy system is absolutely finite. The design methodology is
illustrated by one example.

II. QUADRATIC FUZZY PROBLEM FORMULATION

In this section, we shall propose anentire fuzzy system rep-
resentation to maturate theformulationof the quadratic optimal
fuzzy control problem. A sound unification of the individual
matrices into synthetical matrices to form alinear-like global
system representation of a fuzzy system helps the derivation
of a theoretical design scheme of the quadratic optimal fuzzy
controller. We consider a given nonlinear plant described by the
so-called T–S type fuzzy model

If is is then

(1)

where
th rule of the fuzzy model;

system states;
input fuzzy terms in the th
rule;
state vector;
system output vector;
system input (i.e., control
output) and sequences;

and respectively,
and matrices whose
elements are known to be
piecewise continuous (PC)
and real-valued functions de-
fined on positive real space

.

We then assume the desired controller is a rule-based non-
linear fuzzy controller

If is is then

(2)

where
elements of output vector ;
input fuzzy terms in theth control rule;

or plant input (i.e., control output) vector.
Then, aquadratic optimal fuzzy control problemis described as
follows.

Problem 1: Given the rule-based fuzzy system in (1) with
and a rule-based nonlinear fuzzy controller

in (2), , find a controller , which can minimize
the quadratic cost functional

(3)

over all possible inputs of class PC.
The grounding on distributed fuzzy subsystems and

rule-based fuzzy controller brings the researchers in struggle
to find out the controller , which can achieve global
minimum effect under quadratic performance consideration
defined on theentire fuzzy system and fuzzy controller. In
other words, it is a big troublesome challenge to achieve global
optimal solution under local model consideration and, thus far,
this issue has not been attacked directly even that the T–S type
fuzzy model has been available for many years. Wang [10] tried
to open the deadlock by considering a linear system (instead
of fuzzy system) combined with a fuzzy controller. Tanakaet
al. [16], [17] developed the LMI-based optimal fuzzy control
by assuming a local linear-feedback gain-control structure.
However, the quadratic optimal fuzzy control issue, in fact,
remains fully open.

Since each penalty term in the performance index is with re-
gard to the entire fuzzy system and controller, it flashes into our
mind to formulate the distributed fuzzy subsystems and rule-
based fuzzy controller into one equation from the global con-
cept. Therefore, we “fuzzily blend” the well-known T–S type
fuzzy model to obtain the entire fuzzy system formulation

(4)

and the entire fuzzy controller is

(5)

with and , where
and denote, respectively, the normal-

ized firing-strength of the th rule of the continuous
fuzzy model and that of theth fuzzy control rule, i.e.,
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and
with

and , where and
are the membership functions of fuzzy terms

and , respectively. Thus, we obtain the formulation of
the quadratic optimal fuzzy control problem in Problem 1 as
follows.

Problem 2: Given the entire fuzzy system in (4) with the
fuzzy controller in (5) and ,
find the optimal control law , to minimize the
quadratic cost functional

(6)

This kind of quadratic optimal control problems is, obviously,
still too tough for us to engage in. Introducing the following
syntheticalmatrices, , , , , and
can overcome the predicament, where

...
...

...

with and denoting the identity matrices of dimension
and , respectively. In other words, based on these synthetical
notations, Problem 2 can be rewritten as the following final for-
mulation:

Problem 3: Given a nonlinear butlinear-like closed-loop
fuzzy system

(7)

with , find the optimal synthetical control
law, , to minimize the quadratic cost functional

(8)

This linear-like synthetical matrix representation for the entire
T–S type fuzzy system materializes the design of the global op-

timal fuzzy controller in the way of general LQ approach, i.e.,
calculus-of-variation method.

In order to clarify the credit of the work, we now point out
the kernel of the proposed global-concept approach as follows.

1) The entire fuzzy system representation, obtained by
fuzzily merging the distributed rule-based T–S-type
fuzzy subsystems into one, is proposed to maturate the
formulationand simplification of thequadratic optimal
fuzzy controlproblem. This global-concept approach
might initiate and activate the research inglobal optimal
fuzzy controller design.

2) Theindividual matrices ( and )
and normalized membership functions ( ,

, and , ) are unified
into syntheticalmatrices ( , , , and

). This unification generates alinear-like
global system representation of a fuzzy system with the
value of each element of the nonlinear terms (
and ) being located in segment . This
linear-like representation motivates us to develop the
design scheme of global optimal fuzzy controller in the
way of general LQ approach, i.e., calculus-of-variation
method.

3) A multistage-decomposition approach (Lemma 1) is
adopted to transform the optimal control problem into
an on-going stage-by-stage dynamic issue. Therefore,
the optimal solutions can be resolved fromsegmental
nonlinear two-point boundary-value problem (TPBVP)
instead of the nonlinear TPBVP for the entire horizon.
This decomposition operation can speed up numerical
solution and keep the global optimality at the same time.

4) The existence of , denoting the number of stages at
which membership functions can be assumed to be in-
variant during the whole single stage, is assumed to make
the backward recursiveRiccati-like equationavailable.
This avoids the high computational complexity of the
collocation method at the expense ofapproximate opti-
malitydue to the time-invariant assumption. A procedure
including a dynamical decomposition algorithm is pro-
posed to justify the time-invariant assumption in practice.

5) For time-invariant case, thealgebraicRiccati-like equa-
tion is available in the aid of Lemma 2 and, thus, the finite-
horizon optimal solution is coincident with the asymp-
totic (infinite-horizon) optimal solution.

6) The in-depth analysis (stability, degree of stability, and
gain margin) in Section IV gives the complete perspective
of all facets of the resultant closed-loop fuzzy system.

It is important for us to mention here that the process of inte-
grating all distributed fuzzy subsystems into one equation to de-
scribe the entire fuzzy system is necessary in order to find out
the global optimalsolution. The proposedfuzzily blendeden-
tire fuzzy system in (4) provides a practical way to work out the
global optimal solution. However, even each fuzzy subsystem
in T–S model is linear, thefuzzily blendedentire fuzzy system
in (4) is complicated and highly nonlinear. The further proposed
synthetical matrixrepresentation of the entire fuzzy system in
(7) shall, in the sense ofglobal optimality, lower down the order
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and difficulty of the problem. This kind of global system rep-
resentation will be the foundation and kernel of the following
fuzzy controller design scheme.

III. OPTIMAL FUZZY CONTROLLER DESIGN

We are going to design the optimal fuzzy controllers for con-
tinuous fuzzy system with finite-horizon in Section III-A and
for that with infinite-horizon in Section III-B.

A. Finite-Horizon Problem

By describing the fuzzy system from the global concept in
Section II, our quadratic optimal fuzzy control problem for the
T–S type fuzzy system can be formulated and simplified into
Problem 3 in Section II. Since the membership functions in the
fuzzy controller and fuzzy system are piecewise continuous, it
is reasonable to make the following assumptionaround the ex-
treme points.

Assumption 1:The membership functions ofslightly per-
turbedextremes are almost equivalent to those of theextremes,
i.e., , ,

, and ,
, , where are very small

positive value.
For frequently used membership functions such as

bell-shaped, triangular, and trapezoid membership func-
tions, this assumption soundly holds. Further, from the essence
of the dynamic programming formalism, we make the fol-
lowing multistage decomposition of optimization scheme.

Lemma 1 (Multistage Decomposition):A foregoing op-
timization scheme is a dynamic allocation process or a
successivemultistage decision process. In other words, if we let

and define (see equation at the bottom of the page)
with regard to the state resulting from the previous decision,
i.e., , then

(9)

Proof: See Appendix.
We shall first decompose the optimization problem into an

on-going stage-by-stage dynamic issue with the aid of Lemma
1. Then, successively focusing on only one stage at a time, we
use thecalculus of variations methodcombined withLagrange
multiplier methodto obtain the necessary and sufficient condi-
tion for global optimum.

Theorem 1: For the fuzzy system in (1) and fuzzy con-
troller in (2) with nonsharp-profile membership functions,

let be the optimal solution with
respect to in (8) and , be
the th-stage optimal solution with respect to

(10)

where equals to at the th stage and is a
zero matrix, otherwise; the initial condition and

for . Then

1) for all ,
; and , , ,

;
2) for the th stage the optimal synthetical control

law is

(11)

and the corresponding global minimizer is

(12)

where satisfies the following TPBVP

(13)

with , where is the corre-
sponding optimal state trajectory.

Proof: See Appendix.
We should emphasize here the multistage-decomposition ap-

proach in Lemma 1 can transform the optimal control problem
into an on-going stage-by-stage dynamic issue. Therefore, the
optimal solutions can be resolved fromsegmentalnonlinear
TPBVP instead of the nonlinear TPBVP for the entire horizon.
This decomposition operation can speed up numerical solution,
and keep the global optimality at the same time.

Moreover, though the membership functions are dependent
on the system state, the state-penalty term in
the cost functional in (3) or (8) can encourage asmooth optimal
trajectory [19]. For achosen nonsharpmembership function

and
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profile, it is, in concept, reasonable and workable to increase
the sampling frequency such that the membership function of
the optimal state remains almost invariant during each
stage. In other words, we can further adjust the division, i.e.,
enlarge , to the extent that and are almost
invariant during thewhole single stage, and use and to
denote and , respectively, at theth stage.
Then, the optimal synthetical control law becomes

(14)

where satisfies the followinglinear TPBVP

(15)

with , , ;
, , ,

; , . Furthermore,
Let . Then, (15) is equivalent to the fol-
lowing segmentalRiccati-like differential equation (DE):

(16)

where , ; , ;
.
We further define to be the number of stages at which

membership functions can be assumed to be invariant during
thewhole single stage. Then, thebackwardRiccati-like DE in
(16) becomes available due to the existence of. This avoids
the high computational complexity of the collocation method at
the expense ofapproximate optimalitydue to the time-invariant
assumption. We can ensure this assumption by checking the fol-
lowing condition at the starting time-instant of theth stage,
saying

(17)

and then keeping checking the following condition to find the
proper length of this stage:

(18)

where and are the given tolerance to ensure the al-
most-invariant criteria. The first inequality in (17) ensures that
the membership degrees corresponding to the optimal trajectory

at time-instant does not change in abrupt shape and also
gives a hint that an almost-invariant-membership-function stage
from time-instant is achievable. The second inequality in (18)
is to check the almost-invariant criteria for the entireth stage
to find out the length (time period) of the stage and then can
also provide the information about the value of. These two
inequalities are used to check the time-invariant criteria in the
dynamic decomposition algorithm(DDA) in Section V. Now, we
summarize the previous derivation in the following assertion.

Theorem 2: For the fuzzy system and fuzzy controller rep-
resented, respectively, by (1) and (2), let ,

be the optimal solution with respect to in (8)

and be the th-stage optimal solu-
tion with respect to in (10). If then

1) for all ,
; and , , ,

;
2) for the th stage , the optimal synthetical con-

trol law is

(19)

and the corresponding global minimizer is

(20)

where is the symmetric positive semidefinite
solution of thesegmentalRiccati-like DE in (16); the
th-stage optimal trajectory is

(21)

3) the minimum performance index is equal to
.

Proof: This theorem follows the above inference.
So far, we have solved the optimal fuzzy control problem by

finding the optimal solution to the general time-varying case.
In the classical LQ optimal control problem, a time-invariant
system will give rise to time-invariant linear optimal control law.
We are now eager to know if this phenomenon exists in each
segmental fuzzy system. Some useful lemmas are demonstrated
below in order to develop the design scheme of optimal fuzzy
control law regarding to the time-invariant fuzzy system.

Lemma 2: Consider a dynamical system,
, with . Let the pair

be the infinite-horizon optimal solution with the perfor-
mance index and the pair

be the finite-horizon optimal solution with

respect to , where
, a mapping from to

real-valued functions of class PC. If is a free point, then
for all .

Proof: Assume the infinite-horizon optimal solution for
some is not the finite-horizon optimal solution, then

If we define a decision sequence as

where denotes the corresponding state trajectory, then
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This conflicts with that is the infinite-horizon
optimal solution. Thus, holds
for all positively.

Furthermore, we develop two lemmas below to link the con-
trollability and observability of the fuzzy subsystem to those of
the entire fuzzy system.

Lemma 3 (Controllability): is completely
controllable (CC) for all if and only if

, for all
and .

Proof: See Appendix.
Lemma 4 (Observability): is completely observable

(CO) for all , if and only if

Proof: The proof is similar to that in Lemma 3.
Now, the aforementioned inference can be summarized into

the following lemma.
Lemma 5: For each segmental dynamical fuzzy system

(22)

with known. If is CC and is CO for all
, then

1) there exists an unique symmetric positive semidef-
inite solution of the steady state Riccati equation
(SSRE)

(23)

2) the asymptotically optimal control law is

(24)
which minimizes

(25)
3) the optimal closed-loop fuzzy system

(26)
is asymptotically and exponentially stable.

Proof: We know, from Lemmas 3 and 4,
is CC, , if and only if

and, accordingly,
. Also, is CO, , if and only

if , which

ensures . Therefore,

CC and CO, , guarantee CC
and CO, respectively. Then, by the classical linear
quadratic optimal control theorem [20], we have the optimal
solution for the segmental fuzzy system in (22).

A more implementable theorem for the time-invariant fuzzy
subsystems can be extracted based on the aforementioned
lemmas and Theorem 2, which considers the time-varying
fuzzy subsystems.

Theorem 3 (Time-Invariant):Consider the time-invariant
fuzzy system and fuzzy controller described, respectively,
by (1) and (2) with in (8). Let

, denote the optimal solution with respect to
in (8), , , denote the

th-stage optimal solution with respect to in (10) and
, be the th-stage asymptotically

optimal solution with respect to in (25). If
is CC and is CO, for all , then

1) see (27) at the bottom of the page where
; ;

2) for the th stage, , the optimal synthetical
control law is in (24), and the optimal trajectory is

in (26), where is the unique symmetric posi-
tive semidefinite solution of the SSRE in (23);

3) as for the last stage, theth stage, the optimal synthetical
control law is in (19) and the optimal trajectory is

in (21), where is the symmetric positive
semidefinite solution of the segmental Riccati DE in (16);

4) the minimum performance index is

Proof:

2) Based on Lemma 1, the whole optimization is de-
composed into an -stage decision process with, at
each stage, the initial state resulting from the decision
of its previous stage. Now, our optimal fuzzy control
problem—Problem 1—can be attacked in the following
two issues, with both regarding to the same dynamical
fuzzy system described by (7) except that the initial stage
is and the time interval is for the th stage

(a)

(28)

(27)
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(b)

(29)

Furthermore, by Lemma 2, the optimal solution with re-
spect to (29) can be regarded as the one with respect to

(30)

Notice that this equivalence only exists on the time
in period . Therefore, hereinafter, we can pay at-
tention only to (30) for the time interval

and to (28) for the time interval .
3) For and in the dynamic

fuzzy system described by (7) can be replaced, respec-
tively, by constant matrices and for the th stage.
Therefore, the whole fuzzy system in (7) can be rewritten
as a linear system represented by (22). Theth-stage op-
timal solution, indeed, follows from the optimal solution
in Theorem 2. As for the other stages, we know from
the proof of Lemmas 5, CC and CO,

guarantee, respectively, CC
and CO, , where and are,
respectively, the number of rules of the fuzzy system in
(1) and the number of stages of the process described by
the dynamical fuzzy system in (22). Hence, we can obtain
the optimal solution for the first stages via Lemma
5.

Hence, for the first stages, a time-invariant fuzzy
system can still give rise to the time-invariant linear optimal
fuzzy control law.

At the moment, we extend our study in designing the
optimal fuzzy controller from the free-end point problem to
the fixed-end point problem in which a desired final state (the
target) is given. The fixed end-point quadratic optimal fuzzy
control problem is defined as follows.

Problem 4: Given the fuzzy system in (7) with
and , find to minimize

in (8).
The procedure to solve this problem is similar to that for

solving Problem 1. Therefore, we only summarize the gener-
alized theorem as follows.

Theorem 4: For the fuzzy system in (1) with
and the fuzzy controller in (2), the optimal control law with re-
spect to in (8) is in (11) and the corresponding
global minimizer is in (12), where and optimal tra-
jectory satisfy TPBVP in (13) with and

.
Proof: The proof is similar to that in Theorem 1.

Since the final state is constrained, Problem 4 does not be-
long to the standard foregoing optimization problem and, ac-
cordingly, the successive multistage decomposition approach is
now unavailable for this case.

B. Infinite-Horizon Problem

The purpose of this section is to design the optimal fuzzy
controller concerning the infinite-horizon problem, which is the
case that the operating time goes to infinity or is much larger
than the time-constant of the dynamic system. It is critical to no-
tice the problem: Does the minimal performance index finitely
exists? We introduce the concept proposed by Machi and Strauss
[21]: If the linearized system of a nonlinear system with respect
to (w.r.t) some state is CC, then is an interior point
of the controllable set (the set of all initial points which can be
steered to the target). Now, the linearized system of the fuzzy
system in (7) with respect to point is

(31)

Therefore, to ensure that our problem is solvable, it is necessary
that the pair is controllable at all
time and for all . We can now find out the design
scheme of the infinite-horizon optimal fuzzy controller.

Theorem 5: For the fuzzy system and fuzzy controller in (1)
and (2), respectively, if the linearized fuzzy system in (31) is
controllable and there exists on an symmetric posi-
tive semidefinite solution to theforwardRiccati-like DE

(32)

where and the initial value of the dependent variable
, then there exists a optimal synthetical control law

(33)

which minimizes

(34)

and the corresponding global minimizer is

(35)

The dynamics of the resultant closed-loop fuzzy system is de-
scribed by

(36)

with .
Proof: See Appendix.

Though the firing-strength matrix is state depen-
dent, Theorem 5 is actually implementable since the Riccati-like
DE in (32) is of forward, just as the state equation in (7). How-
ever, it is indeed complicated in computational aspect. There-
fore, a multistage approach as in Section III-A is still preferable.

Theorem 6: For the fuzzy system and fuzzy controller de-
scribed by (1) and (2), respectively, let

, be the optimal solution with respect to in (34),
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and , be the th-stage optimal so-
lution with respect to (37), shown at the bottom of the page. If

and the linearized fuzzy system in (31) is controllable,
then

2) , ,
, where

;
3) for the th stage, , the optimal

control law, the corresponding global minimizer, the op-
timal trajectory, and the minimum performance index sat-
isfy the same corresponding equations in Theorem 2, ex-
cept that and for all .

Proof: This theorem obviously holds with Theorem
2. Notice that, for the th stage, the controllable criterion
can ensure the existence of the limit value of ; i.e.,

exists for all , and is still
the symmetric positive semidefinite solution of the segmental
Riccati-like DE in (16) [20].

For the time-invariant case, the pair CC
is equivalent to and
this condition, by Lemma 3, can be satisfied if is CC,
for all . So, we need the following assumption as
the prerequisite for the optimal controller design in the time-
invariant infinite-horizon case.

Assumption 2: is CC, for all .
Theorem 7 (Time-Invariant):Consider the time-invariant

fuzzy system and fuzzy controller described, respectively, by
(1) and (2) with in (8). If , is CC
and is CO, for all then

2)

(38)

where is the th-stage asymptotically optimal con-
trol law in (24) and is the corresponding asymptot-
ically optimal trajectory in (26), where is the unique
symmetric positive semidefinite solution of the SSRE in
(23);

3) the minimum performance index is

Proof: This theorem obviously holds with Theorem 3.

IV. STABILITY AND GAIN MARGIN

In this section, we shall show that the control law resulting
from an infinite-horizon performance index cannot only asymp-

totically and exponentially stabilize the fuzzy system, but also
form a closed-loop fuzzy system with any desired degree of sta-
bility. We also concern with the range of the feedback gaingain
margin to which we can increase under the stability considera-
tion.

A. Global Stability

As remarked earlier, the whole optimal trajectory is decom-
posed into segments and, more, if each fuzzy subsystem in (1)
is well-behaved (CC and CO) and , then each segment
can be described by its corresponding asymptotically optimal
trajectory during the same period of this segment, i.e.,

(39)

where and , , ,
; that is, the behavior of the closed-loop fuzzy system

can be captured by the corresponding asymptotically behavior
of these segments.

Theorem 8: For the time-invariant fuzzy system and fuzzy
controller described, respectively, in (1) and (2) with
in (8). If is CC, and is CO for

, then

2) the optimal closed-loop fuzzy system

(40)
where , , ,

is exponentially stable;
3) the total energy of system output is finite, i.e.,

.
Proof:

2) Recall that is the th-stage asymptotically optimal
trajectory of the quadratic optimal control problem, i.e.,
minimizing the performance index in (25) with
respect to the dynamical fuzzy system in (22). Moreover,

CC and CO, , guaran-
tees from the proof of Lemma 5 CC and

CO, . Hence, we know from
Lemma 5 theth-stage asymptotically optimal trajectory

is asymptotically and exponentially stable, i.e.,
, where denotes

the open left-half plane of complex space. Hence, via
(39), the optimal trajectory described by (40) is asymp-
totically and exponentially stable since the eigenvalues of
the system matrix characterizing the dynamical behavior
of each segment are all located on the left-half plane of
complex space.

(37)
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3) From (7)

(41)

From of this proof, the th-stage asymptotically op-
timal trajectory is exponentially stable. The term
exponentially stablemeans uniformly asymptotically
stable in the stability concept [22], which means that
for all and , satisfies the
following two properties.

2) The range of mapping fromto is bounded on
uniformly, i.e.,

s.t.

3) The range of mapping fromto tends to zero as
uniformly, i.e.,

s.t.

Assume is located in the -th stage, i.e.,
. Then, (43) becomes

(42)

where . We know that the first two terms are
finite and the others are infinitesimal and, thereupon, the
total energy of system output is absolutely finite.

The stability of the closed-loop fuzzy system in time-varying
case can still be ensured if the corresponding asymptotically
optimal trajectory of each segment is exponentially stable.

B. Stabilization to Any Desired Degree

This section shows that the resultant closed-loop fuzzy
system has a degree of stability of at least some prescribed
constant , which means that the state approaches zero
at least by the rate of . Of course, the larger the desired de-
gree of stability is, the more stable the closed-loop fuzzy system
is. However, a high degree of stability may only be achieved
at the expense of excessive control energy consumption. Two
lemmas are derived here to deduce this interesting property.

Lemma 6: For a system
, where and are , ,

and matrices, CC is equivalent to
CC for any complex value .

Proof: 1) is CC if and only if

. Let . Then we
have ,
which means is CC if and only if is CC;
2) Now, consider two systems: and

. Obviously, they are related by a
nonsingular linear transformation . Therefore, is CC
if and only if is CC for any complex value .
From 1) and 2), we conclude that Lemma 6 holds.

Lemma 7: For a system CO is equiv-
alent to CO for any complex value .

Proof: The proof is similar to the proof of Lemma 6.
Theorem 9: Consider the time-invariant fuzzy system and

fuzzy controller described, respectively, by (1) and (2) with
in (8). If is CC and is CO for all

, then the fuzzy system can be stabilized to any de-
sired degree of stability, i.e., the optimal trajectory will
approach zero at least by the rate of , where is any pos-
itive real value.

Proof:

2) As we know, for and well-behaved fuzzy subsys-
tems, the behavior of is fully described by

. Hence, we now pay attention to such
quadratic optimal control problem: minimizing the per-
formance index in (25) with respect to the linear time-in-
variant fuzzy system in (22). Let and denote,
respectively, and . Then we have the fol-
lowing optimization problem:

w.r.t. (43)

Let and
. Then (43) can be rewritten as

w.r.t. (44)

3) From Lemmas 6 and 7, we know that is CC and
is CO, , if and only if
is CC and is CO, .

Hence, based on the theorems in [19], [23], [24], the op-
timal fuzzy control law for the modified fuzzy system in
the above is ,
where is the positive semidefinite solution of the
modified SSRE

(45)

and the modified fuzzy system is asymptotically stable,
i.e., as . Then,

, decays faster than as
since . Hence, by (39),

will approach zero at least by the rate of .
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C. Gain Margin

In the remainder of Section IV, we examine another character-
istic gain marginof the resultant closed-loop fuzzy system. For
the time-invariant well-behaved fuzzy subsystems, if ,
then is coincident with , for all , where

. Therefore, we can only discuss the asymptot-
ically behavior of the dynamical fuzzy system of each stage
and then turns it into the behavior of the entire dynamical fuzzy
system via (39). From Lemma 5, the designedth-stageasymp-
totically global minimizer is

(46)

In order to measure the gain margin, we consider the following
corresponding controller:

(47)
The gain margin ofthe th-stage closed-loop fuzzy system is
defined as the amount by whichcan be increased until the
system becomes unstable[20]. Now, let

(48)

and then we have

(49)

We further consider

(50)

Notice that and . Com-
paring (50) to (49), we find that the larger theis, the smaller
the is, which means that whengoes to zero, the gain margin
of the th-stage closed-loop fuzzy system becomes infinite.

It is realizable to include into the state penalty matrix.
From Lemma 5, for any , the global minimizer becomes

where satisfies the modified SSRE

(51)
where is the dependent variable of the algebraic equation.
We now first cite some important results in control theory [25],
[26] and apply them to theth-stage closed-loop fuzzy system.
We shall then find the gain margin of the entire closed-loop
fuzzy system.

Proposition 1 [25], [26]: Consider the infinite-horizon op-
timal control problem as follows: Given a linear time-invariant
system , find an optimal controller
to minimize with

denoting the system output, where and
. Now, if is CC and is CO, then

2) there exists an unique symmetric positive semidefinite so-
lution denoted by of the modified SSRE

(52)

3) when goes to zero, which is the case that the closed-loop
system possesses an infinite gain margin, the limit value
of exists and is equal to ;

4) we can find an optimal control law,
, where is the positive semidefinite

solution of the SSRE
and the resultant closed-loop system possesses an infi-
nite gain margin, i.e., the modified closed-loop system

is always stable for any , where
and is the positive semidefinite solution

of the modified SSRE in (52);
5) moreover, for any fixed , the enlarged controller,

can still stabilize the modi-
fied closed-loop system to any desired degree of stability,
i.e., all the eigenvalues of have real
parts smaller than , where could be any positive
real number and is the positive semidefinite
solution of the modified SSRE

where is the dependent variable of the algebraic
equation.

Grounding on this proposition, the following fascinating fact
can be elicited.

Theorem 10:Consider the time-invariant fuzzy system and
fuzzy controller described, respectively, by (1) and (2) with

in (8). If is CC and is CO for
all , then

2) we can find a global minimizer

(53)

where ; , , ,
; and is the positive semidefi-

nite solution of the SSRE in (23) and the resultant
closed-loop fuzzy system possesses an infinite gain
margin, i.e., the modified closed-loop fuzzy system

, , ,
is always stable for any , where and

is the positive semidefinite solution of the mod-
ified SSRE

(54)
3) moreover, for any fixed the enlarged controller

, ,
can still stabilize the modified closed-loop

system to any desired degree of stability, i.e., all the eigen-
values of , ,

, have real parts smaller than , where
could be any positive real number and is the
positive semidefinite solution of the modified SSRE

(55)

where is the dependent variable of the algebraic
equation.
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Proof: From the proof of Lemma 5, CC, and
CO, , ensures CC, and

CO, , which meets the condition in
Proposition 1. Hence, we shall, via Proposition 1, obtain the
asymptotically optimal solution for each segment and then, via
(39) , get the whole
optimal solution.

2) Let and denote and ,
respectively. We know, from 3) in Proposition
1, that the asymptotically global minimizer is

and the
modified closed-loop fuzzy system of theth stage

(56)

is always stable for any , i.e.,
, where and

denotes the open left-half plane of complex space.
By (39), we know that the global minimizer is in
(53) and the modified closed-loop fuzzy system is

(57)

where and
. Since no matter how large is, the spec-

trum of system matrix, which characterizes the dynamical
behavior of each segment of the modified optimal trajec-
tory, is always located in the left half plane of complex
space, the resultant closed-loop fuzzy system posses infi-
nite gain margin.

3) Then, for any given gain margin , we know,
from Proposition 1, 4), all the eigenvalues of

have
real parts smaller than , which means that the
th-stage modified closed-loop fuzzy system

(58)

decays faster than as approaches infinity. Since the
modified closed-loop fuzzy system via (39) is

(59)

where and
, we conclude that the above closed-loop

fuzzy system decays faster than as approaches in-
finity, too.

V. PRACTICAL APPLICATION

In this section, we propose an algorithm to implement the
theorems in Section III and consider a simple nonlinear mass-
spring damper mechanical system to illustrate the proposed op-
timal fuzzy control scheme.

A. Dynamic Decomposition Algorithm

We shall propose a procedure to check the two inequalities
in (17) and (18), which can ensure the almost-invariant-mem-

bership-function criteria during a whole single stage. Now, by
denoting the time-dependence as a lower index (i.e.,for

) and substituting by for notation simplification, we
can rewrite (17) as follows:

(60)

where
. Substituting into the TPBVP in The-

orem 1, we have

(61)

where . Though the entire backward Riccati DE in
the above is unavailable in practice, the differential formula is
always available for any time instant. In other words, at time
instant , we have

(62)

And, according to Lemma 3, the finite-horizon optimal solution
for the free-end problem is the same as the optimal solution of the
infinite-horizon issue. Therefore, the solutionfor (62) is also
the solution of the following asymptotic Riccati-like equation

(63)

Also, we have

(64)

Hence, via (60) and (64), we can check the inequality in (17)
at any time instant and theexistenceof is guaranteed if the
inequality holds at the starting time instant of every stage.

We propose adynamic decomposition algorithmbelow to
check the two inequalities in (17) and (18) and to find the proper
time-period of each stage and also the value of to en-
sure that the membership functions are almost invariant during
a whole stage.

Algorithm DDA: Dynamic Decomposition Algorithm
Input: the initial chosen membership functions; initial state

; time-increment ; maximum number of design trials
.

Output: optimal controller ; optimal trajectory ;
value of ; value of ( being initialized as ).
Step 0: (set threshold parameters) Set the default values of
and .
Step 1: (initial check)
IF , THEN {go to Step 2}
ELSE {choose a more smooth membership function and go back
to Step 1, or break after times of failing trials.}
END
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Step 2: ( denoting the time-instant in theth stage, i.e.,
.)

(a). Find out the solution of (63) with the membership
function .

(b). Calculate and by

(65)

(66)

(c). IF THEN { ; go
to

END
(d). IF THEN { ; stop}

END
Step 3: (find the starting point of the next stage )
IF THEN {

; jump toStep 2
ELSE {decrease to get finer time-increment or choose an-
other membership function and jump toStep 1or break after
times of failing trials.}
END.

For the time-invariant finite-horizon (except theth stage)
or infinite-horizon problem, the estimated optimal solutions
in (65) and in (66) are also the optimal solutions in
(46) and in (26), where the estimated equals to in
(23). As for the other case, we can obtain the optimal solutions

in (21) and via (20) with the aid of the estimated
and in (16).

B. Numerical Simulations

In this section, we consider the optimal control of a mass-
spring damper mechanical system to illustrate the proposed op-
timal fuzzy control scheme and its theoretic aspect. A simple
nonlinear mass-spring damper mechanical system can be for-
mulated as

(67)

where is the mass and is the force; and are the
nonlinear or uncertain terms with respect to the spring and the
damper, respectively, and is the nonlinear term with respect
to the input term. We make the same assumptions as Tanakaet
al. [3] did and reformulate the system as

(68)

where and . Let
. The system in the above

can be described by the following T–S type fuzzy model [3]:

If is and is then

(69)

where the initial conditions are and
with for every rule and the membership functions are
chosen as ,

, ,

, , ,

, ,

, . We further assume our fuzzy controller as

If is and is then

(70)

Accordingly, the firing-strength of theth rule is
and the normalized firing-strength of theth rule

is for .
Therefore, the linear-like dynamical fuzzy system repre-
sentation for the nonlinear mass-spring damper mechanical

system is (7) with ,

, and
.

For the finite-horizon free-end optimal control problem, the
performance index is

(71)

where and . As for the infinite-horizon case, the
performance index is

(72)

Since the fuzzy subsystem is time-invariant and well-behaved,
i.e., the fuzzy subsystem is CC and CO (

and for ), the asymptotic
Riccati-like equation in (63) becomes

(73)

Therefore, the steps(a) and(b) in Step 2in algorithm DDA can
be simplified as the following.

1) Find out the constant solutionof (73) with the member-
ship function .

2) Calculate and by

(74)

(75)

Since the chosen membership functions are smooth Gaussian
functions (see Fig. 1), we can efficiently obtain the optimal
fuzzy controller with the aid of the DDA algorithm for
determining appropriate segmentation under the almost-in-
variant membership-function criteria. For the initial state

, the individual normalized firing strengths
for the optimal trajectory (i.e., and
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Fig. 1. Profile of the chosen membership functions for (a)� (X(t)), (b)� (X(t)), (c)� (X(t)), and (d)� (X(t)).

Fig. 2. Respectively, (a), (b), and (c) show the normalized firing strengthsh (X (t)), h (X (t)), andh (X (t)), corresponding to the optimal trajectory.
(d) The value of the norm ofH(X (k)) (X = [�1; 1] ).
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Fig. 3. Outputs of the optimal fuzzy controller(u ) and the state responses (position and velocity) of the continuous fuzzy system with the designed optimal
fuzzy controller in the finite or infinite-horizon quadratic optimal control problem of Section V-B at the four initial conditions:X(0) = (�1;�1) ; (�1;1) ;
(1;�1) ; and(1;1) .

) and also the value of the norm of their synthetical
matrix (i.e., ) are shown in Fig. 2. The outputs of
the designed optimal fuzzy controller and the state responses of
the resultant closed-loop fuzzy system in the finite-horizon case
are shown in Fig. 3, which reveals that the designed optimal
fuzzy controller can promptly push the simulated trunk-trailer
system from various initial states to and stay at the desired
state. Hence, the finite-state trajectory penalty vanishes and
Theorems 3 and 5 are coincident.

VI. CONCLUSION

The entire fuzzy system representation was proposed to
maturate the formulation of the quadratic optimal fuzzy control
problem and, further, a tricky unification of the individual
matrices into synthetical matrices was proposed to generate a
linear-like global system representation of continuous fuzzy
systems. Based on this representation, the design scheme
of global continuous optimal fuzzy controllers was derived
theoretically. Furthermore, a multistage decomposition of
optimization scheme was proposed to design the global optimal
fuzzy controller more efficiently and keep the global optimality
at the same time. Grounding on this efficient design scheme,
several fascinating characteristics have been shown to exist in
the resultant closed-loop continuous fuzzy system.

Overall, the fuzzy-blended entire fuzzy system is considered
to formulate the quadratic optimal fuzzy control problem and
the global optimal effect can then be achieved even though the
chosen system model is composed of distributed rule-based
fuzzy subsystems. This formation sheds light on the deadlock

of the research of quadratic optimal fuzzy control. Moreover,
the proposedlinear-like synthetical matrix representation and
the systematic design procedures might activate a new research
direction in the quadratic optimal fuzzy control. Furthermore,
the proposed in-depth analysis on the degree of stability and
gain margin can provide the researchers with complete per-
spective of all facets of the resultant closed-loop fuzzy system.
Simulation results have manifested that the designed optimal
fuzzy controllers can effectively drive the fuzzy system to the
target points in short time.

APPENDIX A

Proof of Theorem 1:Define

where is the initial state at time. By the La-
grange multiplier method, we turn the optimal problem into the
problem of minimizing

(76)
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where is the Langrange multiplier vector. Now, we
assume the optimal solutions exist and,
according to the calculus of variations method, let

, ,
, , where is the perturbation vector

with respect to and since the initial state at time
is . Then, substituting these variables into (76)

and assuming Assumption 1 holds we can obtain

Hence, the necessary condition for optimality is

(77)

However,

, so (77) becomes

Since and are independent, we obtain the global min-
imizer in (12), and the corresponding optimal control law

in (11), where and the optimal trajectory sat-
isfy (13) with and .

Proof of Lemma 1:Since, by omitting the explicit time-
dependence for notation simplification

...

we obtain (9) with and
.

Proof of Lemma 3:

2) Omitting the explicit time- and state-dependence for no-
tation simplification and using the above result, we ob-
tain . Let

, where ,
, and are all column

vectors. Then we have

3) Necessity. Let be CC for all . We
now assume , which means
that at least , saying the first , column vectors
of are dependent. Therefore, there exists
scalars , not all zeros such that

where . Consequently

In order to guarantee the existence of the equality under
all , we conclude

Hence, , are dependent since,
are not all zeros. In other words,
, for all . Accordingly,

is not CC for all . This conflicts with the
precondition that is CC for all .
Therefore, we have proved that

.
4) Sufficiency. Reversing the argument in part (2), we can

prove that if , then is
CC, for all .
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Proof of Theorem 5:Since the firing-strength matrix
is function of state variables, the general approach to

getting abackwardRiccati-like DE is not implementable now.
Therefore, we define

(78)

where is denoted by and
by for notation simplification. Also, we have

(79)

(80)

(81)

where and denote the polynomials of .
Therefore, by substituting (79)–(81) into (78), we obtain, by
setting

(82)

Minimizing the right-hand side of the above equation with re-
spect to , we obtain the optimal synthetical control law

(83)

with . We may assume the solution is of the form
with , where is the

introduced symmetric positive semidefinite time variable
matrix. Hence, we have

and then we get all the results.
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