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Optimal Fuzzy Controller Design
In Continuous Fuzzy System:
Global Concept Approach

Shing-Jen Wu and Chin-Teng Li&enior Member, IEEE

Abstract—In this paper, we propose a systematic and theo-  Stabilityandoptimalityare the most important requirements
retically sound way to design a global optimal fuzzy controller for any control system. Most of the existed works on the stability
to control and stabilize a continuous fuzzy system with free- or analysis of fuzzy control are based on Takagi—-Sugeno (T-S)

fixed-end point under finite or infinite horizon (time). A linear-like t f del bined with llel distributi
global system representation of continuous fuzzy system is first YP€ 1Uzzy model combined with paraliel distribution compen-

proposed by viewing a continuous fuzzy system iglobal concept Sation (PDC) concept [1] and apply Lyapunov’s method to do
and unifying the individual matrices into synthetical matrices stability analysis. Tanakat al. [2], [4] reduced the stability

Based on this, the optimal control law which can achieve global analysis and control design problems to linear matrix inequality
minimum effect is developed theoretically. The nonlinearseg- (LMI) problems. They also dealt with uncertainty issue [3]. This

mental two-point boundary-value problem (TPBVP) is derived h had b lied t | trol bl h
for the finite-horizon problem and a forward Riccati-like differ- approach had been applied 1o several control probiems suc

ential equation (DE) for the infinite-horizon problem. To further ~ @s control of chaos [4] and of articulated vehicle [6]. A fre-
simplify the computation, a segmentalRiccati-like DE is derived quency shaping method for systematic design of fuzzy con-

in solving the finite- or infinite-horizon issues. Moreover, in the trollers was also done by them [11]. Sanal. [7] developed
case of time-invariant fuzzy systems, we show that the optimal a separation scheme to design fuzzy observer and fuzzy con-

controller can be obtained by just solving algebraic Riccati-like . . .
equations. Grounding on this, several fascinating characteristics troller independently. Methods based on grid-point approach

of the resultant closed-loop fuzzy system can be elicited easily. The[12] and circle criteria [13], [14] were introduced to do stability
stability of the closed-loop fuzzy system can be ensured by the analysis of fuzzy control, too. Wang adopted a supervisory con-

designed optimal fuzzy controller. The optimal closed-loop fuzzy troller and introduced stability and robustness measures [15].
system cannot only be guaranteed to be exponentially stable, but Cao proposed a decomposition principle to design a fuzzy dis-

also be stabilized to any desired degree. Also, the total energy te-ti trol ¢ d ivalent orinciole to do st
of system output is absolutely finite. Moreover, the resultant crete-time control System and an equivalent principle to do sta-

closed-loop fuzzy system possesses an infinite gain margin; that is,bility analysis [9]. Even with the aforementioned research re-
its stability is guaranteed no matter how large the feedback gain sults on the theoretic aspect of fuzzy control, Tanaka and others’

becomes. An example is given to illustrate the proposed optimal works mentioned in the above always treat the stability of gen-
fuzzy controller design approach and to demonstrate the proved g4 jinear feedback fuzzy controllers.
stability properties. - _ On the issue of optimal fuzzy control, Wang developed an
~ Index Terms—Degree of stability, finite energy, global min- optimal fuzzy controller to stabilize a linear time-invariant
|r_rr1;ré1\,/§|ccatl-llke equation, two-point boundary-value problem system via Pontryagin maximum principle [10]. However,
( ) although fuzzy control of linear systems could be a good
starting pointfor a better understanding of some issues in fuzzy
|. INTRODUCTION control synthesis, it does not have much practical implications

LTHOUGH the research in fuzzy modeling and fuzzy Ccms_,ince using the fuzzy controller designed for a linear system

trol has been quite matured [1]-[9], it seems that the ﬁeﬁijrectly as the .controlle.r_ may n.ot be a QO.Od choice [10].
of optimal fuzzy control is nearly open [10]. The goal of thig\/loreover, the qted stab!llty criteria may be S|mple, but rough
work is to propose a systematic and theoretically sound schepi:{tdoI sysftlemg_tll_(; a_r;_alysil(s ?n? ZISO 1rgay1r7eiqlt(;r1 a %?n.t roller
for designing a global optimal fuzzy controller to control and/!th 1€ss Tiexibility. Tanakae al. [5], [16], [17] tried to obtain

stabilize a continuous-time fuzzy system with free- or ﬁxed—ena?jfuzzy controller to minimize the upper bound of the quadratic
point under finite or infinite horizon performance function by the LMI approach based on the

assumption of local-linear-feedback-gain control structure
Nevertheless, no theoretical analysis on this design scheme
of optimal-fuzzy-control structure was proposed. All of these
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maturate theformulation and simplification of thequadratic We then assume the desired controller is a rule-based non-
optimal fuzzy controproblem. This global-concept approachinear fuzzy controller

might initiate and activate the researchgiobal optimalfuzzy ‘

controller design. Further, a tricky unification of individual R Af y1is Sy, ... yns I8 S, then

matrices intesyntheticaimatrices generatediaear-like global u(t) =r;(t), i=1,....,6 (2)
system representation of a fuzzy system. Thisear-like

representation motivates us to develop the design schemeVeere

a global optimal fuzzy controller in the way of general linear ¥i;- -+ Yn’ elements of output vectdr (¢);

quadratic (LQ) approach. Moreover, a multistage-decompo-Stis - -« s Snsi input fuzzy terms in theth control rule;
sition approach is adopted to transform the optimal control u(t) or 7;(¢) € ®™ plantinput (i.e., control output) vector.
problem into an on-going stage-by-stage dynamic issue. THiBeN, ajuadratic optimal fuzzy control probleimdescribed as
decomposition operation can speed up numerical solutidfllows.

and keep the global optimality at the same time. The designProblem 1: Given the rule-based fuzzy system in (1) with
scheme meets theecessary and sufficiesbndition of global X (fo) = Xo € R" and a rule-based nonlinear fuzzy controller
optimum. The derived continuous fuzzy control law is theoretit (2), ¢ € [to, 1], find a controllerw™(-), which can minimize
cally demonstrated to be the best for the entire system to redf quadratic cost functional

the optimal performance index. Finally, the in-depth analysis t

(controllability, observability, stability, degree of stability, and J(u()) = / (X' L)X () + v (H)u(t)] dt

gain margin) in Section IV gives the complete perspective of all to

facets of the resultant closed-loop fuzzy system; we elicit that + X' (t)QX (t1) 3)

this kind of fuzzy controller can stabilize a continuous fuzz¥1 ¢ all possible inputa(-) of class PC
tem t ibed d f stability; th d . R '
SySIer 1o arly prescriaec degree o7 stabiily; e corrsspond The grounding on distributed fuzzy subsystems and

closed-loop fuzzy system possesses an infinite gain marginr based f woller bri h h i st |
and the total energy of the system output of the closed-lobp€ 2ased tuzzy controller brings the researchers in struggle

fuzzy system is absolutely finite. The design methodology‘ _f!nd out the controlleru*(-), _Wh'Ch can achieve _global_
illustrated by one example. minimum effect under quadratic performance consideration

defined on theentire fuzzy system and fuzzy controller. In
other words, it is a big troublesome challenge to achieve global
optimal solution under local model consideration and, thus far,
In this section, we shall propose antirefuzzy system rep- this issue has not been attacked directly even that the T-S type
resentation to maturate tifiermulationof the quadratic optimal fuzzy model has been available for many years. Wang [10] tried
fuzzy control problem. A sound unification of the individuato open the deadlock by considering a linear system (instead
matrices into synthetical matrices to forrmlimear-like global of fuzzy system) combined with a fuzzy controller. Tanaka
system representation of a fuzzy system helps the derivatain[16], [17] developed the LMI-based optimal fuzzy control
of a theoretical design scheme of the quadratic optimal fuzby assuming a local linear-feedback gain-control structure.
controller. We consider a given nonlinear plant described by thlowever, the quadratic optimal fuzzy control issue, in fact,

Il. QUADRATIC FUzzY PROBLEM FORMULATION

so-called T-S type fuzzy model remains fully open.
Since each penalty term in the performance index is with re-
R Nf 2y isTy, ..., zn iSTy;, then gard to the entire fuzzy system and controller, it flashes into our
X(t) = A;(O)X(®) + B;(H)u(t) mind to formulatethe distributed fuzzy subsystems and rule-

based fuzzy controller into one equation from the global con-

Y{)=Cc)X(@), i=1....r @ cept. Therefore, we “fuzzily blend” the well-known T-S type
fuzzy model to obtain the entire fuzzy system formulation
where
R ith rule of the fuzzy model; . T T
Ty, T system states; X(8) =" hi(X () ABXE) + > hi( X(£)Bi(t)u(t)
Tiiv ., Toi input fuzzy terms in theith 7‘?1 i=1
rule;
X(t) =[z1,...,2,]" € R" state vector; Y = z_; hi(X@)CEHX(?) “)
Y(t) € RV system output vector; =
u(t) € R system input (i.e., control and the entire fuzzy controller is
output) and sequences; s
Ai(t), Bi(t) andC(t) respectively,n x n, n x m _ ‘ .
and n’ x n matrices whose ut) = ;wz(y(t))“(t) ®)

elements are known to be

piecewise continuous (PC)with Y°1_ hi(X () = 1 and >0, wi(Y(t)) = 1, where

and real-valued functions de-h;(X(¢)) and w;(Y(¢)) denote, respectively, the normal-
fined on positive real spaceized firing-strength of theith rule of the continuous
Ry fuzzy model and that of th&th fuzzy control rule, i.e.,
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hi(X (1) = (X)) >, c(X(t)) and w;(Y(t)) = timal fuzzy controller in the way of general LQ approach, i.e.,
B:(Y(t)/ Ele Bi(Y (1)) with o (X (t)) = I}, pur,, (;(t))  calculus-of-variation method.
and 3;(Y () = H?,zlus-;(yj(t)), where ;7. (X (t)) and In order to clarify the credit of the work, we now point out

uis,. (y;(t)) are the membership functions of fuzzy termé&he kernel of the proposed global-concept approach as follows.
13; and S;;, respectively. Thus, we obtain the formulation of
the quadratic optimal fuzzy control problem in Problem 1 as
follows.

Problem 2: Given the entire fuzzy system in (4) with the
fuzzy controlleru(t) in (5) andX (¢9) = Xo € R™, ¢ € [to, t1],
find the optimal control law¥(-),< = 1, ..., 6 to minimize the
quadratic cost functional

1) The entire fuzzy system representation, obtained by
fuzzily merging the distributed rule-based T-S-type
fuzzy subsystems into one, is proposed to maturate the
formulationand simplification of thequadratic optimal
fuzzy controlproblem. This global-concept approach
might initiate and activate the researchgiobal optimal
fuzzy controller design.

2) Theindividualmatrices @4;(k) andB;(k),i=1,...,7)

t and normalized membership functiongy; (X (%)),

J(ri(-)) I/ [Xt(t)L(t)X(t) i =1,...,r, andw;(Y(k)),i = 1,...,6) are unified

fo into syntheticalmatrices @(k), B(k), H(X (k)), and

5 W (Y (k))). This unification generates dinear-like

+ Z Z wi (Y ()w,; (Y ()i (t)r;(¢) | dt global system representation of a fuzzy system with the
i=1 j=1 value of each element of the nonlinear termis X (k))
X )QX(t). (6) and W(Y'(k))) being located in segmerif, 1]. This

linear-like representation motivates us to develop the

This kind of quadratic optimal control problems is, obviously, ~ design scheme of global optimal fuzzy controller in the
still too tough for us to engage in. Introducing the following ~ Way of general LQ approach, i.e., calculus-of-variation

syntheticaimatrices H(X (t)), W (Y (t)), A(t), B(t), andR(¢) method. » _
can overcome the predicament, where 3) A multistage-decomposition .approach (Lemma 1.) is
adopted to transform the optimal control problem into

an on-going stage-by-stage dynamic issue. Therefore,

H(X(1) = [ (X(0)]n ho (X (8) ] the optimal solutions can be resolved frdvnsegmental
WY () =[wi(YE) L ... ws(Y(£)Im] nonlinear two-point boundary-value problem (TPBVP)
[AL(t) Bi(t) instead of the nonlinear TPBVP for the entire horizon.
Alt) = . . B@t)= . This _decomposition operation can _speed up numgrical
A .(t) B '(t) solution and keep the global optimality at the same time.
L= " 4) The existence ofV, denoting the number of stages at
r1(t) which membership functions can be assumed to be in-
R(t) = : variant during the whole single stage, is assumed to make
r 5.(t) the backward recursiveRiccati-like equatioravailable
This avoids the high computational complexity of the
with I, andI,,, denoting the identity matrices of dimensian collocation method at the expenseayiproximate opti-
andm, respectively. In other words, based on these synthetical ~mality due to the time-invariant assumption. A procedure
notations, Problem 2 can be rewritten as the following final for-  including a dynamical decomposition algorithm is pro-
mulation: posed to justify the time-invariant assumption in practice.
Problem 3: Given a nonlinear butinear-like closed-loop ~ 5) For time-invariant case, tregebraicRiccati-like equa-
fuzzy system tion is available in the aid of Lemma 2 and, thus, the finite-
horizon optimal solution is coincident with the asymp-
X(t) — H(X()A@®)X (1) + HX () BOW (V(£) () totic (infinite-horizon) optimal solution.

6) The in-depth analysis (stability, degree of stability, and
CHX(t) () gain margin) in Section IV gives the complete perspective
of all facets of the resultant closed-loop fuzzy system.

Y ()

with X (o) = Xo € R", find the optimal synthetical control
law, R*(-), to minimize the quadratic cost functional It is important for us to mention here that the process of inte-
grating all distributed fuzzy subsystems into one equation to de-

ty scribe the entire fuzzy system is necessary in order to find out
J(R()) = / (X't L(#)X(t) the global optimalsolution. The proposeflizzily blendeden-
to tire fuzzy system in (4) provides a practical way to work out the
+ R (OWHY (£))W (Y (1)) R(t)] dt global optimal solution. However, even each fuzzy subsystem
+ XM (#)QX (). (8) in T-S model is linear, th&uzzily blendecntire fuzzy system

in (4) is complicated and highly nonlinear. The further proposed
This linear-like synthetical matrix representation for the entirsynthetical matrixepresentation of the entire fuzzy system in
T-S type fuzzy system materializes the design of the global a7 shall, in the sense global optimality lower down the order
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and difficulty of the problem. This kind of global system replet (X*(¢), R*(t)), t € [to,t1] be the optimal solution with
resentation will be the foundation and kernel of the followingespect to/(R(-)) in (8) and(X* (t), R* (t)), t € [ty,t.] be

fuzzy controller design scheme. the ith-stage optimal solution with respect to
‘ 1
[ll. OPTIMAL Fuzzy CONTROLLER DESIGN Ji(R() = / (XH (L)X ()
We are going to design the optimal fuzzy controllers for con- t . .
tinuous fuzzy system with finite-horizon in Section IlI-A and +ROWHY ()W (Y (1)) (1))
for that with infinite-horizon in Section I1I-B. + X't X(tY) (10)
A. Finite-Horizon Problem wherei = 1,..., N; Q' equals toQ at the Nth stage and is a

By describing the fuzzy system from the global concept @(ero mat;gi (?Zt he)r\;v;?e th; |n|t|ajlvcerr;102::oﬁ( o) = Xo and

Section Il, our quadratic optimal fuzzy control problem for the 4
T-S type fuzzy system can be formulated and simplified into 1) (X*( ), BE(t)) = (X7 (), R ( )) for all ¢ 6_[ 7 . ]
Problem 3 in Section Il Since the membership functions inthe ¢ = L---» Ni andt§ = to, ) = t1, #f = #7710 =
fuzzy controller and fuzzy system are piecewise continuous, it 2. 7N; o . ,
is reasonable to make the following assumpticound the ex-  2) fortheith stage € [¢;, 1] the optimal synthetical control
treme points law is

Assumption 1:The membership functions aightly per- R (t) = —WHY () [W (Y * ()WY *(£))] "
turbedextremes are almost equivalent to those ofakizemes

t t *
e, pr () = pr, (@) + az®), j = 1...,n X BOHXE)PE) 1)
= 17"'77” and pis;;, (yJ (t)) = (Y5 (1) + e2vs(t)), and the corresponding global minimizer is
7=1. ,i=1,...,6, wheree;, ¢ = 1,2 are very small
positive value u*(t) = —B'(t)H' (X*(¢))P(t) (12)

For frequently used membership functions such as o i
bell-shaped, triangular, and trapezoid membership func- WhereP(t) satisfies the following TPBVP
tions, this assumption soundly holds. Further, from the essengg [ x = £)
of the dynamic programming formalism, we make the fo"dt [ P(t) }
lowing multistage decomposition of optimization scheme.

* * t t *
Lemma 1 (Multistage Decompositionp foregoing op- {H (X t() —H(X _(225)(219(§25))(X (1))
timization scheme is a dynamic allocation process or a
successivenultistage decision process. In other words, if we let [ } (13)
to =ty tr =tV th =t i =2 N;AH =t —thi=

.,N and deflne (see equatlon at the bottom of the page)
with regard to the state resulting from the previous decision,
e, X(t}) = Xo; X(t) = X*(t771),4=2,..., N, then

with P(#)) = Q'X*(#}), where X*(-) is the corre-
sponding optimal state trajectory.
Proof: See Appendix. O
HX(),u(-)) = LX), u(-) 4+ -+ V(X (), u(-). (9) We should emphasize here the multistage-decomposition ap-
proach in Lemma 1 can transform the optimal control problem
Proof: See Appendix. O into an on-going stage-by-stage dynamic issue. Therefore, the
We shall first decompose the optimization problem into amptimal solutions can be resolved frali segmentahonlinear
on-going stage-by-stage dynamic issue with the aid of Lemm&BVP instead of the nonlinear TPBVP for the entire horizon.
1. Then, successively focusing on only one stage at a time, Weis decomposition operation can speed up numerical solution,
use thecalculus of variations methocbmbined withLagrange and keep the global optimality at the same time.
multiplier methodo obtain the necessary and sufficient condi- Moreover, though the membership functions are dependent
tion for global optimum. on the system state, the state-penalty téfid¢) L(£) X (¢) in
Theorem 1:For the fuzzy system in (1) and fuzzy con-the cost functional in (3) or (8) can encouragan@oth optimal
troller in (2) with nonsharp-profile membership functionstrajectory [19]. For achosen nonsharmembership function

HXOu() = min [ OLOXO + 0 Oub]d + X (0)QX (1)

Ultg.ty

and
min,, ftz [XT(t)L(t) X (t) + v (t)u(t)] dt, i=1,...,N—1

WX (), u() = ;
P ul) {Inlllu[tév,t1] tglf (X' LX) + v (O)u(®)] dt + X' (#)QX(t1), 1+ =N
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profile, it is, in concept, reasonable and workable to increaaad(X* (t), R' (t)),t € [t), ti] be theith-stage optimal solu-
the sampling frequency such that the membership functiontafn with respect ta/*(R(-)) in (10). If N > N then
the optimal stateX*(¢) remains almost invariant during each 1) (X*(¢), R*(¢)) = (X (¢), R (¢)) for all ¢t € [#, ],

stage. In other words, we can further adjust the division, i.e., § = 1,... N;and#] = to, tN = t,,t) = 71,4 =
enlargelV, to the extent thal (X (¢)) andW (Y '(¢)) are almost 2,...,N;

invariant during thevhole single stageand useff; andW; to  2) for theith staget € [t},t], the optimal synthetical con-
denoteH (X (t)) and W (Y (t)), respectively, at théth stage. trol law is

Then, the optimal synthetical control law becomes L ‘ L
4 o R () = Wi [WiW;] " B'(®)Hi=" (t,11) X* (t) (19)
R(t) = -W} [W,W}| " B'(t)H{P(t), te [t),tl] (14)
and the corresponding global minimizer is
whereP(¢) satisfies the followindinear TPBVP

C(t) = —BU®)H!T (4, 8) X (¢ 20
d [X7()] _ [HA() —HB®B(HH!] [ X*(t) w0 (OH (t.6) X () (20)
dt | P(t) | | —L(®) —AY(t)H! P(t) where 7(t,#}) is the symmetric positive semidefinite
te[t,t] (15) solution of thesegmentaRiccati-like DE in (16); the

ith-stage optimal trajectory is
with H, = H(Xo), W1 = W(Y(to)), X(t5) = Xo; Hi = o
H(X(#7Y), W, = WY Y), X(8) = X*(£ 1), vi = X' (t) = [H;A(t) - HiB(t)B' () H[=' (¢,17)] X" (t) (21)
2,...,N; P(t}) = Q'X*(#,),Vi = 1,...,N. Furthermore, . _ _
Let P(f) — K(#)X*(#). Then, (15) is equivalent to the fol- ) (€ minimum —performance index is equal to

lowing segmentaRiccati-like differential equation (DE): ST X () (0, 1) X ().
. Proof: This theorem follows the above inference. [
—K(t) = L(t) — K(t)H; B(t)B*(¢)H; K(t) So far, we have solved the optimal fuzzy control problem by
+ AYOHIK(t) + K(t)H,; A(t) (16) finding the optimal solution to the general time-varying case.
o . ‘ In the classical LQ optimal control problem, a time-invariant
wheret € [t} t1],4 = 1,....Nitf = to, t{' = t1; K(t]) =  system will give rise to time-invariant linear optimal control law.
Q. We are now eager to know if this phenomenon exists in each

We further defineN' to be the number of stages at whichsegmental fuzzy system. Some useful lemmas are demonstrated
membership functions can be assumed to be invariant duriggow in order to develop the design scheme of optimal fuzzy
the whole single stageThen, thebackwardRiccati-like DE in - control law regarding to the time-invariant fuzzy system.
(16) becomes available due to the existenc&ofThis avoids | emma 2: Consider a dynamical systemX(t) =
the high computational complexity of the collocation method R X (1), u(t), ), with X () = Xi. Let the paif X*(-), u*(+))
the expense aipproximate optimalitglue to the time-invariant pe the infinite-horizon optimal solution with the perfor-
assumption. We can ensure this assumption by checking the fgknce index/(u(-)) = [ fo(X(t),u(t),t)dt and the pair
lowing condition at the starting time-instant of théa stage, (X*(),a*(-)) be the finite-horizon optimal solution with

sayingt} = :
yIngtg respect toJ(u(-)) = ftf.l Jo(X(#),u(t),t) dt, where f(-,-,-),
H dH(X*(1)) < s @7y Jo(.-) € PC(R™, R™R), a mapping fronk” x ™ x R to
dr =t} real-valued functions of class PC.X(¢*) is a free point, then

(t),a* (1)) = (X*(1),u*(2)) forall £ € [t #]].
Proof: Assume the infinite-horizon optimal solution for
somet € [t§, #,] is not the finite-horizon optimal solution, then

X*
and then keeping checking the following condition to find thé
proper length of this stage:

[H(X*™(8) — H (X" (t))|| < e, VEE [t 8] (18) ¢

(X, @), B de < | fo(XU(#),ut(E), 1) dt.

wherery, andky, are the given tolerance to ensure the al- t
most-invariant criteria. The first inequality in (17) ensures that
the membership degrees corresponding to the optimal trajecttryfe define a decision sequenaé¢t) as

X*(-) attime-instant{ does not change in abrupt shape and also . (X )T (1), ¢ €[t b
gives a hint that an almost-invariant-membership-function stage ~ (X(¢), 4(t)) = { (X*(8) u*(t)7) tel o oi))
from time-instant;, is achievable. The second inequality in (18) ’ ’ v
iS to CheCk the almost'invariant Criteria fOI’ the enﬂﬂe Stage WhereX(t) denotes the Corresponding state trajectory, then
to find out the length (time period) of the stage and then can
also provide the information about the value/éf These two
inequalities are used to check the time-invariant criteria in the /f
dynamic decomposition algorithf@DA) in Section V. Now, we

to

_OO fO(X(t),a(t),t) dt = /fl Jo(X*(t),u"(t),t)dt

3

0

summarize the previous derivation in the following asserfibn. + / fo(X7(@),u"(¢),t) dt
Theorem 2: For the fuzzy system and fuzzy controller rep- &

resented, respectively, by (1) and (2), (&f*(¢), R*(¢)), t € < /Oo ). 0 (). ) di

[to,t1] be the optimal solution with respect t§ R(-)) in (8) v Jo(X7(®), " (2), ¥) .
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This conflicts with that(}(*(t), u*
optimal solution. Thus(X*(¢), @*(
for all ¢ € [t}, t1] positively.

(
t

t
) = (X*(8),w"(2)) holds
O

the entire fuzzy system.

Lemma 3 (Controllability): (4;,B;) is completely
controllable (CC) for all¢ = 1,...,r if and only if
rank[A,, — H(X(k))A H(X(k))B] = n, forall X(¢t) € R
and\ € C.

Proof: See Appendix.
Lemma 4 (Observability)(A;, C) is completely observable
(CO)foralli =1,...,r, ifand only if

AL, — H(X(£)A

c ArecC.

rank =n, YX()eR"

Proof: The proof is similar to that in Lemma 3. O

the following lemma.
Lemma 5: For each segmental dynamical fuzzy system

X(t) = H;AX(t) + H;BW;R(t),

Y(t) = CX(t) (22)

with X (¢4) known. If (4;, B;) is CC and(A;, C) is CO for all
i=1,...,r,then
1) there exists an uniquex n symmetric positive semidef-

inite solution 7’
(SSRE)

A'H!K + KH;A—- KH,BB'H!K +C'C =0  (23)

2) the asymptotically optimal control law is

RI(t) = W} [WiW}] " B'H{x X1(t), te [t )
(24)

which minimizes

SB) = [T XY + B OWWRD] d

(25)
3) the optimal closed-loop fuzzy system
XL (t) = (HiA— H;BB'H!x! ) XL (t), te€ [th, )
(26)

is asymptotically and exponentially stable.
Proof: We know, from Lemmas 3 and 4(A4,, B;)
is CC, Vi = 1,...,r, if and only if rank[\l, —

)) is the infinite-horizon ensure&ank[)‘I"

CCand(4;,C)CO,Vi=1,...,

Furthermore, we develop two lemmas below to link the cof"d (i, €') CO, respectively. Then, by the classical linear

trollability and observability of the fuzzy subsystem to those i

of the steady state Riccati equation
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A] = n, YA € C. Therefore(A;, B;)
r, guaranteé H; A, H;B) CC

C

uadratic optimal control theorem [20], we have the optimal
solution for the segmental fuzzy system in (22). O

A more implementable theorem for the time-invariant fuzzy
subsystems can be extracted based on the aforementioned
lemmas and Theorem 2, which considers the time-varying
fuzzy subsystems.

Theorem 3 (Time-Invariant)Consider the time-invariant
fuzzy system and fuzzy controller described,
by (1) and (2) with, = C*'C in (8). Let (X*(¢), R*(t)),
t €
J(R(-)) in (8), (X |
ith-stage optimal solution with respect fo(£(-)) in (10) and

(X0, B (1)). ¢

Now, the aforementioned inference can be summarized i §tlmal solution with respect td_, (R(")) in (25). f N > N,

respectively,

[to,t1], denote the optimal solution with respect to
C(t),RU(t), t € [ti,ti], denote the

€ [ti,t], be theith-stage asymptotically

isCCand4,,C)is CO,forall: =1,...,r, then
1) see (27) at the bottom of the page Wht%re: tj‘l, 1=
LNt = to;

2) fortheithstages = 1,..., N—1, the optimal synthetical
control law isR’_(-) in (24), and the optimal trajectory is
X7 (-) in (26), wherer_ is the unique symmetric posi-
tive semidefinite solution of the SSRE in (23);

3) asforthe last stage, tliéth stage, the optimal synthetical
control law isR* (+) in (19) and the optimal trajectory is
X7 (-)in (21), wherer’ (¢, 1) is the symmetric positive
semidefinite solution of the segmental Riccati DE in (16);

4) the minimum performance index is

N—-1

min J(R(:)) = Z [Xé: (té) WéoXé; (té)}

[to-t1] =1

+ XN ) N () XN ().

Proof:

2) Based on Lemma 1, the whole optimization is de-
composed into anV-stage decision process with, at
each stage, the initial state resulting from the decision
of its previous stage. Now, our optimal fuzzy control
problem—Problem 1—can be attacked in the following
two issues, with both regarding to the same dynamical
fuzzy system described by (7) except that the initial stage
is X (t{) and the time interval i}, ¢!] for theith stage

H(X(D)A HX(1)B] = n ¥X() € W VA € C wmin [ X0
and, accordinglysank[Al,, — H; A H;B] =n, VX € o(H;A), @) (e ] /t;y EOLOXE
i=1,...,N. Also,(4; C)is CO,vi = 1,...,r, if and only + RUOWHY ()W (Y (£))R(b)] dt
if rank[ " ~ fg)‘ A} 2 5 wx € % ¥A e ¢, which XHQX () 28)
A i i=1....N—
(X5, B () { (X2 () V(t)) te [thtl], 1,...,N-1 o

(x" @, B 1), Ve [i.n]
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s B. Infinite-Horizon Problem

() uin [ (XOLOXE ovem |

i ei1 It The purpose of this section is to design the optimal fuzzy

+ RIOWHY ()W (Y (1) R(t)] dt controller concerning the _infinite-horiZ(_)n_problern, which is the
i1 N_1 (29 case that the operating time goes to infinity or is much larger
t=1...,N -1 (29 than the time-constant of the dynamic system. It is critical to no-

tice the problem: Does the minimal performance index finitely

Furthermore, by Lemma 2, the optimal solution with re-xi ts? We introduce th ncept br d by Machi and Str
spect to (29) can be regarded as the one with respect t sts7 Ve Introduce the conceptproposedby Machi a auss
1]: If the linearized system of a nonlinear system with respect

] < to (w.r.t) some stat&l, € R™ is CC, thenX, is an interior point
ML / [XF(@) L)X () of the controllable set (the set of all initial points which can be
o<l % steered to the targetNow, the linearized system of the fuzzy

+ R OWHY ()W (Y (1) R(t)] dt, system in (7) with respect to poit,, is

P b N (0) X(t) = H(X,)A()X(t) + H(X,)B(t)u(t).  (31)

Notice that this equivalence only exists on the time . o
in period £, #1]. Therefore, hereinafter, we can pay at]’herefore, to ensure that our problem is solvable, it is necessary

tention only to (30) for the time intervdk),#i], i = t.hat the pair(H({(o)A(~),nH(XO)B(~)) s (_:ontrollable at a.”
1,...,N — 1 and to (28) for the time intervat®) , ¢,]. time and for allX, € R®". We can now find out the design

3) For N > N, H(X(t)) and W(Y(#)) in the dynamic scheme of the infinite-horizon optimal fuzzy controller.

fuzzy system described by (7) can be replaced, respeC_‘I’heorem 5: For the fuzzy system and fuzzy controller in (1)

tively, by constant matrice&l; andW; for theith stage. and (2), respectively, if the linearized fuzzy system in (31) is

Therefore, the whole fuzzy system in (7) can be rewrittefPntrollable and there exists ¢, oo) ann x n symmetric posi-
as a linear system represented by (22). Fib-stage op- tive semidefinite solutiog(¢, ¢o) to theforward Riccati-like DE

j[imal solution, indeed, follows from the optimal solution K(t) = L(t) — K()H(X()B®)B () H{ (X (1)K (t)
in Theorem 2. As for the other stages, we know from

the proof of Lemmas 5(4;, B;) CC and(A;,C) CO, — AOH(X(O)K(1) - K(OH(X(£)A(t) (32)

Vi = 1,...,r guarantee, respectivelff; A, H;B) CC \ynare fc > 0 and the initial value of the dependent variable

and(H,4,C) CO,vi = 1,..., N, wherer andN are, -y _ o then there exists a optimal synthetical control law
respectively, the number of rules of the fuzzy system in

(1) and the number of stages of the process described by  R*(#) = WH(Y*(#))[W (Y *(#) )W (Y * ()] ~*

the dynamical fuzzy system in (22). Hence, we can obtain x BEHY(X*(£))(t, o) X* (1) (33)
the optimal solution for the firsv — 1 stages via Lemma
5. L which minimizes
Hence, for the firstV — 1 stages, a time-invariant fuzzy 00
system can still give rise to the time-invariant linear optimal J(R()) = / [(X"(t)L(t)X(t)
fuzzy control law. to
At the moment, we extend our study in designing the + R(OWHY ()W (Y (1)R()]dt (34)

optimal fuzzy controller from the free-end point problem to . S
the fixed-end point problem in which a desired final state (th%nd the corresponding global minimizer is
target) is given. The fixed end-point quadratic optimal fuzzy w*(t) = BUH (X" (£))p(t, 1) X*(2). (35)
control problem is defined as follows.
Problem 4: Given the fuzzy systemin (7) with (to) = X9, The dynamics of the resultant closed-loop fuzzy system is de-
X(t1) = X1 € R andt € [to,t1], find R*(-) to minimize scribed by
J(R()) in (8). . *
The procedure to solve this problem is similar to that for X*(t) = [H(X"(1)A®)
solving Problem 1. Therefore, we only summarize the gener- — H(X*())B@)B () H (X (1)) (¢, t0)| X *(2)
alized theorem as follows. t € [to,00] (36)
Theorem 4: For the fuzzy system in (1) witik (¢1) = X;
and the fuzzy controller in (2), the optimal control law with rewith X (¢¢) = Xo.
spect toJ(R(-)) in (8) is R*(¢) in (11) and the corresponding Proof: See Appendix. O
global minimizer isu*(¢) in (12), whereP(¢) and optimal tra-  Though the firing-strength matri¥/ (X (-)) is state depen-
jectory X*(-) satisfy TPBVP in (13) withX(¢o) = X, and dent, Theorem 5is actually implementable since the Riccati-like
X(t1) = X1. DE in (32) is of forward, just as the state equation in (7). How-
Proof: The proof is similar to thatin Theorem 1. O ever, it is indeed complicated in computational aspect. There-
Since the final state is constrained, Problem 4 does not liere, a multistage approach as in Section IlI-A is still preferable.
long to the standard foregoing optimization problem and, ac-Theorem 6: For the fuzzy system and fuzzy controller de-
cordingly, the successive multistage decomposition approacis@sibed by (1) and (2), respectively, X (¢), R (t)), t €
now unavailable for this case. [to, 00), be the optimal solution with respect @ R(-)) in (34),
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and (X7 (¢), R" (t)),t € [t},ti], be theith-stage optimal so- totically and exponentially stabilize the fuzzy system, but also
lution with respect to (37), shown at the bottom of the page. fidrm a closed-loop fuzzy system with any desired degree of sta-
N > N and the linearized fuzzy system in (31) is controllabldility. We also concern with the range of the feedback ggiim
then marginto which we can increase under the stability considera-
2) (XZ(t), R, (1) = (X' (1), R (1), ¢ € [th,t1], @ = ton.
1,...,N,wheret) = #:71 i =2 .. Nith =to,t) = y
00 A. Global Stability
3) for theith staget € [t),#i],i = 1,..., N, the optimal  As remarked earlier, the whole optimal trajectory is decom-
control law, the corresponding global minimizer, the opposed intaV segments and, more, if each fuzzy subsystemin (1)
timal trajectory, and the minimum performance index sais well-behaved (CC and CO) ad > NV, then each segment
isfy the same corresponding equations in Theorem 2, @&an be described by its corresponding asymptotically optimal

ceptthat) = coand@’ =0foralli=1,...,N. trajectory during the same period of this segment, i.e.,
Proof: This theorem obviously holds with Theorem o
2. Notice that, for theNth stage, the controllable criterion X=X (1) = X(1), Ve[t t]] (39)

can ensure the existence of the limit valuerdf(¢,#,); i.e., ) L N ; P
FN(t) = limy, oo 7N (¢, £,) exists for allt, andz™ (¢) is still  Wherei =1 o N andty = to, t =t ty = 1,0 =

the symmetric positive semidefinite solution of the segmental- - -4V that is, the behavior of the closed-loop fuzzy system
Riccati-like DE in (16) [20]. ] can be captured by the corresponding asymptotically behavior

For the time-invariant case, the pai (X,) A, H(X,)B)cc Of theseN segments.
is equivalent taank[\,, — H(X,)A, H(X,)B] = n, ¥C and Theorem 8: For the time-invariant fuzzy system and fuzzy

this condition, by Lemma 3, can be satisfiedi;, B;) is CC, controller described, respectively, in (1) and (2) witk= C*C

foralli = 1,...,r. So, we need the following assumption ad (8. If V> N, (A;, B;) is CC, and(4;, ) is CO fori =
the prerequisite for the optimal controller design in the time= -+ 7 then.
invariant infinite-horizon case. 2) the optimal closed-loop fuzzy system

Assumption 2:(A;, B;) is CC, foralli = 1,...,r.

- _ topt i ]y i
Theorem 7 (Time-Invariant)Consider the time-invariant Xo(t) = [HiA — H,BB Hﬂoo] X)), te [ O’tl]

fuzzy system and fuzzy controller described, respectively, by ) L N ; g‘_“i))
(1) and (2) withL = C*C'in (8). If N > N, (4;, B;) is CC where: = 1,.... N, #; = to, tf = oo, t =t
and(A;,C)is CO, foralli = 1,...,r then i = 2,..., N is exponentially stable;

2) 3) the total energy of system output is finite, i.e.,

S (@)])Pdt < oc.
(X250, i) = (X5(8), B (1) Proof. t
v 0 1 2) RecallthatX!_(-) is theith-stage asymptotically optimal
€ [thti], th=to, rai . . )

~ X jectory of the quadratic optlma‘l control problem, i.e.,
ty =00, 1=1,....,N (38) minimizing the performance indek_(R(-)) in (25) with
respect to the dynamical fuzzy system in (22). Moreover,
(4,,B;) CC and(4,,C) CO,Vi = 1,...,r, guaran-
tees from the proof of Lemma &4, A, H;B) CC and
(H;A,C) CO,¥i = 1,...,N. Hence, we know from
Lemma 5 theth-stage asymptotically optimal trajectory

whereR!_(t) is theith-stage asymptotically optimal con-
trol law in (24) andX?_(¢) is the corresponding asymptot-
ically optimal trajectory in (26), where!_ is the unique
symmetric positive semidefinite solution of the SSRE in

(23);
3) the minimum performance index is X (t) = [H‘A_H‘BBth,]ri ]Xf(t) te [ti OO)
(a9} - T T 2 oo (a9} ’ 0
N
Rlnin J(R(.)):Z[Xi* (i) w X (tg)}. is asymptotically and exponentially stable, i.e.,
) P o[H;,A — H;BB'H!x')] C C°, whereC? denotes

the open left-half plane of complex space. Hence, via
(39), the optimal trajectory described by (40) is asymp-
totically and exponentially stable since the eigenvalues of
the system matrix characterizing the dynamical behavior

In this section, we shall show that the control law resulting of each segment are all located on the left-half plane of
from an infinite-horizon performance index cannot only asymp- complex space.

Proof: This theorem obviously holds with Theorem 3L

IV. STABILITY AND GAIN MARGIN

(X ' ' NR()dt, Vte [thti], i=1,...,N-1
g . . (37)
NR())dt, Vte[t),o0), i=N

—
% g
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3) From (7)
/ IIY*(t)IIthS/ ICIP X1 dt
to to

_ zj\:/t 1C|I2 HX;;(t)H2 dt. (41)

From (1) of this proof, theith-stage asymptotically op-
timal trajectoryX’_(-) is exponentially stable. The ter
exponentially stablemeans uniformly asymptotically

stablein the stability concept [22], which means tha

Proof: 1)

rank[B AB---A""'B] = n.Let B £ ¢**B. Then we
have rank[B AB CAMTIB] =
which means(A4, B) is CC if and only if (A,B) is CC;
2) Now, consider two systemsX = 3
X = (al, + A)X + Bu. Obviously, they are related by a
nonsingular linear transformatieft’. Therefore(A, B) is CC
mif and only if (al, + A, B) is CC for any complex value.
From 1) and 2), we conclude that Lemma 6 holds. O
t Lemma7: Forasystenfit =

(A,B) is CC if and only if
rank[B AB---A""1B],

AX 4+ Bu and

[A,B,C], (A, C) COis equiv-

for all X(t)) € ®" andt), € R, X7 (¢) satisfies the alent to(awl,, + A, C') CO for any complex valuer.

following two properties.

2) The range of mapping fromto X?_(t) is bounded on
t > 0 uniformly, i.e.,

Jk < oos.t.

Xg;(t)H <k, V>0

Proof: The proof is similar to the proof of Lemma 6]
Theorem 9: Consider the time-invariant fuzzy system and

fuzzy controller described, respectively, by (1) and (2) itk

C'Cin(8).If N > N, (A;, B) is CC and 4;, C) is CO for all
i=1,...
sired degree of stability, i.e., the optimal trajectd€y_(-) will

,r, then the fuzzy system can be stabilized to any de-

3) The range of mapping fromto X’_(t) tends to zero as approach zero at least by the ratezof*, where« is any pos-

t — oo uniformly, i.e.,

Ve >0, 3T(e) > 0sit. ‘

X;;(t)H <e, Vi>T(e).

AssumeT(¢) is located in theN,-th stage, i.e.f)° <
T(e) < tY°. Then, (43) becomes

ﬁww%

to
N,—1

< Z/ ltellE HX H dt
0

T(e)
+ [ e xse]
tO

No

t 2
+ o e o] a
(0
*Z/WW%W%

No+1

(42)

wheretlY = oc. We know that the first two terms are
finite and the others are infinitesimal and, thereupon, the
total energy of system output is absolutely finite. [
The stability of the closed-loop fuzzy system in time-varying
case can still be ensured if the corresponding asymptotically
optimal trajectory of each segment is exponentially stable.

B. Stabilization to Any Desired Degree

This section shows that the resultant closed-loop fuzzy
system has a degree of stability of at least some prescribed
constanty, o > 0, which means that the state approaches zero
at least by the rate af~>*. Of course, the larger the desired de-
gree of stability is, the more stable the closed-loop fuzzy system
is. However, a high degree of stability may only be achieved
at the expense of excessive control energy consumption. Two
lemmas are derived here to deduce this interesting property.

Lemma 6: For a systenk = [A, B,C] : X(t) = AX(t) +
Bu(t), Y (t) = CX(t), whereA, B andC aren X n,n x m,
andn’ x n matrices{ A, B) CC is equivalent t¢a,, + A, B)

CC for any complex value.

itive real value.
Proof:

2) Aswe know, forV > N and well-behaved fuzzy subsys-

tems, the behavior ot *_(-) is fully described byX?_(-),

i = 1,...,N. Hence, we now pay attention to such
quadratic optimal control problem: minimizing the per-
formance index in (25) with respect to the linear time-in-
variant fuzzy system in (22). Let, Bi and« denote,
respectivelyd; A, H; B andWW; R. Then we have the fol-
lowing optimization problem:

min /t TIXUOLX () + ut (2)u()] dt

Wt { X(t) = AiX(t) + Biu(t),

Y(t) = CX (D). (43)

Let X(t ) = X (1), Y(t) = 'Y (t) andi(t) =
u(t). Then (43) can be rewritten as

min /t _OO e 72X LX (8) + 4t (t)a(t)] dt

3
0

W.I.L. { )j((t) =
Y(t) =

(al, + AD)X(t) + Bii(t),

cX(t). (44)

3) From Lemmas 6 and 7, we know thati, B) is CC and

(4¢,C) is CO,Y:i = 1,...,r, if and only if (al, +

At, Bi) is CC and(ael,, + Ai,C)isCO,Vi =1,...,N.
Hence, based on the theorems in [19], [23], [24], the op-
timal fuzzy control law for the modified fuzzy system in
the above igii_ (t) = —Bit#i_(a) X (¢),i=1,...,N,
where#!_(«) is the positive semidefinite solution of the
modified SSRE

(ady, + H; AV K (o) + K(a)(ad, + H; A)

— K(a)H,BB'H!K(a) + L =0 (45)

and the modified fuzzy system is asymptotically stable,
ie, X (t) — 0,Vi = 1,...,N ast — oo. Then,
X! (t),Vi = 1,..., N, decays faster thaer** ast —
co since X (¢) = e* X% (¢). Hence, by (39).X*%.(")
will approach zero at least by the ratecof*t. O
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C. Gain Margin

In the remainder of Section IV, we examine another character-
istic gain marginof the resultant closed-loop fuzzy system. For
the time-invariant well-behaved fuzzy subsystemsyif> N,
thenX* () is coincident withX?_(t), for all € [t5,t:], where
+ = 1,...,N. Therefore, we can only discuss the asymptot-
ically behavior of the dynamical fuzzy system of each stage
and then turns it into the behavior of the entire dynamical fuzzy
system via (39). From Lemma 5, the desiguthdstageasymp-
totically global minimizer is

ulo(t) = —B'Hirl X1 (1),

00 i oot oo te [tévoo) . (46)

In order to measure the gain margin, we consider the following
corresponding controller:
ulo(t) = —BB'HIxL XL (), B=1, te[thoo).
(47)
The gain margin othe ith-stage closed-loop fuzzy system is
defined as the amount by whighcan be increased until the
system becomes unstafi®®]. Now, let

3) wheng goesto zero, which is the case that the closed-loop

system possesses an infinite gain margin, the limit value
of 7..(q) exists and is equal tb..(0);

4) we can find an optimal control lawu*(t) =

—B'1,,X*(t), where, is the positive semidefinite
solution of the SSREA'K + KA - KBB'K + L =0

and the resultant closed-loop system possesses an infi-
nite gain margin, i.e., the modified closed-loop system
[A— BBB'#.(q)] is always stable for ang > 1, where

q = 1/53% andfi..(q) is the positive semidefinite solution
of the modified SSRE in (52);

moreover, for any fixeds, the enlarged controller,
(1) = —BB'(q) X *(t) can still stabilize the modi-
fied closed-loop system to any desired degree of stability,
i.e., all the eigenvalues of — 3BB'#..(«, q) have real
parts smaller than-«, where« could be any positive
real number andr..(«, q) is the positive semidefinite
solution of the modified SSRE

(alp + A) K (o, q) + K(a, g)(ady, + A)
+ qL - K(a7Q)BBtK(a7Q) =0

V(1) Sul (/8 = ~BHITL XL () (48)
and then we have where_K(a, q) is the dependent variable of the algebraic
- equation.
J (U’io(')) = / (Xi;LXio + Ugouéo) dt Grounding on this proposition, the following fascinating fact
t can be elicited.

= / (Xé;LXio—i—/}QUi;Uéo) dt.  (49)
tz’
We further consider
J (Uéo()) :/ (qXé;LXéO + UZ:OUéO) dt, q¢q>0. (50)
td

Notice thatJ(u’_(-)) = B2J(v'_(-)) andg = 1/3% Com-
paring (50) to (49), we find that the larger tlids, the smaller
theq is, which means that whengoes to zero, the gain margin
of theith-stage closed-loop fuzzy system becomes infinite.
It is realizable to includey into the state penalty matrik.
From Lemma 5, for any > 0, the global minimizer becomes

viy(t) = —B'H! 7 () X5 (8)

where#!_(g) satisfies the modified SSRE
A'H{K(q) + K(q)H;A+qL — K(q)H;BB'H{K(q) = 0
(51)
whereK (q) is the dependent variable of the algebraic equation.

Theorem 10:Consider the time-invariant fuzzy system and
fuzzy controller described, respectively, by (1) and (2) with-
C'Cin(8). If N > N, (4;,B;) is CC and(4;, C) is CO for
alli =1,...,r then

2) we can find a global minimizer

ul(t) = —B'Hin X (1), te€ [tht] (53)
wherei = 1,...,N; t} = to, t) = oo, th = i1,

i = 2,...,N; and «!_ is the positive semidefi-
nite solution of the SSRE in (23) and the resultant
closed-loop fuzzy system possesses an infinite gain
margin, i.e., the modified closed-loop fuzzy system
[H;A— BH;BB'H!7 ().t € [ty,ti].i = 1,...,N,

is always stable for ang > 1, whereq = 1/3% and
#_(q) is the positive semidefinite solution of the mod-
ified SSRE

A'H!K(q)+ K(q)H;A+qL — K(q)H;BB'H!K(q) = 0.

(54)

We now first cite some important results in control theory [25], 3) moreover, for any fixed3 the enlarged controller

[26] and apply them to théth-stage closed-loop fuzzy system.
We shall then find the gain margin of the entire closed-loop
fuzzy system.

Proposition 1 [25], [26]: Consider the infinite-horizon op-
timal control problem as follows: Given a linear time-invariant
systemX (t) = AX (t)+Bu(t), find an optimal controller* (t)
to minimize J(u(-)) = [ [X'(t)LX(t) + u'(t)u(t)] dt with
Y (¢) denoting the system output, wheY&t) = CX(¢) and
L = C'C. Now, if (A, B) is CC and(A, C) is CO, then

2) there exists an unique symmetric positive semidefinite so-

lution denoted byt ..(g) of the modified SSRE

A'K(q) + K(9)A+qL - K(¢)BB'K(9) =0  (52)

ws(t) = BB HlEL()X3(t), t € [t.ti],

i1 =1,..., N can still stabilize the modified closed-loop
systemto any desired degree of stability, i.e., all the eigen-
values of[H;A — SH;BB'H!#' (o, q)], t € [th,ti],

i1 =1,..., N, have real parts smaller tharnx, wherea
could be any positive real number a#f («, q) is the
positive semidefinite solution of the modified SSRE

+qL — K(a,q)H;BBH{K(a,q) =0 (55)

whereK («, ¢) is the dependent variable of the algebraic
equation.
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Proof: From the proof of Lemma 5(A4;, B;) CC, and bership-function criteria during a whole single stage. Now, by
(4,,C) CO,Vi = 1,...,r, ensures(H;A, H;B) CC, and denoting the time-dependence as a lower index (., for
(H;A,C) CO,Vi = 1,...,N, which meets the condition in X*()) and substituting’, by ¢ for notation simplification, we
Proposition 1. Hence, we shall, via Proposition 1, obtain thean rewrite (17) as follows:
asymptotically opEimaI solu‘tﬁion for each segment and then, vi dH(X*(1))

(39) (X2 (t) = X" (t) = XL (), Yt € [t§,t,]), get the whole WT
optimal solution.

dX*
dr

[Vt Ly (XE)-

T=t ‘

dX*

2) Let Ai, Bi and » denote H;A, H;B and W;R, T, ...,V e (XT) - y T I,
respectively. We know, from 3) in Proposition d T=t
1, that the asymptotically global minimizer is (60)
uso(t) = —B'Him X (t), t € [ty,00) and the whereVi. h;(X2) = [(dhi(X2)/dxy),. .., (dhi(X2)/dz,)],
modified closed-loop fuzzy system of tiih stage i=1,...,r. SubstitutingP, = K, X; into the TPBVP in The-

XiL(t) = (H;A — BHBB'H!#' () XL (1) orem 1, we have
te[thoo), Vi=1,....N (56) —K; = ALHY (XK + K H(X;) A
is always stable for anyd > 1, i.e., o[H;A — — KiH(X;)BIB{H'(X)Ki+ Li, K, =Q
BH;BB'H!#.(q)] C C°, whereq = 1/3% and (61)

C° denotes the open left-half plane of complex space, . . . .
By (39), we know that the global minimizer ig._(£) in wherel € [to,%1]. Though the entire backward Riccati DE in

(53) and the modified closed-loop fuzzy system is the above is unavailable in practice, the differential formula is
always available for any time instant. In other words, at time

Xz(t) = (H:A - BH;BB'H{#. (g)) X2.(¥) instantt, we have
relwnl 60 K= ALK, + KH(X) A
wherei = 1,..., N andt} = to, t) = oo, th = ¢]7", — K,H(X)BB'H' (XK, + Li.  (62)
i = 2,...,N. Since no matter how large is, the spec-

trum of system matrix, which characterizes the dynamicﬁind’ according to Lemma 3, the finite-horizon optimal solution
behavior of each segment of the modified optimal trajeégrthefree—end problem is the same as the optimal solution of the
tory, is always located in the left half plane of Cc)mple);nfinite-h_orizon issue. Th(_arefore, the s_olut_i@nfo_r _(62) is als_o
space, the resultant closed-loop fuzzy system posses ifiae solutiorr, of the following asymptotic Riccati-like equation
) ni:]e gair; margin. ) ATHY XK, + K H(X]) A,

3) Then, for any given gain margin3, we know, R H(XOB.BH'YXOE, + L, =0 63
from Propositon 1, 4), all the eigenvalues of HEADBBH (XK + L= 0. (83)
[H;A — BH;BB'H!# (a,q)], ¢ = 1,...,N have Also, we have

real parts smaller than-«, which means that the x* . . o 1
ith-stage modified closed-loop fuzzy system i [H(X)A; — H(X[)B,B{H' (X[ )m:) X/ (64)
X (t) = (H;A— BH;BB'H}7! (o, q)) X (%) Hence, via (60) and (64), we can check the inequality in (17)

te[th,o0),i=1,...,N (58) atany time instant and thexistenceof IV is guaranteed if the
inequality holds at the starting time instant of every stage.
We propose aynamic decomposition algorithimelow to
. ‘ check the two inequalities in (17) and (18) and to find the proper
X%,(t) = (HiA— BH; BB"H[#} (o, q)) X2 (%) time-period of each stag&t’ and also the value oV to en-
te [tévti] (59) sure that the membership functions are almost invariant during
a whole stage.

decays faster thasm ** ast approaches infinity. Since the
modified closed-loop fuzzy system via (39) is

wherei = 1,..., N andty = to, tI = oo, th = .71,
i = 2,...,N, we conclude that the above closed-loo
fuzzy system decays faster than ast approaches in-
finity, too. O

F}l\lgorithm DDA: Dynamic Decomposition Algorithm
Input: the initial chosen membership functions; initial state
X (to); time-incrementsr; maximum number of design trials
Ty,
Output: optimal controllerw*(-); optimal trajectory X*(-);

In this section, we propose an algorithm to implement thelue of At?; value of N (IV being initialized asV = 0).
theorems in Section Il and consider a simple nonlinear masstep Q (set threshold parameters) Set the default values;f
spring damper mechanical system to illustrate the proposed a@pd « ;5.

V. PRACTICAL APPLICATION

timal fuzzy control scheme. Step 1 (initial check)
: " , IF ([[(dH (X" (7))/dr)||-=,, < #m,), THEN {go toStep 3
A. Dynamic Decomposition Algorithm ELSE {choose a more smooth membership function and go back

We shall propose a procedure to check the two inequalitiesStep 1, or break aften, times of failing trials.}
in (17) and (18), which can ensure the almost-invariant-mer&aND
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Step 2 (¢ denoting the time-instant in thih stage, i.e.t’ € (z%(t)/2.25), prr = ppg =1-— (x3(t)/2.25), pFz = pps =

2
1
[th ], ¢ =t + kpl) ) _ 0 —0.02 . —0.225 —0.02
a). Find out the solutiorr;: o wi e membershi B ’ B '
(a). Find out the solutionr,: of (63) with th bership ((2()/229), v = [ g7 A =1 7y 0 |
function H(X ). 45 = [0 —1.5275] A, = [0225 —1.5275] B
(b). Calculateu;, andX*, by L1 0 1 0
we=1,...,4.
t [1 0] 1 4. We further assume our fuzzy controller as
uy = —ByH' (Xt*g) T Xfi (65) R If z,(t) is F andzo(t) is Fi, thenu(t) = ri(t),
X;: [H(X:EJ)Atz—H(X%) i=1,...,4. (70)

ot gt e N - ] e Accordingly, the firing-strength of théh rule is«; (X (¢)) =
BiBuH (Xté) W”} X (66) pp; - gy and the normalized firing-strength of thiegh rule
(©)- IF (|H(X!,) — H(X;)|| < k) THEN{t = go 1S hi(X (1)) = (X (1)) Ty i X(8) fori = 1,...,4.
to (a) ‘ 0 Therefore, thelinear-like dynamical fuzzy system repre-
END sentation for the nonlinear mass-spring damper mechanical
(d). IF (£ =#,) THEN {AtY =, — ti; stop} o o "
END ‘ system is (7) withA = [%], B =[G}, R = (2],
Step 3 (find the starting point of the next stagg* = #}) A3 B3 :)3
7k P 4e. i 4 4 4
I® (N GHCC )l < in) THENEL =850 = () = (i (X(0)halXO)ha(XOMa(X ()], and
L e ; JUmp P WY (1)) = [wi (Y (#))wa (Y (#))ws (Y (£))wa (Y (2))].

ELSE {decrease:; to get finer time-increment or choose an-
other membership function and jumpStep lor break after,
times of failing trials.}

For the finite-horizon free-end optimal control problem, the
performance index is

10
END. HRO) = [ oL
For the time-invariant finite-horizon (except théth stage) + R(OW(Y ()W (Y (1)R(t)] dt
or infinite-horizon problem, the estimated optimal solutiafis + X*(10)QX (10) (71)

in (65) andX* in (66) are also the optimal solutiong_(t) in e .
'(4é) a)ndXﬁ (ft) :n ((26)) where the esti?nlateﬁi ec;Julalﬁs]%ooEi) :n whereL = I, gndQ = 1. As for the infinite-horizon case, the
(231). As for the otheﬁr case, we can obtain the optimal Solutioﬁgrformance index IS;O
2 Z‘(t) in (i21) ;’mdu (t) via (20) with the aid of the estimated Jo(R(-)) = / [Xt(H)LX(¢)
t* and7®(¢, %) in (16). 0
+ R (OW Y )WY ()R] dt. (72)

. . ) ) Since the fuzzy subsystem is time-invariant and well-behaved,
In this section, we consider the optimal control of a masgy the fuzzy subsystem is CC and CRuK[A; A;B;] =
spring damper mechanical system to illustrate the proposed ggjndrank[ct ALt = 2fori = 1,...,4), the asymptotic
timal fuzzy control scheme and its theoretic aspect. A SIMp& - i jike equz;tion in (63) becomeé ’
nonlinear mass-spring damper mechanical system can be for- B "
mulated as ATHY XK, + K H(X,)A

whereM is the mass and is the force;f (z) andg(z, &) are the | Nerefore, the steg) and(b) in Step 2in algorithm DDA can
nonlinear or uncertain terms with respect to the spring and tig Simplified as the following.

damper, respectively, ard::) is the nonlinear termwith respect 1) Find out the constant solutianof (73) with the member-
to the input term. We make the same assumptions as Tantaka  Ship function (X ).

al. [3] did and reformulate the system as 2) Calculateu}; andX*, by

B. Numerical Simulations

i =-014 - 0.020 — 0.672> + u (68) uf = —B'H' (XEZ) A X (74)

where z € [-15 1.5 and ¢ € [-1.5 1.5]. Let

X(@) = [z(t)z()]) = [z122]'. The system in the above X7 = [H (Xf*o) A-H (X:S) BB'H (X:S) ﬂ X

can be described by the following T-S type fuzzy model [3]: (75)
R If o1(¢) is FY anda,(t) is Fi, then Since the chosen membership functions are smooth Gaussian
X(t) = A X(£) + Biu(t), functions (see Fig. 1), we can efficiently obtain the optimal

Y(t) = CX(t), i=1,....4 (69) fuzzy <':o.ntroller with the aid of the DDA algorithm for.
determining appropriate segmentation under the almost-in-
where the initial conditions ar& (0) = X, andY (0) = CXy variant membership-function criteria. For the initial state
with C' = I, for every rule and the membership functions ar&, = [-1, 1]}, the individual normalized firing strengths
chosen agip: = ppe = 1 — (z3(t)/2.25), prs = pps = for the optimal trajectory (i.e.f(X*(¢)), ho(X*(¢)) and
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@ (b)

Fig. 1. Profile of the chosen membership functions ford@) X (¢)), (b) a2 (X (¥)), (c) as(X(¥)), and (d)aa( X (?)).
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S0.15¢

h2(X*

0.1r

0.05¢

0.9t

0.8r1

IHOX ()]

0.6+

0.5

t t

Fig. 2. Respectively, (a), (b), and (c) show the normalized firing strength& ~(t)), ho(X*(¢)), andhs (X *(t)), corresponding to the optimal trajectory.
(d) The value of the norm off (X *(k)) (Xo = [—1,1]%).



726 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 6, DECEMBER 2000

1.5 1.5
1 1
0.5
5 2 05
Y 8
o [5}
a > 0
-0.5
-1 -0.5
-1.5 -1
0 2 4 6 8 10 0 2 4 6 8 10
horizon (time) horizon (time)
2 T T ¥ T T T T T T
1 — —
S 0o
g -
_2 | | ] | I | | | ]
0 1 2 3 4 5 6 7 8 9 10

horizon (time)

Fig. 3. Outputs of the optimal fuzzy controllér*) and the state responses (position and velocity) of the continuous fuzzy system with the designed optimal
fuzzy controller in the finite or infinite-horizon quadratic optimal control problem of Section V-B at the four initial condifiofts; = (—1,—1)%; (=1,1)%;
(1,—1)% and(1,1)*.

h3(X*(t))) and also the value of the norm of their syntheticalf the research of quadratic optimal fuzzy control. Moreover,
matrix (i.e.,||H(X*(¢))||) are shown in Fig. 2. The outputs ofthe proposedinear-like synthetical matrix representation and
the designed optimal fuzzy controller and the state responsestwf systematic design procedures might activate a new research
the resultant closed-loop fuzzy system in the finite-horizon cadeection in the quadratic optimal fuzzy control. Furthermore,
are shown in Fig. 3, which reveals that the designed optinthle proposed in-depth analysis on the degree of stability and
fuzzy controller can promptly push the simulated trunk-trailegain margin can provide the researchers with complete per-
system from various initial states to and stay at the desiregdective of all facets of the resultant closed-loop fuzzy system.
state. Hence, the finite-state trajectory penalty vanishes adidnhulation results have manifested that the designed optimal
Theorems 3 and 5 are coincident. fuzzy controllers can effectively drive the fuzzy system to the
target points in short time.
VI. CONCLUSION

The entire fuzzy system representation was proposed to APPENDIX A

maturate the formulation of the quadratic optimal fuzzy control  Proof of Theorem 1:Define
problem and, further, a tricky unification of the individual _
matrices into synthetical matrices was proposed to generate a ; N " .

linear-like global system representation of continuous fuzzy ¢ (X0, B() _/t (XA L)X (7)

systems. Basc_ed on this_ representation, the design spheme FRUTYWHY (P)W(Y (7)) R(7)] dr

of global continuous optimal fuzzy controllers was derived (£ O X (¢ . i g
theoretically. Furthermore, a multistage decomposition of + X () QX (#), te [ t]
optimization scheme was proposed to design the global Opt'rWHereX(t) — X*(¢) is the initial state at time. By the La-

fuzzy controller more efficiently and keep the global optimalit)érange multiplier method, we turn the optimal problem into the
at the same time. Grounding on this efficient design SChe"E)‘?oblem of minimizing

several fascinating characteristics have been shown to exist in

the resultant closed-loop continuous fuzzy system. $(X(),R())
Overall, the fuzzy-blended entire fuzzy system is considered — (X (), R(-))

to formulate the quadratic optimal fuzzy control problem and f.’

the global optimal effect can then be achieved even though the _ 2/ ' Pt(T)[X(T) ~ H(X(1)A(M)X(r)

chosen system model is composed of distributed rule-based t

fuzzy subsystems. This formation sheds light on the deadlock — HX(M)B(TW(Y(r)R(r)|dr (76)
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whereP(7) € R" is the Langrange multiplier vector. Now, we . SE . .
assume the optimal solutiofs(* (), Y*(.), R*(-)) exist and, = u[lflvutl] /tN (XLX +w'u)dt + X (8)QX (t)
according to the calculus of variations method, }fr) = o ! e
X*(r)+eZ(r),Y(r) = Y*(r) + ev(7), R(r) = R*() + . YOUXULY 4wt d
4 . . L
eV(r),T € [t.t,], whereV(7) € R™° is the perturbation vector * 'zfr[twlflllfillvfl] PN ( )
with respect tai(7) and Z(t) = 0 since the initial state at time . e
tis X(t) = X*(¢). Then, substituting these variables into (76) +  min ' (X*LX +utw) dt
and assuming Assumption 1 holds we can obtain UpN-2 N2y \ SV =2
_ _ 4 i
¢(X (), R(-)) = ¢'(X"(), R* (")) + €¢"(Z(-), V(")) +---+ min l/ (X*LX +u'u)dt
¢ ) fregen e
+ 26/ {ZTLX* +VW'WR" — P'Z ty
t + min / (XTLX +ulu)dt| ...
+P'HAZ + PP HBWYV }dr “to.t1] Jto
+ 2625 QTX ]
1 1

we obtain (9) withX (t§) = Xo and X (t)) = X*(t1™1),i =
2,...,N. O

Hence, the necessary condition for optimality is
Proof of Lemma 3:

t ] 2) Omitting the explicit time- and state-dependence for no-
/ {Z'LX* — P'Z+ PPHAZ} dr tation simplification and using the above result, we ob-
+/ (VIW'WR* + PPHBWV }dr + Z', Q' X}, =0. Mo = Ai Bi] = aiay .. aybibh.. by,], whereaj,
+ 1 1 j=1,...,n,andb;,j=1,...,marealln x 1 column
77) vectors. Then we have
A . ti r o o 4
However, [ PY(m)Z(r)dr = PY1)Z(r)[ - [\, — HAHB) =Y hilaiab. . albibs.. bi].
[ PM(r)Z(r) dr, so (77) becomes i=1

~

v 3) NecessitylLet (A;, B;) be CCforalli = 1,...,r. We
/ VHW'WR* + W'B'H' P dr now assumeank[Al,, — HA HB] < n, which means
t that at leastn + 2, saying the firstn + 2, column vectors

t A - of [\l,, — HA H B] are dependent. Therefore, there exists
+/ [LX*+ A'H'P + P|'Z dr
t

scalard;, i = 1,...,m + 2 not all zeros such that
+ 25 |@'x; - P)] = 0. . .
: (z hiag> R (z h> -
=1 =1

SinceZ(-) andV (-) are independent, we obtain the global min-
imizer«*(¢) in (12), and the corresponding optimal control law

R*(t) in (11), whereP(t) and the optimal trajectori(*(¢) sat- whereh; € [0,1]. Consequently

isfy (13) with X () = X andP(t}) = Q"X . O ,
Proof of Lemma 1:Since, by omitting the explicit time- Z h; [hai 4o lm+2af,,,+2] =0.
dependence for notation simplification im1

_ b B i In order to guarantee the existence of the equality under
ul[nln]/t (X'LX +w'u) dt + X*(8)QX(f1) all k(X (k)) € [0, 1], we conclude
tg,t1 0
t i i .
F = min min / (XtLX + utU) dt l1a1 +-o+ lm+2am+2 =0, Vi=1,...,r
“rebe) | rootll |Jtg
t Hencea’,j = 1,...,m+2, are dependent sinég j =
+ / (XTLX + ) dt + X (t)QX (t1) 1,...,m~+2are notall zeros. In other wordsnk[\1,, —
4 A; Bj] < n,foralli =1,...,r. Accordingly,(A;, B;)
] b . . is not CC for all: = 1,...,r. This conflicts with the
T /t2 (X'LX +wlu) di + X5 (0)QX (1) precondition tha{ A;, B;) is CC for alli = 1,...,r.
o " Therefore, we have proved thatk[\],, - HA HB] =
i N(XPLX 4t ne . :
+ ul[glfli] /to ( +uu) dt} 4) Sufficiency Reversing the argument in part (2), we can

prove that ifrank[\l,, — HA HB] = n, then(4,, B;) is
CC,foralli =1,...,r. O
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Proof of Theorem 5:Since the firing-strength matrix
H(X(¢)) is function of state variables, the general approach toy;
getting abackwardRiccati-like DE is not implementable now.

Therefore, we define 2

(X7, t) 2 mmin {

Rieg .1

[ sl

to

Rrug

~ in { /t XOLX )+ ol () Y

HUG 00 (79)
[6]
whereR! (YWY (-))W (Y (-))R()is denoted byt (-Ju(-)and )
L(-) by L for notation simplification. Also, we have

[7]

[ XX e ar @

= [X[LX, + RIW' (Y)W (Y)R,] (=€) + O1(€%)  (79) o

V(X et = &) = V(X 1) + [V U] )] (X — XT)
+ S H(-6) + 02(€) ®) o
Xy = Xie = [HXDAQR) X! [11]
+ H(X)BOW (Y)RJE + 05(67)
(81) 12

whereO;(¢?) andi = 1,2,3 denote the polynomials af?.
Therefore, by substituting (79)—(81) into (78), we obtain, byl13]
settingé — 0

[14]
ov .
E(vat)
— : t t t
= il (L T RWGOWEOR,
~ (VU O HE) A "
FH(X)BOW(V)R]} 82)
[17]

Minimizing the right-hand side of the above equation with re-
spect toR;, we obtain the optimal synthetical control law

[18]
1 . . oy
Rf = SWH YW W)
x BHOH(X{)Vx (X[, 1) 83 M
[20]

with W(X} . 20) = 0. We may assume the solution is of the form 54
U(X7r,t) = X7 K(t)X; with K (tg) = 0, whereK (¢) is the

introducedn x n symmetric positive semidefinite time variable [22]

matrix. Hence, we have [23]
X K@®)X: = X LX) — X7 H(X;)BB'H' (X?) X} 24

- 2X; K()H(X])AX] [25]

[26]

and then we get all the results.
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