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Fuzzy Perceptron Neural Networks for Classifiers
with Numerical Data and Linguistic Rules as Inputs

Jia-Lin Chen and Jyh-Yeong Chang

Abstract—This paper presents a novel learning algorithm of
fuzzy perceptron neural networks (FPNNs) for classifiers that uti-
lize expert knowledge represented by fuzzy IF-THEN rules as well
as numerical data as inputs. The conventional linear perceptron
network is extended to a second-order one, which is much more
flexible for defining a discriminant function. In order to handle
fuzzy numbers in neural networks, level sets of fuzzy input vec-
tors are incorporated into perceptron neural learning. At different
levels of the input fuzzy numbers, updating the weight vector de-
pends on the minimum of the output of the fuzzy perceptron neural
network and the corresponding nonfuzzy target output that indi-
cates the correct class of the fuzzy input vector. This minimum
is computed efficiently by employing the modified vertex method
to lessen the computational load and the training time required.
Moreover, the pocket algorithm, called fuzzy pocket algorithm, is
introduced into our fuzzy perceptron learning scheme to solve the
nonseparable problems. Simulation results demonstrate the effec-
tiveness of the proposed FPNN model.

Index Terms—Fuzzy classifiers, fuzzy functions, perceptron
learning.

I. INTRODUCTION

I N solving a problem, most scientific algorithms adopt
a crisp, or nonfuzzy, discipline and make use of only

numerical data because numerical data are easily processed
by computers. In this conventional approach, the exclusive
processing domain is purely numerical. The number-based
approach is usually significant when numerical data are pre-
cise enough and representative to the system behavior. This
approach usually lacks an ability to model the uncertain or am-
biguous information existing among data, which is, however, so
often encountered in the real world. On the other hand, humans
make many successful decisions and/or judgments primarily
on the basis of approximate and/or conceptual information,
which is usually uncertain, imprecise, and frequently stated in
terms of linguistic terms or rules. Fuzzy set theory has been
introduced [1]–[3] to model the uncertain and/or ambiguous
characteristics inherent among the data and these character-
istics being defined by suitable fuzzy sets and rules are then
inferred to reason the useful happening of the result. Since its
inception, the research of fuzzy logic has been the focus of
various fields and has demonstrated many fruitful results both
in theory and application [4]. It can be easily observed that
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these two paradigms, number-based nonfuzzy approach and
fuzzy-logic-based approach, solve problems from different,
i.e., in a sense almost complementary, viewpoints. To benefit
from these two approaches, a combined routine that integrates
both the numerical computation and fuzzy techniques would
be more effective than merely uses either one of them. Due to
their complementary natures in the way of solving a problem,
the integrated scheme will affect the algorithmic routine
cooperatively and efficiently and, hence, will enhance the
system performance further. As a result, a hybrid paradigm of
neuro-fuzzy integration has been a growing area of research in
both the academic and industrial communities and has become
prevailing in the context of pattern recognition, decision support
system, control system applications, and many others [5].

In particular, the realm of designing a classifier system still
parallels the above lines of thought. Conventionally, classifier
design through numerical data learning is the general approach
we have commonly used directly and naturally. For instance,
the backpropagation (BP) approach [6], [7] and genetic algo-
rithm [8], [9] are widely used in synthesizing a classifier under
the framework of neural models. But these learning activities
via datum learning, sequentially count each pattern instance
equally without regard to the inherent difference present among
the patterns, whereas in another fuzzy-logic-based classifica-
tion, paradigms emerge recently because they can manipulate
the various types of uncertain or ambiguous nature exhibited
among the data and can tackle the real-world problems in a
manner more like humans. Broadly, the number-based approach
proceeds the learning for classification primarily from numer-
ical patterns, but ignores the difference between numerical
data, i.e., a collective attribute of the data. Fuzzy set theoretic
design conveys the conceptual layout of classifying numerical
data given, but considers little on the information in each datum
singly. The weakness and lack of collective aspect of the data of
a number-based traditional approach is the strength, containing
the collective nature of the data set of a fuzzy-logic-based
approach. On the contrary, the weakness, lack of the individual
nature of each datum of a fuzzy-logic-based approach is the
strength, including the character of each training pattern of
a number-based approach. To circumvent the defect in the
use of the above approaches singly, it is advantageous to
integrate these two paradigms together because the weakness
of one approach can be counterbalanced by the strength of the
other approach and vice versa. Using such a hybrid scheme,
number-based and fuzzy-logic-based can enrich the very basic
ideas in the framework of classification and can constitute a
fundamental ingredient of advanced and successful topology
of the classifier.
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As was noted before, for connectionist model-based clas-
sification systems presented in the literature, most learning
procedures utilize and process numerical data only, i.e., each
pattern instance is trained sequentially and equally, but the
mutual difference existing among them is ignored during the
course of training. If, however, other pieces of classification
knowledge, especially concerning the nature of patterns in a
set, can be included as a part of inputs and then learned by
the training procedure, the defect of discarding the pattern
difference in learning can be minimized. For instance, fuzzy
IF-THEN rules that describe the relation between pattern fea-
ture attributes and numerical data in a set or category could be
one of many classification domain knowledges that are useful
and could be added to describe the system. Linguistic values
such as “small,” “medium,” and “large,” are typical and helpful
linguistic terms to be defined for specifying patterns in a cate-
gory by the forms of rules. Under the integrated formalism, the
included fuzzy IF-THEN rule inputs will reflect the conceptual
layout of the classification problems in a higher level and/or
altogether viewpoint. Such conceptual extension definitely
enlarges the range of the classification problems and removes
the weakness found in the instance training itself. Through inte-
grating fuzzy notions into a traditional number-based classifier,
the combined learning scheme will be trained by two kinds of
inputs, numerical data of training patterns and structured data
of fuzzy classification rules; and they are complementary in
nature. Consequently, these two kinds of inputs will affect the
learning routine cooperatively and efficiently and the overall
classification performance will be enhanced. Such judicious
integration matches the increasing trend of deriving a new
formulation that can embrace classification schemes involving
hybrid numerical and linguistic computation, which is noted in
a recent literature review [10].

In the literature to date, two approaches are available for a
classifier dealing with linguistic rules and crisp data together.
One paradigm extracts fuzzy IF-THEN rules from numerical
data and then these deduced rules together with the given lin-
guistic knowledge of rules are combined to execute the classifi-
cation by fuzzy inference. Corresponding to this paradigm, Wei
et al. [11] proposed the additive fuzzy logic classifier (AFLC).
The AFLC, a direct design scheme without the training phase,
does not require a significant amount of learning time needed
for a neural-based classifier. However, this approach has some
limitations. If only fuzzy IF-THEN rules are used as inputs, the
classification results depend on the membership functions of the
linguistic labels defined in the if part. Hence, if there exist some
regions that are not covered by any linguistic labels of IF-THEN
rules, then there is no information to determine an input point in
that region to be in which class it belongs to. The other paradigm
extends fuzzy notions into the neural network learning for the
linguistic rules and then trains all the numerical data and rules by
the neural model in a conventional manner [12]–[14]. This ap-
proach appears to be more attractive because the neural learning
is fused into fuzzy data processing and can learn and generalize
from training patterns and fuzzy IF-THEN rules. Following this
formalism, Ishibuchiet al. [12] proposed a multilayer feedfor-
ward neural network to explore the neural learning including
fuzzy sets. The learning algorithm is the fuzzy extension of the

backpropagation algorithm, referred to hereafter as the FBP al-
gorithm. Based on the extension principle, the learning formula
for -levels of input fuzzy sets are explicitly derived. However,
drawbacks of the BP algorithm, such as converging to local
minima and/or slow learning convergence, still persist in this
BP-based scheme. The shortcoming of being apt to converge to
a local minimum causes the FBP algorithm to frequently con-
verge to an inaccurate solution. Also, slow learning convergence
leads to a long training time required.

Also in the context of neuro-fuzzy hybrid computing para-
digm, a fuzzy neural classifier [15] based on the multilayer per-
ceptron structure and the backpropagation learning algorithm
is described. Through converting the numerical/linguistic in-
puts into larger overlapping linguistic partitions, this model also
shows the same feature of capable of handling input vectors pre-
sented in quantitative and/or linguistic form, but demonstrates
different output forms of providingoutputs of soft belonging-
nessin terms of degrees of confidence among belonging classes.
In this method, the components of the input vector consist of
the membership values to the overlapping partitions of linguistic
properties, “low,” “medium,” and “high,” corresponding to each
input feature. When the input feature is linguistic, its corre-
sponding membership values of the three linguistic terms are
quantified as fixed values. The desired output is a membership
value denoting the degree of belonging of the input vector to
that class. This procedure of assigning fuzzy output membership
values, instead of the conventional crisp binary output values,
enables this model to be more efficient in classifying ambiguous
data with overlapping class boundaries. An extended applica-
tion of the above scheme is further considered to design a con-
nectionist expert system [16]. In this expert system, the user
could be queried for the more essential feature information in
case of partial inputs. This expert system also provides justifi-
cation in the form of rules for any inferred decision.

A most general neuro-fuzzy computing scheme, which is still
embedded in a multilayer perceptron structure, was proposed
by Hayashiet al. [17]. In this fuzzy neural model, both the
input/output signals and weights are all fuzzy sets. They pre-
sented a fuzzified delta rule for learning, however, a method
to implement this learning algorithm is still not known. They
also argued that a learning algorithm based on-levels of the
error measure is too complicated and may sometimes fail. The
difficulty of deriving such general fuzzy functional algorithm
through -levels is obvious.

To provide an efficient and reliable solution, proposed in this
article is a new fuzzy neural classification model, which is in-
stead subsumed with crisp outputs and weight parameters (and
thus is not as general as the model of Hayashi) and allows inputs
either in numerical and/or fuzzy forms. The proposed model is a
neural-based learnable classifier, called fuzzy perceptron neural
network (FPNN), and its learning scheme is successfully de-
rived based on -level concept.

The perceptron algorithm [18], [19], a conventional iterative
training algorithm, guarantees to determine a linear decision
boundary separating the patterns of two classes in a finite
number of steps if these patterns are linearly separable. For the
linearly nonseparable patterns, Gallant [20], [21] introduced the
pocket algorithm to optimally dichotomize the given patterns in
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the sense of minimizing the erroneous classification rate. The
pocket algorithm is structurally resembled to a conventional
perceptron learning except that a checking amendment to stop
the algorithm has been added. In light of this concern, this paper
incorporates fuzzy sets into a perceptron learning algorithm to
enhance the perceptron neural network, which, in addition to
handling numerical data, can also handle linguistic knowledge.
To avert the limitation of producing a linear boundary by the
conventional perceptron, this work introduces a more flexible
and simple (under the constraint of limited increase in param-
eters) boundary by extending the linear discriminant function
to a higher order one and, hence, allows a nonlinear separating
hyperplane to be generated to tackle nonlinear separability. To
this end, we propose a second-order fuzzy perceptron neural
network that can handle fuzzy vectors, in a form of fuzzy
IF-THEN rules as well as numerical samples as inputs. Based
on the level sets of fuzzy numbers, the learning procedure of
the fuzzy perceptron network is analyzed. Moreover, the vertex
method is modified and applied to find the minimum of the
fuzzy discriminant function, whose value indicates whether or
not a learning update of the perceptron weight vector should be
executed. It is to be noted that in an earlier paper [14], we have
proposed a scheme based on level concept and an optimization
technique, but it requires much more computational effort in
getting the extreme points iteratively. Intensive computational
effort needed in the previous paper is greatly reduced by intro-
ducing the vertex method in this paper. The pocket algorithm
is finally generalized to the fuzzy domain so that the proposed
fuzzy perceptron model can copy with a nonseparable case.

It is to be remarked that perceptron learning with a fuzzy
membership function can also be found in the literature.
Keller and Hunt [22] introduced fuzzy set techniques into the
single-layer perceptron algorithm for two-class classification
problem. This algorithm assigns fuzzy membership functions
to input data to reflect their geometrical proximity to the
means of class 1 and class 2 before training the perceptron
classifier. This fuzzy perceptron learning scheme can improve
the convergence significantly especially when the crisp data are
overlapping. The concept and content realized in [22] is quite
different from FPNN because it deals with crisp input data
only and these data are artificially imposed by membership
functions for faster convergence.

The rest of this paper is organized as follows. Section II re-
views the concepts of fuzzy function and the extension principle
that is employed for analyzing fuzzy functions. Section III in-
troduces the fuzzy perceptron neural networks. Their learning
schemes are thoroughly described as well. In Section IV, several
numerical examples and the two-spiral benchmark data are sim-
ulated. Performance comparisons of the proposed model with
other related approaches are summarized by statistical perfor-
mance evaluation indexes computed from the simulation results.
Concluding remarks are finally made in Section V.

II. FUZZY FUNCTION AND THE EXTENSION PRINCIPLE

Since our proposed fuzzy perceptron neural network relies
heavily on the evaluation of fuzzy function, it is instructive to
describe the derivation of the fuzzy function briefly. This section

will start with introducing the extension principle, which is the
rationale behind evaluating the fuzzy function.

The extension principle [3] is the most important fuzzy set
theory that provides the generalization procedure of mapping
between fuzzy sets. In light of this principle, algebraic operation
on real numbers can be extended to fuzzy numbers, i.e., convex
and normal fuzzy sets. According to the extension principle, for
a fuzzy multivariable function, of fuzzy
variables , i.e.,

(1)

the membership function of can be expressed as

(2)

The computation and algorithm involved in implementing (2) is
not trivial to the fuzzy set with a continuous universe. A simple
and intuitive way is using the discretization technique [23] in the
variable domain. However, if the value of the discretized size
is not properly selected, this technique would fail and lead to
an irregular and inaccurate result [24], [25]. Consequently, pre-
vious investigations [26]–[28] proposed methods for computing
fuzzy function, based on the-level concept. The -level set is
much more effective as a representation form of fuzzy sets since
it is a discretization technique on membership value domain of
variables, instead of on variable domain themselves. The ab-
normality of using the conventional discretization on variable
domains can be averted by performing the fuzzy function on

-levels. The fuzzy function using-level concept is illustrated
in the following.

For any , the -level sets, i.e., cuts, of the fuzzy
set are defined as follows:

for (3)

where denotes an -level set of a fuzzy set. Furthermore, if
is a continuous function and fuzzy sets

are upper semicontinuous, then the following
holds1 [29, p. 39]:

for (4)

The relation above paves a simpler way to compute the value of
a fuzzy function compared with applying the extension principle
of (2) directly. In the following, the fuzzy functions encountered
in the FPNN learning will be computed by (4) because the above
assumptions required by the function and fuzzy sets involved in
the FPNN classification tasks are generally satisfied.

III. FUZZY PERCEPTRONNEURAL NETWORK

This section first describes the fuzzy IF-THEN rules for
classification problems. The proposed neural-based network,
i.e., the fuzzy perceptron neural network (FPNN), is then
introduced. The FPNN can perform a classification task using
not only numerical patterns but also fuzzy IF-THEN rules as

1If [�] denotes specifically the support of the interval with nonzero member-
ship degrees of a fuzzy set, then (4) holds forh = 0 also.



CHEN AND CHANG: FUZZY PERCEPTRON NEURAL NETWORKS FOR CLASSIFIERS 733

Fig. 1. The architecture of a fuzzy perceptron neural network.

inputs. Next, the vertex method [30] is modified to obtain the
minimum of a fuzzy function; this function is the discrim-
inant function of the FPNN. The extremum of the function
determines whether or not the coefficients of the discriminant
function should be modified in a training iteration. Finally, the
fuzzy pocket algorithm is developed to provide a stop criterion
for the fuzzy perceptron neural learning.

A. Structure of the Fuzzy Perceptron Neural Network

Based on the perceptron neural network structure, we shall
construct a two-class classification system that can also accept
fuzzy IF-THEN rules as inputs besides numerical pattern data.
Fuzzy IF-THEN rules utilized for the classification problem
[12] are given as follows:

If is and and is

then belongs to

(5)

where
linguistic label;
either class 1 or class 2;
number of rules given.

To prevent the discriminant function of the FPNN from passing
through the origin only, we can augment the input vectors by
including the threshold constant . Because
is a constant of one, it is considered as a fuzzy singleton

to the input vector . With this augmentation,
(5) can be generalized and simplified as

belongs to

(6)

where denotes a fuzzy vector.
With the crisp data being regarded as fuzzy numbers of

singleton, numerical input data to be classified are consid-
ered as a special form of linguistic knowledge represented
by (6), in which s are all fuzzy singletons. Therefore,
(6) can accommodate the crisp input data set given as well.
By this setting, the FPNN is designed, as shown in Fig. 1,
so that the augmented -dimensional fuzzy vectors

are classified. Each input can

be either the linguistic term represented by fuzzy numbers
or fuzzy singletons of crisp data. It follows from (4) that the
level sets of the output of a fuzzy function can be propagated
through the neural network. Fuzzy set is represented by
its level sets: , where

and represents the number of level sets sampled.
At these levels, input–output relations of the neural network
are derived as follows. At the -level of the fuzzy input vector

,
let level set denotes the interval input vector of .
Then, the fuzzy perceptron neural network for theth fuzzy
IF-THEN rule is defined by

Input units

(7)

(8)

Output unit

(9)

where and , respectively, represent the signum ac-
tivation function [5, p. 208] and the input of output neuron
as defined in the following.

Owing to the quest for a nonlinear discriminant boundary
rather than just a linear one, this work uses asecond-order
perceptron neural network [31], [32]. Subject to a negligible
increase in the number of parameters utilized for perceptron
learning, a second-order discriminant function can produce
various quadratic curves, paraboloids, ellipsoids, and hy-
perboloids, by varying the coefficients to meet the needed
curvature. This flexibility can hopefully accommodate most
of the nonlinear boundary needed to discriminate the hybrid
data sets. Without loss of generality, the second-order FPNN is
illustrated by a two-dimensional (2-D) input vector, which is
augmented to in which denotes the
fuzzy singleton equal to one. At the-level of the given 2-D
input vector , let represents the interval vector of ,

i.e., ].
The weighted sum of a second-order perceptron neuron
for the input vector is given by

(10)

For the interval input vectors with the corresponding target
output which is either 1 of class 1 or of class 2, the clas-
sifier is required to find the perceptron weight vector

so that

for each -level of all the rules (11)
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As mentioned in Section II, the fuzzy function calculation by
the use of the extension principle is equivalent to the-level-
based evaluation by (4) that involves interval arithmetic. Some
fundamental properties regarding interval arithmetic [30] are
therefore summarized as follows.

Assuming that , , and are interval numbers, we have
the following.

Associativity:

(12)

Commutativity:

(13)

However, distributivity does not always hold. Instead, we have
the following.

Subdistributivity:

(14)

Above equation hints that after the distributing operation, the re-
sultant range of interval would be enlarged. Distributivity fails
because two occurrences of an identical interval numberin
the right-hand side of (14) are treated as twoindependentin-
terval numbers. With this subdistributivity property in mind, we
can see that deriving the interval of (10) is complex since
the input variables, and of the second-order fuzzy per-
ceptron neural network appear more than once and should be
treated as linearlydependent. Hence, to evaluate of (10)
in a manner as direct interval arithmetic computation in the right
hand side of (14) is inappropriate.

To satisfy inequality (11) at each-level of the fuzzy input
vector, we have to invent a scheme that can search for the ex-
tremum of the function for a given weight vector . If
the target output is class 1, then we set and we will
find the minimum . On the contrary, we set and

we will find the maximum . In fact, only the constrained
minimization must be found because for the case , the
maximization is transformed to the minimization by negating
the function. At the -level of fuzzy sets involved in the
th IF-THEN rule, the problem becomes to find the minimum

of
with the constraints and , which
define the subspace of the 2-D parameters and are called the fea-
sible region of and . Notably, Net and are and
dependent, i.e., , and . How-
ever, for simplicity, these two scripts are not explicitly shown in
Net and . Although our previous work [14] derived an
optimization scheme to solve the above problem, it is, however,
computationally expensive. In the sequel, a new computation-
ally efficient technique, named the modified vertex method is
introduced to solve this constrained minimization problem.

B. Fuzzy Perceptron Learning by the Modified Vertex Method

As mentioned earlier, solving a constrained minimization
problem is necessary for the fuzzy perceptron neural learning.

According to our observation, this minimization problem can
be solved more efficiently by modifying and applying the
vertex method. Details of this approach are as follows.

1) Vertex Method:Let be an -dimensional interval func-
tion given by

(15)

where

(16)

Function value is also an interval number. Theseinterval
variables form an -dimensional hypercube
with , i.e., , vertices. All vertices’ coordinates of the interval
function are a combination of pairs of end points of interval
numbers. According to the vertex method [30], these vertices in
the -dimensional space are critical to calculate the interval of a
function of interval variables. Essential properties of the vertex
method are given as follows.

For a continuous and differentiable functionin the -di-
mensional hypercube, ifhas no extreme point, i.e., a point with
a differential value equal to zero, in the feasible region, interval
of the function in the defined domain (including the boundaries)
can be obtained by

(17)

where and denote theth and th vertices of the vertices
of the hypercube.

The vertex method is effective only when the conditions of
continuity and no extreme point existing in the region are sat-
isfied. Furthermore, if extreme points of the functionexist in
the feasible region, these extreme points must also be checked
to obtain the minimal value. That is, suppose that functionhas

extreme points, then interval calculation of (17) is extended
to

(18)

where and denote the th and th extreme points.
In light of results above, how to determine the minimum of

with
the constraints and is considered
again. Fig. 2 depicts the case that the extreme point, denoted
as , exists in the feasible region, while Fig. 3 shows
the case that the extreme point is outside the feasible region.
According to our study, the vertex method should be modified
when it is exploited in our FPNN model. It can be observed from
Figs. 2 or 3 that the minimal point of a Net function could also
be located on the boundary of the fuzzy set in addition to the
vertices and extreme point. In response to this modification, an
iterative searching process by the bisection method [33, ch. 2]
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Fig. 2. Searching for the minimum ofNet(x ; x ), x � x � x , x �

x � x . The extreme point(x ; x ) is in the feasible region.

Fig. 3. Searching for the minimum ofNet(x ; x ), x � x � x , x �

x � x . The extreme point(x ; x ) is not in the feasible region.

is introduced. For the region defined by the and inter-
vals, four boundaries should be checked for the minimal point.
For any one of the four boundaries, functionis reduced to an
one-dimensional function , is either 1 or 2, with the other
variable remaining fixed at its corresponding lower or higher
value. For convenience, allow the interval of the changing vari-
able to be defined in , i.e., can be either or

.
2) Bisection Method:To search for the minimal value of the

quadratic function above, with the given interval and
the maximum number of iterations, we proceed the following
steps.

Step 1) Set .
Step 2) While , perform Steps 3)–5).

Step 3) Set .
Step 4) .
Step 5) If , then , else .
Step 6) The minimum of is .

The above bisection process is operated on these four bound-
aries sequentially to get their respective minima and then the
smallest value is selected from these four minima obtained.
Finally, the minimal Net value equals if there is no ex-
treme point in the feasible region, otherwise is the min-
imum of and the Net values evaluated at the extreme points
in the feasible region. In addition, the corresponding minimal
point is denoted as . Parameter determines how
accurate the minimal point is. For instance, in this paper, six
iterations are selected to locate the optimal point
leading to an accuracy of . For the -level of the th
fuzzy input vector, if , then the second-order
fuzzy perceptron learning algorithm with a learning constant
updates the weight vector by

(19)

where

(20)

The above learning procedure does not stop until inequality
(11) holds for all -levels of rules and all the crisp training
patterns as well. The learning step size of the above fuzzy per-
ceptron algorithm is proportional to the current-level. A larger
membership degree implies a larger learning step size. This
learning procedure can accept not only fuzzy IF-THEN rules,
but also crisp data since real numbers can be regarded as fuzzy
singletons and the corresponding-level is assumed to equal
one. If the training data are crisp, the proposed second-order
fuzzy perceptron network reduces to the conventional second-
order perceptron network. Furthermore, the proposed scheme
is quite general since it can be easily extended to the third- or
higher order fuzzy perceptron model in the same manner. From
this perspective, the proposed second-order fuzzy perceptron al-
gorithm can be viewed as an extension of the conventional per-
ceptron learning to the case of fuzzy rules as inputs.

C. Fuzzy Pocket Algorithm

Perceptron learning is quite appropriate for separable prob-
lems, i.e., problems for which some set of weights is available
that correctly classifies all training patterns after a finite number
of mistakes. Nonseparable problems are a different story. The
fact that no set of weights can correctly classify all training
patterns implies that a set of weights, which correctly classi-
fies as large a fraction of the training patterns as possible is
preferred. Pocket algorithm is developed to determine a set of
weight in this optimal sense [20]. In line with such optimal
sense, a fuzzy pocket algorithm is developed to resolve the non-
separable problem encountered in fuzzy perceptron learning.

This work modifies the pocket algorithm to effectively ad-
dress the nonseparable case for our fuzzy perceptron algorithm
such as overlapping fuzzy numbers or the input data cannot
be dichotomized by a second-order discriminant function.
The pocket algorithm adds additional steps to monitor the
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performance of the perceptron network. For training patterns
of crisp data, the performance is measured on the basis of
the correct classification among training patterns. The pocket
algorithm must be modified so that it can be applied involving
fuzzy input vectors. This modified pocket algorithm called
fuzzy pocket algorithm should optimally dichotomize the fuzzy
input vectors of linguistic terms as follows.

1) The total misclassified membership values of the two
classes should be as small as possible.

2) The difference between the maximal misclassified mem-
bership values (the highest misclassified membership
value of overlapping fuzzy input vectors for each class)
of these two classes should be as small as possible.

At the -level of fuzzy numbers, the following index,
memindex, should be minimized to find an optimal weight
vector that can realize the above two statements

mem index mem mis

mem dif (21)

wherememmis denotes the sum of the membership levels of
those training vectors which cannot be correctly classified by
the discriminant function andmem dif represents the abso-
lute value of the difference between the maximal misclassified
membership levels of the two classes. To be fair to both mis-
classified classes occurring in overlapping fuzzy input vectors,
the decision boundary should be located at a point that the max-
imal misclassification membership functions of the misclassi-
fied classes are as nearly equal as possible and this justifies the
requirement of a minimalmem dif value. Parameter is the
index of iteration number in the training procedure, whose value
goes from one up to the epoch number we selected. Constant
, a value greater than one but very close to one, increasingly

emphasizesmemdif in accordance with an increasing number
of iterations. Constant, which can certainly be chosen by the
user, is introduced for the relative weighting ofmemmis and
mem dif . By our experience, one, two, or three are suitable
choices for constant. In the numerical simulations presented
later, we used for all the illustrative examples. In this
manner, the fuzzy pocket algorithm identifies a weight vector
that can minimize mainly the cumulative misclassified mem-
bership values of fuzzy numbers initially and then searches for
a weight that cannot only minimize the misclassification error
but also minimize the difference between maximal misclassifi-
cation membership values. Notice that in the case of nonover-
lapping fuzzy numbers,memindexis calculated frommemmis
only, while mem dif is neglected. In a manner resembling the
pocket algorithm, we save “in the pocket” of the weight vector
with the smallestmemindexin the fuzzy perceptron algorithm.
This simple modification facilitates fuzzy perceptron learning
well behaved.

The relative weighting between crisp data and linguistic
rules on calculatingmemmisis worth mentioning. This relative
weighting is subjective and, naturally, more reliable information
(either crisp data or linguistic rules) should be more empha-
sized. In this paper, six-levels, i.e., ,
and , are used in the fuzzy perceptron learning algorithm,
whereas for crisp data, only-level of one is assigned. On

memmiscalculation, the relative weighting for a crisp datum is
chosen three times that of a fuzzy IF-THEN rule. This relative
weight compensates the crisp data for using only-level of one
instead of the six -levels of rules. By this setting, we count
equally on numerical data and the linguistic rules because the
sum of these six levels equals three.

To summarize, the second-order fuzzy perceptron learning
with fuzzy pocket algorithm is as follows.

1) Set to a small and random vector.
2) Let be the current weight. Select a training fuzzy input

vector .
3) If correctly classifies , then

a ) If the current run of thememindexis smaller than
the run ofmemindex in your pocket, then put in
your pocket and remember thememindexof its run.

else form a new set of weights by fuzzy perceptron
learning.

4) If the specified number of iterations has not been taken or
the specifiedmemindexhas not been reached, then go to
2); otherwise, stop the iteration.

D. Multiclass Classification

To be more general than just dealing with two-class classifi-
cation [14], the proposed FPNN model can be extended to solve
the multiclass classification problems by increasing the number
of discriminant functions equal to the number of classes to be
classified. For a-class classification problem, we definedis-
criminant functions with weights .
At the -level of the th fuzzy input vector , if be-
longs to class, then value should be the largest among
the discriminant functions. If, however, for some, we have

, then the updating rules for weight vectors
are given by

for (22)

where is in the same form of (20).
For a multiclass nonseparable problem, the modified pocket

algorithm should be amended to suit the concept mentioned in
the above subsection. Thememindexshould be revised to the
following form:

mem index mem mis

mem dif (23)

wherememmis is the sum of erroneous membership levels
of the th class patterns, i.e., , for all

-levels of those th rules defined for theth class but erro-
neously classified to theth class . The mem dif in (23)
is the absolute value of the difference between the maximal mis-
classification membership levels of classesand in the
class overlapping region. Via this modification, the fuzzy pocket
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algorithm can be extended to multiclass classification problems
in a manner analogous to two-class problems.

IV. SIMULATION

Simulations were performed not only to verify the effective-
ness of the proposed fuzzy perceptron neural network, but also
to compare with that obtained by FBP and AFLC algorithms.
In this section, two simulations were presented. In Simulation
1, all the fuzzy IF-THEN rules for classification problems were
initially given. Four testing examples were provided; the first
three examples were the two-class classification problems and
the final one addressed three-class classification. Notice that
the results of Examples 2 and 4 by AFLC were not presented
because these two examples are not solvable by AFLC since
undefined regions of fuzzy inputs exist. In Simulation 2, we
tested the proposed algorithm on the neural network bench-
mark problem, two-spiral classification proposed by Langet al.
[34]. In this simulation, we generated IF-THEN rules from the
two-spiral data to underline the existing regularity among sam-
ples. The FPNN classification boundaries were improved by in-
corporating these rules generated and crisp data as inputs.

A. Simulation 1

Due to the nondeterministic learning nature of FBP and
FPNN each of these four examples was run for 200 design
trials. Based on these running results, classification perfor-
mance in terms of several statistical indexes will be provided in
the subsequent subsection. For these two algorithms, a learning
cycle of each pattern and every fuzzy IF-THEN rule being
presented once constitute anepochof learning iteration.

In running the four examples by the FBP algorithm, the feed-
forward neural network was structured with one hidden layer
of five hidden units; these network structures and the number
of epochs were chosen as recommended (except Example 3) by
[12]. In our experience, the FBP algorithm cannot easily con-
verge to satisfactory solutions. As a consequence, there are few
satisfactory decision boundaries obtained in the 200 trials of
each example. Therefore, in the following illustrative examples,
the best decision boundary (in the sense of minimal error of FBP
[12]) of each example was selected from 200 design trials and
then plotted.

For FPNN, the following examples were simulated by em-
ploying six levels of , i.e., , and for
the linguistic values in the fuzzy perceptron learning algorithm.
Note that to make the zero level of the fuzzy number effective
hinges on replacing with (a small positive
value) whenever updating from (19) or (22), as well as com-
puting thememindexof (21) or (23). In running FPNN with
200 design trials for each example, almost all decision bound-
aries obtained are similar to the best one (still sticking to the
sense of minimalmemindex). Also, we plotted the best decision
boundary of FPNN algorithm for each of these four examples.

Example 1: In line with Ishibuchiet al. [12], this work de-
signed a two-class classifier on a pattern space .
The numerical data are

class 1 (24)

class 2 (25)

Fig. 4. The membership functions of the linguistic values “small” and “very
large” in Example 1.

Fig. 5. A simulation result of learning with only numerical data by the
proposed second-order fuzzy perceptron learning algorithm.

The following two fuzzy IF-THEN rules given from human ex-
perts are

If is small and is small

then belongs to class 1 (26)

If is very large or is very large

then belongs to class 2 (27)

Fig. 4 displays the membership functions, which are adopted
from [12] and coincide with our intuition, of the fuzzy num-
bers “small” and “very large.” The fact that the pattern space is

accounts for why the fuzzy IF-THEN rule (27)
with the “or” connection can be converted into the following
two rules with the “and” connection:

If is very large and is in

then belongs to class 2 (28)

If is in and is very large

then belongs to class 2 (29)

Initially, we trained the second-order fuzzy perceptron using
only numerical data. Fig. 5 plots the simulation result with
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Fig. 6. The simulation result by the FBP algorithm with only numerical data.

Fig. 7. The simulation result of learning with both numerical data and fuzzy
IF-THEN rules by the proposed method.

after 100 epochs training. According to this figure, all the
given patterns are correctly classified by the second-order fuzzy
perceptron neural network. By using only the numerical data
and iterating for 1000 epochs, Fig. 6 displays the result obtained
from the FBP algorithm. The boundary curve in Fig. 6 is drawn
by plotting all the points in the pattern space where the output
values are 0.5. This algorithm classifies a test pattern with very
large values of as class 1 [12]. The proposed scheme resolved
this weakness because the parameters of a second-order percep-
tron network are so flexible that the neural network can correlate
well with the crisp data.

Fig. 8. The simulation result of Example 1 using the FBP algorithm.

Fig. 9. A simulation result of Example 1 using the AFLC approach.

Next, we trained the second-order fuzzy perceptron neural
network using not only numerical data but also fuzzy IF-THEN
rules. Fig. 7 depicts the best simulation result with

, and for 100 epochs. As this figure reveals, the
discriminant boundary classifies all the given patterns and pre-
cisely conveys the effects of the two linguistic rules. Among the
200 simulation results by the FBP approach, it is rare to obtain a
satisfactory decision boundary. Fig. 8 presents the best decision
boundary chosen from 200 FBP trials after 1000 epochs. For the
AFLC approach, Fig. 9 summarizes the result of setting the pa-
rameters and all s and s equal to unity (where s,
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Fig. 10. A symmetric triangular fuzzy number.

Fig. 11. The simulation result of learning for fuzzy input data vectors by the
proposed method. The rectangles are supports of fuzzy vectors.

and s are the chosen parameters of AFLC) [11]. However, the
decision boundary obtained by other parameter settings is not
as successful as that shown in Fig. 9.

Example 2: The classification power of the proposed method
was examined as a nonlinear classification machine of fuzzy
input vectors. The proposed method was applied to the fuzzy
data [12]

class 1

(30)

class 2

(31)

where denotes a symmetric triangular fuzzy number, as
shown in Fig. 10, with the centerand the spreaddefined by
the membership function

(32)

After 200 epochs and with , , , Fig. 11
summarizes the best simulation result of a second-order fuzzy
perceptron neural network in which the nonlinear boundary
curve is highly successful. In this figure, the hatched area and
white area denote the supports of these two classes of fuzzy
vectors, respectively. This same figure reveals that the given
nonoverlapping fuzzy vectors are all correctly classified. In
addition, the boundary curve crossing the overlapping area
of the given fuzzy vectors was rather fair for both classes.
After 1000 epochs of training, Fig. 12 shows the optimally
classified simulation result of this example selected from the
FBP approaches. Unfortunately, this satisfactory separating
boundary is seldom observed during 200 design trials.

Fig. 12. The simulation result of Example 2 using the FBP approach.

Example 3: Based on an example from [11], we designed a
two-class classifier. The numerical training data consist of ten
points from each of the two classes

class 1

(33)

class 2

(34)

In addition, the following three linguistic rules are used:

If is large then belongs to class 1 (35)

If is large then belongs to class 1 (36)

If is small then belongs to class 1 (37)

The membership functions for “large” and “small,” adopted
from [11], are displayed in Fig. 13.

After 2500 epochs training of this example, FPNN with
, , and leads to the best result shown in

Fig. 14. Fig. 15 depicts the least error solution chosen from it-
erating FBP for 12 000 epochs. Obviously, our approach yields
a better boundary than that from the FBP. Good parameters set-
ting of and all s and s equal to unity except
for the AFLC scheme [11] produced the decision boundary of
Fig. 16. Note that outlier training pattern, , is so atyp-
ical that all the three methods cannot classify it correctly.

Example 4: In the following, we considered the three-class
classification problem [12] of fuzzy vectors:

class 1

(38)

class 2

(39)
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Fig. 13. The membership functions of the linguistic values “small” and “large”
in Example 3.

Fig. 14. The simulation result of Example 3 using the second-order fuzzy
perceptron learning algorithm.

class 3

(40)

In this example, we set , and
for the FPNN. Fig. 17 presents the separating boundary chosen
from those by the FPNN algorithm after 1000 learning epochs.
The boundary curves are drawn to denote the points at which
the larger two function values are identical. Namely, if the

value assumes the maximum value at a point, then this
point is labeled as class 1. This same figure also reveals that the

Fig. 15. The simulation result of Example 3 using the FBP algorithm.

Fig. 16. A simulation result of Example 3 using the AFLC approach.

given nonoverlapping fuzzy vectors are correctly classified and
the boundary curves crossing the overlapping areas are quite fair
in minimizing the misclassified area of the overlapping fuzzy
vectors. Fig. 18 displays the chosen separating boundary gener-
ated by the FBP for 1000 epochs.

The above four examples demonstrate the effectiveness and
flexibility of the FPNN. The insolvability of the AFLC on
Examples 2 and 4 reveals that it is not as general as FPNN and
FBP for such problems. The decision boundary produced by the
AFLC approach is deterministic and its design time is shorter
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Fig. 17. The simulation result of Example 4 using the second-order fuzzy
perceptron learning algorithm.

Fig. 18. The simulation result of Example 4 using the FBP approach.

than the neural-based classifier since its design phase does not
include a training procedure. On the other hand, the separating
boundaries produced by FPNN or FBP are not deterministic
in nature; their quality of classification is best assessed by
statistical measures. The consistency and quality of solutions
generated by FPNN and FBP algorithms are evaluated through
the learning performance statistics on these four examples. For
comparison, the subsequent subsection provides statistical per-

formance in terms of the quality of the discriminant boundary
and the training times required by FPNN and FBP.

1) Recognition Rate and Speed Improvement of the FPNN
Approach: As mentioned earlier, the FBP algorithm extends
the backpropagation algorithm to cases involving inputs of
fuzzy rules. The drawbacks of the BP algorithm such as
converging to local minima and slow learning convergence
still persist in this approach because it is a gradient-based
technique. Previous investigations, although making some
progress with respect to these defects [35]–[37], could not
completely resolve these drawbacks. Moreover, determining
the structure, i.e., the number of layers and hidden units in each
layer, of a multilayer network is difficult and critical to a trial’s
success [35], [38]. To our knowledge, no previous work has
successfully determined exactly how many layers and nodes
the network should have, thereby avoiding situations of over
learning and over fitting. Hence, in the following comparison,
we set up the FBP structure according to the recommendation
of [12] for Examples 1, 2, and 4.

In the statistical tests of Examples 1–4 using FBP, a satis-
factory solution was not frequently obtained. As noted before,
Figs. 8, 12, 15, and 18, respectively, are the best classification
boundaries chosen from 200 design trials of the FBP. In our ex-
perience, whenever the final total error of a trained FBP network
is roughly three times or larger than that of a satisfactory solu-
tion, the separating boundary of the classifier markedly differs
from those of satisfactory ones. In the sequel, the performance
of the FPNN is compared with that of the FBP approach in terms
of recognition rate and the training time required. In this com-
parison, both algorithms were run on an HP model/712 work-
station. For Examples 1, 2, and 4, FBP was performed for 1000
epochs; while for Example 3, it iterated for 12 000 epochs.

For FPNN and FBP approaches, Table I lists the average
recognition rate and the average training time required over 200
design test trials with random and small initial weight vectors on
these four examples, respectively. The entries of the recognition
rate contain two terms. The first entry records the average crisp
data recognition rate, called crisp recognition rate hereafter, and
the second records the average percentage of correctly classi-
fied area of fuzzy input data, referred as fuzzy recognition rate
hereafter. In Examples 2 and 4, the entries of the crisp part are
missing since the training patterns are only fuzzy input vectors.
The average fuzzy recognition rates on these four examples by
FBP are 60.5%, 92.9%, 36.7%, and 77.2%, respectively, leading
to a recognition rate of 66.8% on the average of these four exam-
ples. For the first three two-class problems, by our fuzzy percep-
tron neural network, the fuzzy recognition rates are all superior
to those obtained by FBP algorithm. Particularly for Example
3, the fuzzy recognition rate of FPNN substantially outperforms
the FBP. Regarding the multiclass task of Example 4, the pro-
posed method also excels in terms of the amount of progression.
Satisfactory results are obtained by FPNN not only for two-class
tasks but also for the multiclass problem. The same outcome can
be found in Table I for the crisp recognition rate comparison. For
AFLC algorithm, the best fuzzy recognition rates of Examples
1 and 3 (Fig. 9 and Fig. 16) are 61.9% and 99.7%, respectively.

The training times needed for both networks were also
recorded. As Table I indicates, the CPU training time required
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TABLE I
THE AVERAGE TRAINING TIME RATIOS AND RECOGNITION RATES ON 200 TRIALS OF EXAMPLES 1–4

TABLE II
MEANS AND STANDARD DEVIATIONS OF MISCLASSIFIED AREAS FOR

EXAMPLES 2 AND 4 ON 200 TRIALS

by FBP algorithm is significantly longer than ours. The ratios
of central processing unit (CPU) training time needed for
FPNN over that needed for FBP of the four examples are 7.5%,
8.4%, 16.5%, and 28.7%, respectively, and lead to a ratio of
15.3% average over these four examples.

Moreover, to quantitatively assess each scheme’s solution
quality, the misclassified area by the separating boundary was
computed for each design test trial. The misclassified area can
be employed as an evaluation index for the solution consistency
of these two networks. Table II lists the means and the standard
deviations (SDs) for the misclassified areas of Examples 2
and 4 over the 200 trials. This table reveals that the mean and
SD obtained from FPNN are all smaller than those from FBP.
In addition, averaging these two examples indicates that the
mean of the misclassified areas obtained from FBP is 2.78
times larger than that achieved with FPNN. For the SD of the
misclassified areas, FBP is 32 times greater than FPNN. Such
large values of the means and SDs of the misclassified areas
explain the solutions inconsistency observed from numerous
FBP trials above, and the infrequency of the satisfactory
decision boundaries after these design trials. The superiority of
the misclassified areas of FPNN over FBP partially accounts
for why the recognition rate of FPNN is markedly exceeds that
of FBP.

To assess the reliability of the qualified convergence of FPNN
and FBP, we define the successful classification trial in the fol-
lowing manner. For those examples with crisp and fuzzy input
data, i.e., Examples 1 and 3, a test design trial is assumed to
be a successful classification if all the crisp data are correctly
classified. Note that the outlier training pattern in Ex-
ample 3 is neglected regardless of weather it is correctly classi-
fied or not. For those examples of only fuzzy rule input data, i.e.,
Examples 2 and 4, if all the nonoverlapping vectors are classi-
fied correctly, then this test design trial is considered as a suc-
cessful classification. If a trial satisfies the condition described

TABLE III
THE AVERAGE SUCCESSFULCLASSIFICATION RATIOS ON 200 TRIALS OF

EXAMPLES 1–4

above, then this trial is labeled as a successful one. The sum
of all successful trials over the total trials, i.e., 200, gives the
successful classification ratio. The results in Table III indicate
that the successful classification ratios on these four examples
by FBP are 89%, 34%, 32%, and 21%, respectively, and lead to
a successful classification ratio of 44% on the average of these
four examples. By our fuzzy perceptron neural network, a 100%
successful classification ratio has been obtained by averaging
these four examples.

Based on the comparison above, we can conclude that FPNN
can lead to a much more reliable discriminant boundary con-
sistently than that of FBP algorithm. The proposed approach
cannot only produce a very high classification rate, but also take
a much shorter learning time than that by the FBP approach.

B. Simulation 2

The well-known two-spiral data set is a neural network
benchmark problem for classification [34]. The training set
consists of 194 points, half for each class. These training points
are arranged in two interlocking spirals that go around the
origin three times, as shown in Fig. 19(a) (“” points denote
class 1 whereas “” points denote class 2). Note that our
FPNN is a classifier of extending single-layer structure and
is capable of providing second-order discriminant functions
in a distributed manner. By a divide-and-conquer strategy, we
divided the two-spiral data into subregions and these subregions
can be suitably dichotomized by a set of elementary forms
such as paraboloids and ellipsoids provided by the FPNN
models. Namely, the concept of using a number of FPNNs to
cover the divided subregions was adopted in this simulation.
Accordingly, we divided the two-spiral patterns into a few
subsets of regions. The size of the subregion of patterns is
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(a)

(b)

Fig. 19. (a) The training points for the two-spiral problem and the regulation of dividing the patterns into a few subsets. (b) The processes of the coordinates
transformation.

somewhat inversely proportional to the patterns’ density in the
subregion. In this setting, the data contained in a subregion of
the outer turn consists of a smaller number of patterns, while the
subregion at the inner turn contains a larger number of patterns
[see Fig. 19(a)] and there were 25 data subsets generated after
this division and each of the 25 data subsets will be solved by
an FPNN for this benchmark problem.

First, we would extract 25 sets of fuzzy IF-THEN rules, i.e.,
one set of rules for each data subset in a subregion. By trans-
lation and rotation techniques, a new– coordinate system
was assigned to each subregion so that the patterns contained in
each subregion are more easily manageable for rule extraction.
Observing, for example, the first outer data subset in this new

coordinates system, we can cluster these nine samples, as shown
in Fig. 19(b), into three clusters through characterizing the pat-
tern subset using IF-THEN rules concerning-coordinate fea-
ture. For instance, the three samples in the middle can be speci-
fied by a rule such as “If is medium, then it belongs to class
1.” Similarly, the upper and lower three samples can be spec-
ified by the -coordinate being large and small, respectively.
In this way, we use three linguistic terms, “small,” “medium,”
and “large” of -coordinate for constructing the fuzzy rules for
classification. For the definition of the membership functions,
arithmetic means, of the -coordinate, of these three clusters
were calculated and then used as the centerss of the corre-
sponding symmetric triangular membership functions of (32).
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The overlapping of the membership functions depends on the
spread, i.e., the parameterof (32), chosen; and in this example,
the spreads of the “small,” “medium,” and “large” fuzzy sets of

-coordinate were chosen to be three times of the standard de-
viations of the corresponding patterns, respectively. As to the
membership function of -coordinate, because -coordinate
can singly specify the characteristics of the data very effectively,
membership function of the -coordinate is chosen to be al-
most crisp. The minimal and maximal values of-coordinate
of all patterns in the subregion (denoted as and ,
respectively) with a small tolerancewere chosen as the interval
range, for full membership function and
zero elsewhere. In this example, parameterwas of the
value .

After the rule generation process above, the transformed pat-
tern subset can be qualitatively described by the following three
IF-THEN rules:

If is and is large then it belongs to class 2

If is and is medium then it belongs to class 1

If is and is small then it belongs to class 2(41)

FPNN was then used to classify the transformed samples, to-
gether with these three IF-THEN rules generated. In a similar
manner, each of the other 24 data subsets was transformed to
its new and suitable coordinate system and then three IF-THEN
rules in the same format as (41) were also extracted. Each data
subset and its corresponding fuzzy rules were trained using an
FPNN model. All the parameter settings for the FPNNs were
the same as in the Simulation 1 and 1000 learning epochs were
taken. After all the 25 data subsets have been respectively pro-
cessed by FPNNs, the 25 final decision boundaries derived by
FPNNs were shown in Fig. 20. These decision boundaries were
finally combined by the “OR” operator. The output is assumed
to be class 1 if at least one decision boundary indicates that it
belongs to class 1; otherwise, it belongs to class 2. In this figure,
25 FPNNs were used to accomplish the whole classification task
and 100% recognition rate was produced.

For comparison, the same 25 data subsets and their corre-
sponding rules were also respectively applied to the FBP algo-
rithm. The structure and learning epochs used for the FBP were
the same as those used for Example 1 of Simulation 1, and have
achieved 70.48% recognition rate. The AFLC was also tested
on this benchmark problem in a similar manner. Using these
25 subsets along with their corresponding IF-THEN rules as in-
puts, AFLC produced a high recognition rate of 97.43% under
25 sets of best-tuned parameters, , and , obtained by trial
and error. Comparing the classification accuracy obtained for
the two-spiral benchmark data, the best performance still goes
to the proposed FPNN approach.

V. CONCLUSION

To address classification problems, this paper presents a
fuzzy perceptron neural network which is capable of accepting
two kinds of input data: fuzzy IF-THEN rules and numerical
data. Incorporating the-level sets into the perceptron neural
network effectively represents the linguistic values in fuzzy
rules, thereby, the proposed neural network with fuzzy input

Fig. 20. The simulation result of the two-spiral problem using the FPNN
approach.

handling ability is enhanced. At the-level of fuzzy numbers, a
fuzzy perceptron learning procedure is derived. The minimum
of the fuzzy discriminant function, obtained from the modified
vertex method, determines weather a fuzzy perceptron learning
update step is executed or not. The derived learning algorithm
extends the conventional perceptron algorithm to fuzzy input
vectors. Moreover, the fuzzy pocket algorithm is derived and
then further incorporated into the fuzzy perceptron learning
scheme to tackle nonseparable cases. Simulation results
demonstrate that the proposed algorithm not only consistently
yields an accurate and efficient solution, but also resolves
the limitations of inaccuracy and slow learning convergence
encountered in the FBP approach.
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