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Fuzzy Perceptron Neural Networks for Classifiers
with Numerical Data and Linguistic Rules as Inputs

Jia-Lin Chen and Jyh-Yeong Chang

Abstract—This paper presents a novel learning algorithm of these two paradigms, number-based nonfuzzy approach and
fuzzy perceptron neural networks (FPNNSs) for classifiers that uti-  fuzzy-logic-based approach, solve problems from different,
lize expert knowledge represented by fuzzy IF-THEN rules as well i.e., in a sense almost complementary, viewpoints. To benefit
as numerical data as inputs. The conventional linear perceptron ' 0! . L
network is extended to a second-order one, which is much more from these two gpproaches, "’} combined routine that Integrates
flexible for defining a discriminant function. In order to handle ~ both the numerical computation and fuzzy techniques would
fuzzy numbers in neural networks, level sets of fuzzy input vec- be more effective than merely uses either one of them. Due to
tors are incorporated into perceptron neural learning. At different  their complementary natures in the way of solving a problem,
levels of the input fuzzy numbers, updating the weight vector de- the integrated scheme will affect the algorithmic routine

pends on the minimum of the output of the fuzzy perceptron neural tivel d efficient] d h il h th
network and the corresponding nonfuzzy target output that indi- cooperalively and efliciently and, hence, will enhance the

cates the correct class of the fuzzy input vector. This minimum System performance further. As a result, a hybrid paradigm of
is computed efficiently by employing the modified vertex method neuro-fuzzy integration has been a growing area of research in
to lessen the computational load and the training time required. poth the academic and industrial communities and has become
Moreover, the pocket algorithm, called fuzzy pocket algorithm, iS - rayailing in the context of pattern recognition, decision support
introduced into our fuzzy perceptron learning scheme to solve the L
nonseparable problems. Simulation results demonstrate the effec- system, (_:ontrol system appllcatlpns_, and man)_/ _others (5] )
tiveness of the proposed FPNN model. In particular, the realm of designing a classifier system still
parallels the above lines of thought. Conventionally, classifier
design through numerical data learning is the general approach
we have commonly used directly and naturally. For instance,
the backpropagation (BP) approach [6], [7] and genetic algo-
. INTRODUCTION rithm [8], [9] are widely used in synthesizing a classifier under
N solving a problem, most scientific algorithms adopthe framework of neural models. But these learning activities
I a crisp, or nonfuzzy, discipline and make use of onlyid datum learning, sequentially count each pattern instance
numerical data because numerical data are easily proces3@d@lly without regard to the inherent difference present among
by computers. In this conventional approach, the exclusie patterns, whereas in another fuzzy-logic-based classifica-
processing domain is purely numerical. The number-basi@n, paradigms emerge recently because they can manipulate
approach is usually significant when numerical data are pf@€ various types of uncertain or ambiguous nature exhibited
cise enough and representative to the system behavior. THRONG the data and can tackle the real-world problems in a
approach usually lacks an ability to model the uncertain or afft@nner more like humans. Broadly, the number-based approach
biguous information existing among data, which is, however, §0ceeds the learning for classification primarily from numer-
often encountered in the real world. On the other hand, humd@@! patterns, but ignores the difference between numerical
make many successful decisions and/or judgments primafgta i-e., a collective attribute of the data. Fuzzy set theoretic
on the basis of approximate and/or conceptual informatigfSign conveys the conceptual layout of classifying numerical
which is usually uncertain, imprecise, and frequently stated #ta given, but considers little on the information in each datum
terms of linguistic terms or rules. Fuzzy set theory has be&gly: The weakness and lack of collective aspect of the data of
introduced [1]-[3] to model the uncertain and/or ambiguousnumber-based traditional approach is the strength, containing
characteristics inherent among the data and these charadf- collective nature of the data set of a fuzzy-logic-based
istics being defined by suitable fuzzy sets and rules are th@@Proach. On the contrary, the weakness, lack of the individual
inferred to reason the useful happening of the result. Since f@ture of each datum of a fuzzy-logic-based approach is the
inception, the research of fuzzy logic has been the focus ¥féngth, including the character of each training pattern of
various fields and has demonstrated many fruitful results bgthnumber-based approach. To circumvent the defect in the

in theory and application [4]. It can be easily observed thif€ Of the above approaches singly, it is advantageous to
integrate these two paradigms together because the weakness

. . . o _ ?<f one approach can be counterbalanced by the strength of the
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As was noted before, for connectionist model-based cldsackpropagation algorithm, referred to hereafter as the FBP al-
sification systems presented in the literature, most learniggrithm. Based on the extension principle, the learning formula
procedures utilize and process numerical data only, i.e., edohh-levels of input fuzzy sets are explicitly derived. However,
pattern instance is trained sequentially and equally, but tdeawbacks of the BP algorithm, such as converging to local
mutual difference existing among them is ignored during thminima and/or slow learning convergence, still persist in this
course of training. If, however, other pieces of classificatioBP-based scheme. The shortcoming of being apt to converge to
knowledge, especially concerning the nature of patterns imdocal minimum causes the FBP algorithm to frequently con-
set, can be included as a part of inputs and then learnedvgyge to an inaccurate solution. Also, slow learning convergence
the training procedure, the defect of discarding the pattelernds to a long training time required.
difference in learning can be minimized. For instance, fuzzy Also in the context of neuro-fuzzy hybrid computing para-
IF-THEN rules that describe the relation between pattern fedigm, a fuzzy neural classifier [15] based on the multilayer per-
ture attributes and numerical data in a set or category couldd®ptron structure and the backpropagation learning algorithm
one of many classification domain knowledges that are usefsldescribed. Through converting the numerical/linguistic in-
and could be added to describe the system. Linguistic valymgs into larger overlapping linguistic partitions, this model also
such as “small,” “medium,” and “large,” are typical and helpfushows the same feature of capable of handling input vectors pre-
linguistic terms to be defined for specifying patterns in a catsented in quantitative and/or linguistic form, but demonstrates
gory by the forms of rules. Under the integrated formalism, trdfferent output forms of providingutputs of soft belonging-
included fuzzy IF-THEN rule inputs will reflect the conceptuahessn terms of degrees of confidence among belonging classes.
layout of the classification problems in a higher level and/dn this method, the components of the input vector consist of
altogether viewpoint. Such conceptual extension definitetile membership values to the overlapping partitions of linguistic
enlarges the range of the classification problems and remoygsperties, “low,” “medium,” and “high,” corresponding to each
the weakness found in the instance training itself. Through infeput feature. When the input feature is linguistic, its corre-
grating fuzzy notions into a traditional number-based classifieqponding membership values of the three linguistic terms are
the combined learning scheme will be trained by two kinds gfuantified as fixed values. The desired output is a membership
inputs, numerical data of training patterns and structured datlue denoting the degree of belonging of the input vector to
of fuzzy classification rules; and they are complementary that class. This procedure of assigning fuzzy output membership
nature. Consequently, these two kinds of inputs will affect thalues, instead of the conventional crisp binary output values,
learning routine cooperatively and efficiently and the overadinables this model to be more efficient in classifying ambiguous
classification performance will be enhanced. Such judicioata with overlapping class boundaries. An extended applica-
integration matches the increasing trend of deriving a ne¥en of the above scheme is further considered to design a con-
formulation that can embrace classification schemes involvimgctionist expert system [16]. In this expert system, the user
hybrid numerical and linguistic computation, which is noted ioould be queried for the more essential feature information in
a recent literature review [10]. case of partial inputs. This expert system also provides justifi-

In the literature to date, two approaches are available forcation in the form of rules for any inferred decision.
classifier dealing with linguistic rules and crisp data together. A most general neuro-fuzzy computing scheme, which is still
One paradigm extracts fuzzy IF-THEN rules from numericambedded in a multilayer perceptron structure, was proposed
data and then these deduced rules together with the given li- Hayashiet al. [17]. In this fuzzy neural model, both the
guistic knowledge of rules are combined to execute the classifiput/output signals and weights are all fuzzy sédtsey pre-
cation by fuzzy inference. Corresponding to this paradigm, Weeénted a fuzzified delta rule for learning, however, a method
et al. [11] proposed the additive fuzzy logic classifier (AFLC)to implement this learning algorithm is still not known. They
The AFLC, a direct design scheme without the training phassso argued that a learning algorithm basedheevels of the
does not require a significant amount of learning time neededor measure is too complicated and may sometimes fail. The
for a neural-based classifier. However, this approach has sodifficulty of deriving such general fuzzy functional algorithm
limitations. If only fuzzy IF-THEN rules are used as inputs, théhroughi-levels is obvious.
classification results depend on the membership functions of theTo provide an efficient and reliable solution, proposed in this
linguistic labels defined in the if part. Hence, if there exist somagticle is a new fuzzy neural classification model, which is in-
regions that are not covered by any linguistic labels of IF-THEBtead subsumed with crisp outputs and weight parameters (and
rules, then there is no information to determine an input pointihus is not as general as the model of Hayashi) and allows inputs
that region to be in which class it belongs to. The other paradiggither in numerical and/or fuzzy forms. The proposed model is a
extends fuzzy notions into the neural network learning for theeural-based learnable classifier, called fuzzy perceptron neural
linguistic rules and then trains all the numerical data and rules bgtwork (FPNN), and its learning scheme is successfully de-
the neural model in a conventional manner [12]-[14]. This apived based or-level concept.
proach appears to be more attractive because the neural learninhe perceptron algorithm [18], [19], a conventional iterative
is fused into fuzzy data processing and can learn and generatizéning algorithm, guarantees to determine a linear decision
from training patterns and fuzzy IF-THEN rules. Following thi®oundary separating the patterns of two classes in a finite
formalism, Ishibuchkt al. [12] proposed a multilayer feedfor- number of steps if these patterns are linearly separable. For the
ward neural network to explore the neural learning includinignearly nonseparable patterns, Gallant [20], [21] introduced the
fuzzy sets. The learning algorithm is the fuzzy extension of thgmcket algorithm to optimally dichotomize the given patterns in
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the sense of minimizing the erroneous classification rate. Thal start with introducing the extension principle, which is the
pocket algorithm is structurally resembled to a conventionedtionale behind evaluating the fuzzy function.

perceptron learning except that a checking amendment to stofg he extension principle [3] is the most important fuzzy set
the algorithm has been added. In light of this concern, this pagBeory that provides the generalization procedure of mapping
incorporates fuzzy sets into a perceptron learning algorithmbetween fuzzy sets. In light of this principle, algebraic operation
enhance the perceptron neural network, which, in addition am real numbers can be extended to fuzzy numbers, i.e., convex
handling numerical data, can also handle linguistic knowledg®d normal fuzzy sets. According to the extension principle, for
To avert the limitation of producing a linear boundary by th& fuzzy multivariable functiony = f(z1, z2,...,z,) of fuzzy
conventional perceptron, this work introduces a more flexib@riablesA;, A,, ..., A,, i.e.,

and simple (under the constraint of limited increase in param-
eters) boundary by extending the linear discriminant function
to a higher order one and, hence, allows a nonlinear separa
hyperplane to be generated to tackle nonlinear separability.

B:f(A17A27"'7An) (l)

Qﬁdg membership function dB can be expressed as

this end, we propose a second-order fuzzy perceptron neural 15(Yy) = Supercay.encan
network that can handle fuzzy vectors, in a form of fuzzy y=I(21.02, - wn)
IF-THEN rules as well as numerical samples as inputs. Based x {min{pa, (1), pa, (@)} ()

:)hnethjezzleve;rscztstr%fnﬂ;:x;ir;b:r:; t?ee dleﬁgﬁzgvg:og]zd:éiﬁe computation and algorithm involved in implementing (2) is
method%spmodii)ﬁed and anolied to )f/ind ihe minimL’Jm of thgot trivial to the fuzzy set with a continuous universe. A simple

L ! app L and intuitive way is using the discretization technique [23] in the
fuzzy discriminant function, whose value indicates whether Ariable domain. However, if the value of the discretized size
not a learning update of the perceptron weight vector ShOUIdi Chot properly selected tr,lis technique would fail and lead to
executed. It is to be noted that in an earlier paper [14], we h i

q h based on level tand timizas irregular and inaccurate result [24], [25]. Consequently, pre-
proposed a scheme based on level concept and an optimizagof, investigations [26]-[28] proposed methods for computing
technique, but it requires much more computational effort

ing th o velv. | ; . zzy function, based on thielevel concept. Thé-level set is
getting the extreme points iteratively. Intensive computationgy, ;- more effective as a representation form of fuzzy sets since

effort needed in the previous paper is greatly reduced by intripis o giscretization technique on membership value domain of

ducing the vertex method in this paper. The pocket algorithfa i ples instead of on variable domain themselves. The ab-

is finally generalized to the fuzzy domain so that the proposedmajity of using the conventional discretization on variable

fuzzy perceptron model can copy with a nonseparable case.qomains can be averted by performing the fuzzy function on
It is to be remarked that perceptron learning with a fuzzy_|evels. The fuzzy function usink-level concept is illustrated

membership function can also be found in the literaturg the following.

Keller and Hunt [22] introduced fuzzy set techniques into the For anyn € [0, 1], the h-level sets, i.e.h cuts, of the fuzzy

single-layer perceptron algorithm for two-class classificatioget 4 are defined as follows:

problem. This algorithm assigns fuzzy membership functions

to input data to reflect their geometrical proximity to the [A]y, = {2z : palz) > h}, foro<h<1 ?3)

means of class 1 and class 2 before training the perceptron )

classifier. This fuzzy perceptron learning scheme can improféiere[-]. denotes ar-level set of a fuzzy set. Furthermore, if

the convergence significantly especially when the crisp data dfe= /(41, 42, .- ., 4,) is acontinuous function and fuzzy sets

overlapping. The concept and content realized in [22] is quitdts 442; - - -» A @re upper semicontinuous, then the following

different from FPNN because it deals with crisp input dat3clds [29, p. 39]:

only and these data are artificially imposed by membershi

fun)c/tions for faster convergence. Y ’ Bl = F(Adn e [l

The rest of this paper is organized as follows. Section Il ree relation above paves a simpler way to compute the value of
views the concepts of fuzzy function and the extension principiguzzy function compared with applying the extension principle
that is employed for analyzing fuzzy functions. Section Il inof (2) directly. In the following, the fuzzy functions encountered
troduces the fuzzy perceptron neural networks. Their learniffgthe FPNN learning will be computed by (4) because the above
schemes are thoroughly described as well. In Section IV, seveggsumptions required by the function and fuzzy sets involved in
numerical examples and the two-spiral benchmark data are stife FPNN classification tasks are generally satisfied.
ulated. Performance comparisons of the proposed model with
other related approaches are summarized by statistical perfor- . FuzzY PERCEPTRONNEURAL NETWORK
mance evaluation indexes computed from the simulation results
Concluding remarks are finally made in Section V.

foro<h<1. (4)

This section first describes the fuzzy IF-THEN rules for

classification problems. The proposed neural-based network,
i.e., the fuzzy perceptron neural network (FPNN), is then
Il. FUZZY FUNCTION AND THE EXTENSION PRINCIPLE introduced. The FPNN can perform a classification task using

Since our proposed fuzzy perceptron neural network relig8t only numerical patterns but also fuzzy IF-THEN rules as

heaV".y on the e.\/a“.lation of fuzzy funCt_ion' it. is inStr!"Ctive 10 1 ], denotes specifically the support of the interval with nonzero member-
describe the derivation of the fuzzy function briefly. This sectioship degrees of a fuzzy set, then (4) holds/fo= 0 also.
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K be either the linguistic term represented by fuzzy numbers
I or fuzzy singletons of crisp data. It follows from (4) that the
_f";}_ﬁ“x.. level sets of the output of a fuzzy function can be propagated
W through the neural network. Fuzzy sdtis represented by
P s . its level sets{Aln1, [A]n2, .- - » [Alnm, Where0 < hj < 1,
;’ Y 1 < 5 < m andm represents the number of level sets sampled.
4 {0 At these levels, input—output relations of the neural network

A
‘ ) are derived as follows. At thej-level of the fuzzy input vector
o ? & Ap [Aplns = ([Aptlngs [Aplngs -« [Apnlng, [Apean i),
t - let level setX”/ denotes the interval input vector G&,];.
o =% Then, the fuzzy perceptron neural network for tite fuzzy
E ==y IF-THEN rule is defined by

Fig. 1. The architecture of a fuzzy perceptron neural network. Input units X’ = [a;’L?L ’LJU}

pe pr P
_ _ 3 _ = [Apiln;
mpgts. Next, the vertex me_thqd [C_’,O] is mpdlfl_ed to optwn_ the i=1,2...0; j=12....m (7)
minimum of a fuzzy function; this function is the discrim- hi i _ g
inant function of the FPNN. The extremum of the function pint1) = [Aprn]ing = (®)

determines whether or not the coefficients of the discriminant  output unit Y = sen (Nethj)
function should be modified in a training iteration. Finally, the g v
fuzzy pocket algorithm is developed to provide a stop criterion = Sgn( [netzj ,net;” D

for the fuzzy perceptron neural learning. il hiU
= [sgn (net]ﬁ’ ) ,Sgn(netp” )} 9)

" hj ; ; g
Based on the perceptron neural network structure, we Shvéme_resg%n( ) gndlgetp é(r)(;spe((:jtlvhely_, reprefsent the S|gnum ac
construct a two-class classification system that can also accgfgop u(;]gtmﬂ [ . ﬁ 08] and the input of output neurdy
fuzzy IF-THEN rules as inputs besides numerical pattern dal efined in the following.

Fuzzy IF-THEN rules utilized for the classification problem ?]W'n% to Fhe quﬁSt for a nor;}lmear dklscrlmlnantdbou;dary
[12] are given as follows: rather than just a linear one, this work usesexond-order

perceptron neural network [31], [32]. Subject to a negligible
increase in the number of parameters utilized for perceptron
learning, a second-order discriminant function can produce
various quadratic curves, paraboloids, ellipsoids, and hy-
p=12,....s (5 perboloids, by varying the coefficients to meet the needed

curvature. This flexibility can hopefully accommodate most

A. Structure of the Fuzzy Perceptron Neural Network

If 118 Ayp and ... andxy,, is Apy
thenx, = (2,1, ..., 2,n) belongs toC,

where _ o of the nonlinear boundary needed to discriminate the hybrid
Api |”_19U|SUC label, data sets. Without loss of generality, the second-order FPNN is
Cp  either class 1 or class 2; illustrated by a two-dimensional (2-D) input vector, which is
s number of rules given. augmented ta\,, = (A1, A2, A,3) in which A3 denotes the

To prevent the discriminant function of the FPNN from passingzzy singleton equal to one. At thielevel of the given 2-D

_throug_h the origin only, we can augment the input vectors t?b(put VectorA,, |etX]i; represents the interval vector &, ],,,
including the threshold constan,, 1y = 1. Becauser,,,, 1) e X L

_ h h _ h U nL pU
is a constant of one, it is considered as a fuzzy singlet%‘e' = (X, X 1) = ([opn o bloge e 1 1)

;)L plo p27}
H 12
Apns1) = 1 1o the input vector,,. With this augmentation, weighted sunNet,, of a second-order perceptron neuron
(5) can be generalized and simplified as

for the input vectorXZ’; is given by

- N th — thL thU
A, = (A, ..., Apn, Apng1y) belongs taC, ety net, ,net,
— 2 2
p=12%....s (6) =w1 (XI}JLI) + w2X;L1X;L2 +ws (XI}JLQ)
h ~h
whereA , denotes a fuzzy vector. +waXpy +ws Xy +we. (10)

With the crisp data being regarded as fuzzy numbers
singleton, numerical input data to be classified are consi S r
ered as a special form of linguistic knowledge represent8 _tqudP Wh'?h IS eltr_\er 1ofclass 1 of1 of C.lass 2, the clas-
by (6), in which A,;s are all fuzzy singletons. Therefore,s' ier is required to find the perceptron weight vec =
(6) can accommodate the crisp input data set given as weli1> w2, w3, wa, ws, we] SO that
By this setting, the FPNN is designed, as shown in Fig. 1, . WL U N
so that the augmente@ + 1)-dimensional fuzzy vectors Iy = [fp I } = Net,, -d, >0
A, = (Ap1, ..., Apn, Apny1)) are classified. Each input can for eachh-level of all thes rules  (11)

f . . . .
Iggr the interval input vectorX’ with the corresponding target
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As mentioned in Section Il, the fuzzy function calculation byAccording to our observation, this minimization problem can
the use of the extension principle is equivalent to iklevel- be solved more efficiently by modifying and applying the
based evaluation by (4) that involves interval arithmetic. Sonvertex method. Details of this approach are as follows.
fundamental properties regarding interval arithmetic [30] are 1) Vertex Method:Let f be ann-dimensional interval func-

therefore summarized as follows. tion given by
Assuming thafX;, X», and X3 are interval numbers, we have o :
the following. Y = f(Xy, Xo, ..., Xp)
Associativity: ={flx1,22,...,2,) |21 € X3
Xo,oooyzn € Xp 15
X1+(X2+X3):(X1+X2)+X3 T2 € A2, 1 ¥n € } ( )
Xy - (XQ . Xg) = (Xl . XQ) - X3. (12) where
Commutativity: X; = =%, 2Y], i=1,...,n. (16)
Xi+X=X+X; Function valueY” is also an interval number. Thegeinterval
X, - Xy=Xy X, (13) variables form am-dimensional hypercub®; x X x---x X,

with IV, i.e.,2", vertices. All vertices’ coordinates of the interval
However, distributivity does not always hold. Instead, we hafanction are a combination of pairs of end points of interval
the following. numbers. According to the vertex method [30], these vertices in

Subdistributivity: then-dimensional space are critical to calculate the interval of a
function of interval variables. Essential properties of the vertex
X (X2 4 X3) C X - Ao + X0 - X, (14)  method are given as follows.

Above equation hints that after the distributing operation, the re-FOr @ continuous and differentiable functignin the n-di--
sultant range of interval would be enlarged. Distributivity fail§"€nsional hypercube, fihas no extreme point, i.e., a point with
because two occurrences of an identical interval numibein & dlfferentlr?ll va_llue equa_l to zero, in th_e feas_|ble region, mte_rval
the right-hand side of (14) are treated as twdependentn- of the functhn in the defined domain (including the boundaries)
terval numbers. With this subdistributivity property in mind, wé&2an be obtained by

can see that deriving the intenlﬁétjj of (10) is complex since Y = f(X1, Xo X,)

the input variablesX”, andX;, of the second-order fuzzy per- T

ceptron neural network appear more than once and should be = [min{f(vi)[i € {L,.... N}}

treated as linearlgiependentHence, to evaluatlet! of (10) max{f(v;)|j € {1,...,N}}] 17)

in a manner as direct interval arithmetic computation in the righ . ) . .
hand side of (14) is inappropriate. wtherevi andv; denote théth andjth vertices of theéV vertices

P . : of the hypercube.
To satisfy inequality (11) at eadrlevel of the fuzzy input . . .
vector, we have to invent a scheme that can search for the ex/ne vertex method is effective only when the conditions of

3 : . : tinuity and no extreme point existing in the region are sat-
tremum of theNet” function for a given weight vectow. If O : . : e

the target outplft ]fs class 1 thengwe g t:gl and we will isfied. Furthermore, if extreme points of the functiprexist in

. . wi , P the feasible region, these extreme points must also be checked
find the minimumuet; ~. On the contrary, we se}, = —1 and

to obtain the minimal value. That is, suppose that funcfitras

A . , U . X X . i
we will find the maximumuet:” . In fact, only the constrained ) extreme points, then interval calculation of (17) is extended
minimization must be found because for the cdse= —1, the g

maximization is transformed to the minimization by negating
the Net,, function. At theh-level of fuzzy sets involved in the Y = [min{f(v;), f(Ex)|i € {1,..., N}, k€ {1,...,Q}},
pth IF-THEN rule, the problem becomes to find the minimum max{f(v;), f(E)|7€{l,....,NhL1e{1,...,Q}}]
of Net = le12 + w X1 X2 + 1,U3X22 + wa X1 + wz Xo + weg (18)
with the constraints(; = [zF, 2] and X, = [z}, z¥], which
define the subspace of the 2-D parameters and are called the {@igere £, and E; denote the:th andlth extreme points.
sible region ofX; and.X,. Notably, NetX; and.X, arep andh In light of results above, how to determine the minimum of
dependent, i.eNet = Net", X; = Xy, andX> = X/, HOW-  Net = w; X2 4+ wy X1 Xo + w3 X2 +wy X1 +ws X2 +we With
ever, for simplicity, these two scripts are not explicitly shown ighe constraints(; = [z, 2] andX, = [z, z5]is considered
Net X; andX,. Although our previous work [14] derived anagain. Fig. 2 depicts the case that the extreme point, denoted
optimization scheme to solve the above problem, itis, howeveg (z;, x,)., exists in the feasible region, while Fig. 3 shows
computationally expensive. In the sequel, a new computatiahe case that the extreme point is outside the feasible region.
ally efficient technique, named the modified vertex method j&ccording to our study, the vertex method should be modified
introduced to solve this constrained minimization problem. when itis exploited in our FPNN model. It can be observed from
. . Figs. 2 or 3 that the minimal point of a Net function could also

B. Fuzzy Perceptron Learning by the Modified Vertex Methogye |qcated on the boundary of the fuzzy set in addition to the

As mentioned earlier, solving a constrained minimizatiovertices and extreme point. In response to this modification, an
problem is necessary for the fuzzy perceptron neural learnirigrative searching process by the bisection method [33, ch. 2]
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Step 3) Sep = (v + 6)/2.

5 Step4) i =i+ 1.
e - Step 5) Iff(y) < f(6), thené = p, elsey = p.
r = e e step 6) The minimum of (X) is min(f(7), £(6), f(p))-

gl The above hisection process is operated on these four bound-
aries sequentially to get their respective minima and then the
smallest valuef* is selected from these four minima obtained.
Finally, the minimal Net valueIet;j* equalsf* ifthere is no ex-

i treme point in the feasible region, otherwNetz’j* is the min-

i imum of f* and the Net values evaluated at the extreme points
. in the feasible region. In addition, the corresponding minimal
point is denoted agz!, ", x,"). Parametel determines how
accurate the minimal point is. For instance, in this paper, six
iterations are selected to locate the optimal poiry; *, z%,")
= m—l leading to an accuracy Qf)*— a)/2°. For theh-level of thepth

r fuzzy input vector, ifNet;j -d, < 0, then the second-order

fuzzy perceptron learning algorithm with a learning constant
updates the weight vectd¥ by

Fig. 2. Searching for the minimum &fet(z1, 22), 2 < 2y < 2f, 2l <
zs < 2¥ . The extreme pointzy, x3). is in the feasible region. W' =W + weh- dp i Z]i;* (19)

where

v, i oo By aff Mel firetian e K *2 B o* B o* K *2 B * RO*
ol vt & &2 aracd S z, = [a:pl Tp1 Ty s Tpy s Tpy 2 Tpy 1 - (20)

fresifle Peeian

' ’ 't The above learning procedure does not stop until inequality
X £ (11) holds for allh-levels of s rules and all the crisp training

T g patterns as well. The learning step size of the above fuzzy per-

_ 7 ceptron algorithm is proportional to the currénlevel. A larger
" membership degree implies a larger learning step size. This
f.-‘ learning procedure can accept not only fuzzy IF-THEN rules,
[ but also crisp data since real numbers can be regarded as fuzzy
o | singletons and the correspondihgevel is assumed to equal
N | (x,x.) one. If the training data are crisp, the proposed second-order
g | fuzzy perceptron network reduces to the conventional second-
order perceptron network. Furthermore, the proposed scheme
is quite general since it can be easily extended to the third- or
higher order fuzzy perceptron model in the same manner. From
this perspective, the proposed second-order fuzzy perceptron al-
gorithm can be viewed as an extension of the conventional per-
ceptron learning to the case of fuzzy rules as inputs.

"r

C. Fuzzy Pocket Algorithm

Fig. 3. Searching for the minimum &fet(x,, 22), 2 < 2y < 2f, 2l <
x2 < 2. The extreme pointr1, 22 ). is notin the feasible region. Perceptron learning is quite appropriate for separable prob-
lems, i.e., problems for which some set of weights is available
is introduced. For the region defined by the and X, inter-  that correctly classifies all training patterns after a finite number
vals, four boundaries should be checked for the minimal poirjf mistakes. Nonseparable problems are a different story. The
For any one of the four boundaries, functifis reduced to an fact that no set of weights can correctly classify all training
one-dimensional functiofi(.X;),  is either 1 or 2, with the other patterns implies that a set of weights, which correctly classi-
variable remaining fixed at its corresponding lower or highgfes as large a fraction of the training patterns as possible is
value. For convenience, allow the interval of the changing vafireferred. Pocket algorithm is developed to determine a set of
able to be defined ifiz, ], i.e., [a, ] can be eithefz{,z{] or weight in this optimal sense [20]. In line with such optimal
(25, 25]. sense, a fuzzy pocket algorithm is developed to resolve the non-
2) Bisection Method:To search for the minimal value of theseparab|e prob|em encountered in fuzzy perceptron |earning_
quadratic functiorf (.X') above, with the giveninterv@d, bl and  This work modifies the pocket algorithm to effectively ad-
the maximum number of iteratiords we proceed the following dress the nonseparable case for our fuzzy perceptron algorithm
steps. such as overlapping fuzzy numbers or the input data cannot
Stepl) Set=1,v=a,6 =0. be dichotomized by a second-order discriminant function.
Step 2) While: < I, perform Steps 3)-5). The pocket algorithm adds additional steps to monitor the
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performance of the perceptron network. For training patternsemmiscalculation, the relative weighting for a crisp datum is
of crisp data, the performance is measured on the basischbsen three times that of a fuzzy IF-THEN rule. This relative
the correct classification among training patterns. The pockeeight compensates the crisp data for using énlgvel of one
algorithm must be modified so that it can be applied involvinopstead of the sixi-levels of rules. By this setting, we count
fuzzy input vectors. This modified pocket algorithm calle@qually on numerical data and the linguistic rules because the
fuzzy pocket algorithm should optimally dichotomize the fuzzgum of these six levels equals three.

input vectors of linguistic terms as follows. To summarize, the second-order fuzzy perceptron learning
1) The total misclassified membership values of the twaith fuzzy pocket algorithm is as follows.
classes should be as small as possible. 1) SetW to a small and random vector.

2) The difference between the maximal misclassified mem- 2) LetW be the current weight. Select a training fuzzy input
bership values (the highest misclassified membership  vectorX,,.
value of overlapping fuzzy input vectors for each class) 3) If W correctly classifiesX,,, then

of these two classes should be as small as possible. a) Ifthe current run of thenemindexis smaller than
At the h-level of fuzzy numbers, the following index, the run ofmemindexin your pocket, then puw in
memindex should be minimized to find an optimal weight your pocket and remember theemindexof its run.
vector that can realize the above two statements else form a new set of weigh®’ by fuzzy perceptron
. . & learning.
mem.index = mem_mis + - (1 —n~") 4) If the specified number of iterations has not been taken or
- [mem._dif] (21) the specifiednemindexhas not been reached, then go to

. ] 2); otherwise, stop the iteration.
wherememmis denotes the sum of the membership levels of

those training vectors which cannot be correctly classified py pulticlass Classification
the discriminant function anfinem_dif| represents the abso-

lute value of the difference between the maximal misclassifiedT0 be more general than just dealing with two-class classifi-
membership levels of the two classes. To be fair to both mi ation [14], the proposed FPNN model can be extended to solve

classified classes occurring in overlapping fuzzy input vect0|I € f"”'?'c'.ass cIaSS|f!cat|on problems by increasing the number
the decision boundary should be located at a point that the mgff(_dls_gr|m|nant functions eq-u-al tp the number of clalsse.s to be
imal misclassification membership functions of the misclass"?—?s‘?"fmd' For g:—class ]<L:Iass_|f|cat|(.)n problem, we definelis-

fied classes are as nearly equal as possible and this justifiesQH@mam functionsNet,, ; with vv-elghtst,, ’ 7 1.’ 2, P c
requirement of a minimgkmem_dif] value. Parametek is the Al the h-level of thept}h iuzzy input vectorXy, if X, be-
index of iteration number in the training procedure, whose vallNgs to class, thenNet, ;- value should be the largest among
goes from one up to the epoch number we selected. Consttéi}?cf q'scr'm'n?nz functions. If, however, for somewe have
n, a value greater than one but very close to one, increasingl§ts; < Net, ; , then the updating rules for weight vectors
emphasizesnemdif in accordance with an increasing numbe®'€ given by

of iterations. Constant, which can certainly be chosen by the , B*
user, is introduced for the relative weighting memmis and Wi=Witu-h-z

|mem_dif]. By our experience, one, two, or three are suitable W, =W, —pu-h- z]’;*

choices for constant. In the numerlcal ;lmulatlons present.ed W, =W, fori=1,2,...,c, L #4,j (22)
later, we used3 = 2 for all the illustrative examples. In this

manner, the fuzzy pocket algorithm identifies a weight vectwherezg* is in the same form of (20).

that can minimize mainly the cumulative misclassified mem- For a multiclass nonseparable problem, the modified pocket
bership values of fuzzy numbers initially and then searches falgorithm should be amended to suit the concept mentioned in
a weight that cannot only minimize the misclassification errahe above subsection. Theemindexshould be revised to the
but also minimize the difference between maximal misclassifiellowing form:

cation membership values. Notice that in the case of nonover-
lapping fuzzy numbersnemindexis calculated froomemmis
only, while |mem_dif] is neglected. In a manner resembling the
pocket algorithm, we save “in the pocket” of the weight vector 1 e
W|t_h th_e smallestn_emmdexm_the fuzzy perceptron algorlthm. . Z Z |mem_dif(i, §)| (23)
This simple modification facilitates fuzzy perceptron learning
well behaved.

The relative weighting between crisp data and linguistisherememmis(¢) is the sum of erroneous membership levels
rules on calculatingnemmisis worth mentioning. This relative of the ith class patterns, i.e{} | Netgi* < Net;j,j*, for all
weighting is subjective and, naturally, more reliable informatioh-levels of thosepth rules defined for théth class but erro-
(either crisp data or linguistic rules) should be more emphaeously classified to th&h clasg. The|mem_dif(z, j)| in (23)
sized. In this paper, sik-levels, i.e..,h = 0,0.2,0.4,0.6,0.8, isthe absolute value of the difference between the maximal mis-
and 1, are used in the fuzzy perceptron learning algorithnalassification membership levels of clasgesnd j in the«, 5
whereas for crisp data, onlg-level of one is assigned. Onclass overlapping region. Via this modification, the fuzzy pocket

mem_index = Z mem_mis(i) + 3 - (1 —n~%)

i=1

i=1 j=i+1
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algorithm can be extended to multiclass classification problems A
in @ manner analogous to two-class problems.

—

IV. SIMULATION

small very

Simulations were performed not only to verify the effective- o
ge

ness of the proposed fuzzy perceptron neural network, but also
to compare with that obtained by FBP and AFLC algorithms. 0
In this section, two simulations were presented. In Simulation 10 20

1, all the fuzzy IF-THEN rules for classification problems were Input value

initially given. Four testing examples were provided; the first

three examples were the two-class classification problems dri@l 4. The membership functions of the linguistic values “small” and *very
the final one addressed three-class classification. Notice tif#{¢" " Bxample 1.

the results of Examples 2 and 4 by AFLC were not present

Membership

v

because these two examples are not solvable by AFLC sit 20

undefined regions of fuzzy inputs exist. In Simulation 2, w

tested the proposed algorithm on the neural network benc 18}

mark problem, two-spiral classification proposed by Langl. Class 2
[34]. In this simulation, we generated IF-THEN rules from th: 161

two-spiral data to underline the existing regularity among sar
ples. The FPNN classification boundaries were improved by i
corporating these rules generated and crisp data as inputs.

A. Simulation 1

Due to the nondeterministic learning nature of FBP ar
FPNN each of these four examples was run for 200 desi
trials. Based on these running results, classification perfc
mance in terms of several statistical indexes will be provided
the subsequent subsection. For these two algorithms, a learr
cycle of each pattern and every fuzzy IF-THEN rule bein
presented once constitute @pochof learning iteration.

In running the four examples by the FBP algorithm, the fee
forward neural network was structured with one hidden lay:
of five hidden units; these network structures and the numt Ty
of epochs were chosen as recommended (except Example 3 éoy

20

[12]. In our experience, the FBP algorithm cannot easily co ;%p e s&rg#éag?;err?jfz'ty?)Lr'gsgt‘r'gg l‘évgg]igg'glg“;’i?mfa' data by the

verge to satisfactory solutions. As a consequence, there are few

satisfactory decision boundaries obtained in the 200 trials P

each example. Therefore, in the following illustrative examples

the best decision boundary (in the sense of minimal error of F&grts are

[12]) of each example was selected from 200 design trials and If 2, is small ande,; is small

then plotted. . I ted b thenx,, belongs to class.1 (26)
For FPNN, the following examples were simulate em- : :

ploying six levels of:, i.e.,i?: 0, O.Fz), 0.4,0.6,0.8, and1.0 f())/r If p1 is very large ot is very large

the linguistic values in the fuzzy perceptron learning algorithm. thenx,, belongs to class.2 @7)

Note that to make the zero level of the fuzzy number effectiveEg. 4 displays the membership functions, which are adopted

hinges on replacing = 0 with » = 0.05 (a small positive from [12] and coincide with our intuition, of the fuzzy num-

value) whenever updati@/ from (19) or (22), as well as com- pers “small” and “very large.” The fact that the pattern space is

puting thememindexof (21) or (23). In running FPNN with [0, 20] x [0, 20] accounts for why the fuzzy IF-THEN rule (27)

200 design trials for each example, almost all decision bounglith the “or” connection can be converted into the following

aries obtained are similar to the best one (still sticking to th&o rules with the “and” connection:

sense of minimainemindeX. Also, we plotted the best decision

boundary of FPNN algorithm for each of these four examples.

Fle following two fuzzy IF-THEN rules given from human ex-

If 2,1 is very large ana, is in [0, 20]

Example 1: In line with Ishibuchiet al.[12], this work de- thenx,, belongs to class.2 (28)
signed a two-class classifier on a pattern sgaczo| x [0, 20]. If 2,1 isin[0,20] andx,: is very large
The numerical data are thenx,, belongs to class.2 (29)

class 1= {(4,11),(8,11), (11,3),(13.4).(13,10)}  (24)  nitially, we trained the second-order fuzzy perceptron using
class 2= {(2,13),(6, 14), (13,2),(14,3), (14,14)}.  (25) only numerical dataFig. 5 plots the simulation result witl =
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Fig. 6. The simulation result by the FBP algorithm with only numerical dataig. 8. The simulation result of Example 1 using the FBP algorithm.
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Fig. 7. The simulation result of learning with both numerical data and fuzzy
IF-THEN rules by the proposed method. Fig. 9. A simulation result of Example 1 using the AFLC approach.

0.1 after 100 epochs training. According to this figure, all the Next, we trained the second-order fuzzy perceptron neural
given patterns are correctly classified by the second-order fuazgtwork using not only numerical data but also fuzzy IF-THEN
perceptron neural network. By using only the numerical datales. Fig. 7 depicts the best simulation result with= 0.1,

and iterating for 1000 epochs, Fig. 6 displays the result obtaingd= 2, andn = 1.01 for 100 epochs. As this figure reveals, the
from the FBP algorithm. The boundary curve in Fig. 6 is drawdiscriminant boundary classifies all the given patterns and pre-
by plotting all the points in the pattern space where the outptisely conveys the effects of the two linguistic rules. Among the
values are 0.5. This algorithm classifies a test pattern with ve290 simulation results by the FBP approach, it is rare to obtain a
large values of; as class 1 [12]. The proposed scheme resolvedtisfactory decision boundary. Fig. 8 presents the best decision
this weakness because the parameters of a second-order petogypadary chosen from 200 FBP trials after 1000 epochs. For the
tron network are so flexible that the neural network can correlad-LC approach, Fig. 9 summarizes the result of setting the pa-
well with the crisp data. rameterss = 3 and allas andgs equal to unity (where, as,
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Input value Fig. 12. The simulation result of Example 2 using the FBP approach.

Fig. 11. The simulation result of learning for fuzzy input data vectors by the Example 3: Based on an example from [11], we designed a
proposed method. The rectangles are supports of fuzzy vectors. two-class classifier. The numerical training data consist of ten

points from each of the two classes
andﬁ; are the chosen pgrameters of AFLC) [11]. Hovyever_, the)ass 1= {(0.1,3.3),(0.15,1.2),
decision boundary obtained by other parameter settings is not

as successful as that shown in Fig. 9. (0.2,6.2), (1,5), (1.05,5.5),(2,0.1),

Example 2: The classification power of the proposed method (2.1,0.35),(5.7,2.3),(7.7,5.6),(0.0,0.0)}  (33)
was examined as a nonlinear classification machine of fuzzylass 2= {(4.2,0.15), (4.4,0.75),
input vectors. The proposed method was applied to the fuzzy (4.1,1), (4.2, 1.8), (4.2,2.7), (4.5,3.5), (5.05,1.5)
data 12 bl ) = N ) = N ) bl N ) N ) N )
(2] (5.15,1.15), (5.8,0.3), (6.3,1.9)}. (34)

class 1= {((3,2)1,(3,2)2), (3,21, (11,3)1),
((9,3)r,(5,2)),((10,2),(10,2) )} (30)

class 2= {((6.3)1., (18,2)1), ((12,2)1. (12,2),.),
((14,3)r,(17,2)1),((16,2), (5,4)L)}  (31)

where(a, b), denotes a symmetric triangular fuzzy number, as

shown in Fig. 10, with the centerand the spreatidefined by | € membership functions for “large” and “small,” adopted
the membership function from [11], are d|splayed_|q Fig. 13. .
After 2500 epochs training of this example, FPNN wjith=

pa(e) = max{l == CL|70}_ @2) 01,3 =2 andn = 1.01 leads to the best result shown in
b Fig. 14. Fig. 15 depicts the least error solution chosen from it-

After 200 epochs and with = 0.1, 3 = 2, » = 1.01, Fig. 11 erating FBP for 12 000 epochs. Obviously, our approach yields
summarizes the best simulation result of a second-order fuZetter boundary than that from the FBP. Good parameters set-
perceptron neural network in which the nonlinear boundaHd of o = 3.66 and allas andss equal to unity excepts = 3
curve is highly successful. In this figure, the hatched area aff the AFLC scheme [11] produced the decision boundary of
white area denote the supports of these two classes of fuZ2g- 16. Note that outlier training patterfs.7, 2.3), is so atyp-
vectors, respectively. This same figure reveals that the giviéd! that all the three methods cannot classify it correctly.
nonoverlapping fuzzy vectors are all correctly classified. In Example 4:In the following, we considered the three-class
addition, the boundary curve crossing the overlapping aré@ssification problem [12] of fuzzy vectors:
of the given fuzzy vector.s.was rather fair for both clgsses. class 1= {((4,1)1,(17,2)1), ((6,2) 1, (11,2))
After 1000 epochs of training, Fig. 12 shows the optimally

In addition, the following three linguistic rules are used:

If 2,1 is large thenx, belongs to class 1 (35)
If 2,2 is large thenx, belongs to class 1 (36)
If 2, is small thenx,, belongs to class.1 (37)

classified simulation result of this example selected from the ((10,3), (16, 2)1)} (38)
FBP approaches. Unfortunately, this satisfactory separating ¢lass 2= {((4,2).,(9,2).),((5,3)z, (3,2)r)
boundary is seldom observed during 200 design trials. ((11,2)r,(3,2)r)} (39)
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Fig.13. The membership functions of the linguistic values “small” and “largefig. 15. The simulation result of Example 3 using the FBP algorithm.
in Example 3.
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Fig. 14. The simulation result of Example 3 using the second-order fuz'z:y . . .
perceptron learning algorithm. Ig. 16. A simulation result of Example 3 using the AFLC approach.

class 3= {((13,2)1,(13,3)2), ((18,1)1., (17,2)1.) given nonoverlapping fuzzy vectors are correctly classified and

((17,3)1,(8,1)2)} (40) _the b_ogn_dr_:\ry curves crossing the overlapping areas are quite fair
PR A I in minimizing the misclassified area of the overlapping fuzzy

In this example, we set = 0.1, 8 = 2, andn = 1.01 vectors. Fig. 18 displays the chosen separating boundary gener-

for the FPNN. Fig. 17 presents the separating boundary chosged by the FBP for 1000 epochs.

from those by the FPNN algorithm after 1000 learning epochs.The above four examples demonstrate the effectiveness and

The boundary curves are drawn to denote the points at whitdxibility of the FPNN. The insolvability of the AFLC on

the larger twaNet function values are identical. Namely, if theExamples 2 and 4 reveals that it is not as general as FPNN and

Netg1 value assumes the maximum value at a point, then tl8P for such problems. The decision boundary produced by the

point is labeled as class 1. This same figure also reveals that #F.C approach is deterministic and its design time is shorter
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Fig. 18. The simulation result of Example 4 using the FBP approach.

formance in terms of the quality of the discriminant boundary
and the training times required by FPNN and FBP.

1) Recognition Rate and Speed Improvement of the FPNN
Approach: As mentioned earlier, the FBP algorithm extends
the backpropagation algorithm to cases involving inputs of
fuzzy rules. The drawbacks of the BP algorithm such as
converging to local minima and slow learning convergence
still persist in this approach because it is a gradient-based
technigue. Previous investigations, although making some
progress with respect to these defects [35]-[37], could not
completely resolve these drawbacks. Moreover, determining
the structure, i.e., the number of layers and hidden units in each
layer, of a multilayer network is difficult and critical to a trial’s
success [35], [38]. To our knowledge, no previous work has
successfully determined exactly how many layers and nodes
the network should have, thereby avoiding situations of over
learning and over fitting. Hence, in the following comparison,
we set up the FBP structure according to the recommendation
of [12] for Examples 1, 2, and 4.

In the statistical tests of Examples 1-4 using FBP, a satis-
factory solution was not frequently obtained. As noted before,
Figs. 8, 12, 15, and 18, respectively, are the best classification
Houndaries chosen from 200 design trials of the FBP. In our ex-
perience, whenever the final total error of a trained FBP network
is roughly three times or larger than that of a satisfactory solu-
tion, the separating boundary of the classifier markedly differs
from those of satisfactory ones. In the sequel, the performance
of the FPNN is compared with that of the FBP approach interms
of recognition rate and the training time required. In this com-
parison, both algorithms were run on an HP model/712 work-

" station. For Examples 1, 2, and 4, FBP was performed for 1000

epochs; while for Example 3, it iterated for 12 000 epochs.

For FPNN and FBP approaches, Table | lists the average
recognition rate and the average training time required over 200
design test trials with random and small initial weight vectors on

these four examples, respectively. The entries of the recognition

rate contain two terms. The first entry records the average crisp
data recognition rate, called crisp recognition rate hereafter, and
the second records the average percentage of correctly classi
fied area of fuzzy input data, referred as fuzzy recognition rate
hereafter. In Examples 2 and 4, the entries of the crisp part are
missing since the training patterns are only fuzzy input vectors.
The average fuzzy recognition rates on these four examples by
FBP are 60.5%, 92.9%, 36.7%, and 77.2%, respectively, leading
to arecognition rate of 66.8% on the average of these four exam-
ples. For the first three two-class problems, by our fuzzy percep-
tron neural network, the fuzzy recognition rates are all superior
to those obtained by FBP algorithm. Particularly for Example
3, the fuzzy recognition rate of FPNN substantially outperforms
the FBP. Regarding the multiclass task of Example 4, the pro-

than the neural-based classifier since its design phase doespusted method also excels in terms of the amount of progression.
include a training procedure. On the other hand, the separat®atisfactory results are obtained by FPNN not only for two-class
boundaries produced by FPNN or FBP are not deterministisks but also for the multiclass problem. The same outcome can
in nature; their quality of classification is best assessed by foundin Table | for the crisp recognition rate comparison. For
statistical measures. The consistency and quality of solutiohELC algorithm, the best fuzzy recognition rates of Examples
generated by FPNN and FBP algorithms are evaluated throughnd 3 (Fig. 9 and Fig. 16) are 61.9% and 99.7%, respectively.
the learning performance statistics on these four examples. Fofhe training times needed for both networks were also
comparison, the subsequent subsection provides statistical pecorded. As Table | indicates, the CPU training time required
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TABLE |
THE AVERAGE TRAINING TIME RATIOS AND RECOGNITION RATES ON 200 TRIALS OF EXAMPLES 1-4

FPNN FBP Training Time Ratio
Example | Training Recognition Rate | Training Recognition Rate of
Time(s) Crisp  Fuzzy Time(s) Crsp  Fuzzy FPNN/FBP
1 51 100% 61.5% 682 97.2% 60.5% 7.5%
2 39 — 97.6% 466 — 92.9% 8.4%
3 1990  95% 99.6% 12089 76.3%  36.7% 16.5%
4 316 — 91.2% 1100 — 77.2% 28.7%
Average 97.5% 87.5% 86.8% 66.8% 15.3%
TABLE I TABLE I
MEANS AND STANDARD DEVIATIONS OF MISCLASSIFIED AREAS FOR THE AVERAGE SUCCESSFULCLASSIFICATION RATIOS ON 200 TRIALS OF
EXAMPLES 2 AND 4 ON 200 TRIALS EXAMPLES 1-4
FPNN FBP Ratio of FBP/FPNN FPNN FBP
Example | Mean SD |{ Mean SD | Mean SD Example | Successful Classification | Successful Classification
2 420 0.16 | 12.55 6.07 { 2.98 38 Ratio Ratio
4 13.10 1.11 | 33.79 28.82 | 2.57 26 1 100% 89%
Average 2.78 32 2 100% 34%
3 100% 32%
4 100% 21%
Average 100% 44%

by FBP algorithm is significantly longer than ours. The ratio
of central processing unit (CPU) training time needed fc.
FPNN over that needed for FBP of the four examples are 7.5%,
8.4%, 16.5%, and 28.7%, respectively, and lead to a ratio @pove, then this trial is labeled as a successful one. The sum
15.3% average over these four examples. of all successful trials over the total trials, i.e., 200, gives the

Moreover, to quantitatively assess each scheme’s solutigtecessful classification ratio. The results in Table 11l indicate
quality, the misclassified area by the separating boundary whgt the successful classification ratios on these four examples
computed for each design test trial. The misclassified area dahFBP are 89%, 34%, 32%, and 21%, respectively, and lead to
be employed as an evaluation index for the solution consisterieguccessful classification ratio of 44% on the average of these
of these two networks. Table Il lists the means and the stand&edr examples. By our fuzzy perceptron neural network, a 100%
deviations (SDs) for the misclassified areas of Examplessgccessful classification ratio has been obtained by averaging
and 4 over the 200 trials. This table reveals that the mean dhgse four examples.
SD obtained from FPNN are all smaller than those from FBP. Based on the comparison above, we can conclude that FPNN
In addition, averaging these two examples indicates that té@n lead to a much more reliable discriminant boundary con-
mean of the misclassified areas obtained from FBP is 2.3&tently than that of FBP algorithm. The proposed approach
times larger than that achieved with FPNN. For the SD of ti@nnot only produce a very high classification rate, but also take
misclassified areas, FBP is 32 times greater than FPNN. Sicmuch shorter learning time than that by the FBP approach.
large values of the means and SDs of the misclassified areas
explain the solutions inconsistency observed from numerobs
FBP trials above, and the infrequency of the satisfactory The well-known two-spiral data set is a neural network
decision boundaries after these design trials. The superiorityleinchmark problem for classification [34]. The training set
the misclassified areas of FPNN over FBP partially accountensists of 194 points, half for each class. These training points
for why the recognition rate of FPNN is markedly exceeds thate arranged in two interlocking spirals that go around the
of FBP. origin three times, as shown in Fig. 19(a)’(points denote

To assess the reliability of the qualified convergence of FPNdass 1 whereas+" points denote class 2). Note that our
and FBP, we define the successful classification trial in the fdRPNN is a classifier of extending single-layer structure and
lowing manner. For those examples with crisp and fuzzy inpigt capable of providing second-order discriminant functions
data, i.e., Examples 1 and 3, a test design trial is assumedrt@ distributed manner. By a divide-and-conquer strategy, we
be a successful classification if all the crisp data are correctlwvided the two-spiral data into subregions and these subregions
classified. Note that the outlier training pattém?,2.3) in Ex- can be suitably dichotomized by a set of elementary forms
ample 3 is neglected regardless of weather it is correctly classitch as paraboloids and ellipsoids provided by the FPNN
fied or not. For those examples of only fuzzy rule input data, i.anodels. Namely, the concept of using a number of FPNNs to
Examples 2 and 4, if all the nonoverlapping vectors are classdver the divided subregions was adopted in this simulation.
fied correctly, then this test design trial is considered as a sukecordingly, we divided the two-spiral patterns into a few
cessful classification. If a trial satisfies the condition describeslibsets of regions. The size of the subregion of patterns is

Simulation 2
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Fig. 19. (a) The training points for the two-spiral problem and the regulation of dividing the patterns into a few subsets. (b) The processesdihétescoor
transformation.

somewhat inversely proportional to the patterns’ density in tle@ordinates system, we can cluster these nine samples, as shown
subregion. In this setting, the data contained in a subregioniofFig. 19(b), into three clusters through characterizing the pat-
the outer turn consists of a smaller number of patterns, while ttegn subset using IF-THEN rules concernirigcoordinate fea-
subregion at the inner turn contains a larger number of pattetase. For instance, the three samples in the middle can be speci-
[see Fig. 19(a)] and there were 25 data subsets generated dieerby a rule such as “If}, is medium, then it belongs to class
this division and each of the 25 data subsets will be solved by’ Similarly, the upper and lower three samples can be spec-
an FPNN for this benchmark problem. ified by the z}-coordinate being large and small, respectively.
First, we would extract 25 sets of fuzzy IF-THEN rules, i.eln this way, we use three linguistic terms, “small,” “medium,”
one set of rules for each data subset in a subregion. By traasd “large” ofz’-coordinate for constructing the fuzzy rules for
lation and rotation techniques, a nedz, coordinate system classification. For the definition of the membership functions,
was assigned to each subregion so that the patterns containeatithmetic means, of the,-coordinate, of these three clusters
each subregion are more easily manageable for rule extractimere calculated and then used as the centersf the corre-
Observing, for example, the first outer data subset in this neponding symmetric triangular membership functions of (32).
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The overlapping of the membership functions depends or 1 ' ' '
spread, i.e., the parametenf (32), chosen; and in this exampl

the spreads of the “small,” “medium,” and “large” fuzzy sets 09y )
x%-coordinate were chosen to be three times of the standar o8k
viations of the corresponding patterns, respectively. As to ) ]
membership function aof{-coordinate, becausg,-coordinate o7t

can singly specify the characteristics of the data very effecti
membership functiof’ of thez -coordinate is chosen to be ¢ 0.6l
most crisp. The minimal and maximal valuesagfcoordinate
of all patterns in the subregion (denotecrasi,, andmax,,, z, os}
respectively) with a small toleraneevere chosen as the interv

range,min,; —e, max,, +e¢| for full membership function an 0.4}
zero elsewhere. In this example, parameteras 1/20 of the
valuemax,, — min,; . 0.31
After the rule generation process above, the transformed
tern subset can be qualitatively described by the following tl 0.2¢
IF-THEN rules:
0.1}
If 1 is U andz is large then it belongs to class 2
If 2} is U/ andz} is medium then it belongs to class 1 % 02 oa 06 o8 y
If 2 is U andz} is small then it belongs to class 2(41) z1

FPNN was then used to classify the transformed samples, to-

gether with these three IF-THEN rules generated. In a similgif. 20. The simulation result of the two-spiral problem using the FPNN
manner, each of the other 24 data subsets was transformed#pgoach.

its new and suitable coordinate system and then three IF-THEN

rules in the same format as (41) were also extracted. Each daf@qjing ability is enhanced. At thelevel of fuzzy numbers, a

subset and its corresponding fuzzy rules were trained using,y perceptron learning procedure is derived. The minimum

FPNN model. All the parameter settings for the FPNNS Weg the fuzzy discriminant function, obtained from the modified

the same as in the Simulation 1 and 1000 learning epochs Wgggiex method, determines weather a fuzzy perceptron learning

taken. After all the 25 data subsets have been respectively Qigyate step is executed or not. The derived learning algorithm

cessed by FPNNs, the 25 final decision boundaries derived fends the conventional perceptron algorithm to fuzzy input

FPNNs were shown in Fig. 20. These decision boundaries Weggtors. Moreover, the fuzzy pocket algorithm is derived and

finally combined by the “OR” operator. The output is assume&flen further incorporated into the fuzzy perceptron learning

to be class 1 if at least one decision boundary indicates thaf,ame to tackle nonseparable cases. Simulation results

belongs to class 1; otherwise, it belongs to class 2. In this figuggmonstrate that the proposed algorithm not only consistently

25 FPNNs were used to accomplish the whole classification tagK|ds an accurate and efficient solution, but also resolves

and 100% recognition rate was produced. ~ the limitations of inaccuracy and slow learning convergence
For comparison, the same 25 data subsets and their COggzountered in the FBP approach.

sponding rules were also respectively applied to the FBP algo-

rithm. The structure and learning epochs used for the FBP were

the same as those used for Example 1 of Simulation 1, and have ACKNOWLEDGMENT
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