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SUMMARY. A direct extension of the approach described in Self, Mauritsen, and Ohara (1992, Biometrics 
48, 31-39) for power and sample size calculations in generalized linear models is presented. The major 
feature of the proposed approach is that the modification accommodates both a finite and an infinite 
number of covariate configurations. Furthermore, for the approximation of the noncentrality of the noncentral 
chi-square distribution for the likelihood ratio statistic, a simplification is provided that not only reduces 
substantial computation but also maintains the accuracy. Simulation studies are conducted to assess the 
accuracy for various model configurations and covariate distributions. 
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1. Introduction 
Generalized linear models were first introduced by Nelder and 
Wedderburn (1972) and are broadly applicable in almost all 
scientific fields. (See McCullagh and Nelder (1989) for fur- 
ther details.) The class of generalized linear models is spec- 
ified by assuming independent scalar response variables Yi , 
i = 1,. . . , N ,  follow a probability distribution belonging to 
the exponential family of probability distributions with prob- 
ability density of the form 

e x p [ W  - b ( 4 ) / 4 + )  + 4y, 4)l. (1.1) 

The expected value E(Y) = p is related to the canonical pa- 
rameter 0 by the function p = b’(B), where b’ denotes the first 
derivative of b. The link function g relates the linear predic- 
tors 17 to the mean response 17 = g ( p ) .  The linear predictors 
can be written as 

17 = ZT$ + XTX, (1.2) 

where Z ( p  x 1) and X ( q  x 1) are vectors of covariates, and $ 
( p  x 1) and X (q x 1) represent the corresponding unknown re- 
gression coefficients. The scale parameter #I is assumed known. 
We wish to test the null hypothesis of Ho: $ = $0 against 
the alternative hypothesis HI: $ # $0 ,  while treating X as a 
nuisance parameter. 

For the purpose of power and sample size calculations 
within the framework of generalized linear models, two major 
tests have been proposed. They are the score test and likeli- 
hood ratio statistic developed by Self and Mauritsen (1988) 
and Self, Mauritsen, and Ohara (1992), respectively. However, 
these two approaches are limited to models where the number 
of covariate configurations is finite. This is somehow impracti- 

cal since it is quite common for generalized linear models used 
in medical and clinical research to include continuous covari- 
ates as confounding factors, which have an infinite number 
of covariate configurations. For example, Whittemore (1981) 
illustrated the sample-size calculations for logistic regression 
with the problem of testing whether the incidence of coronary 
heart disease among white males aged 39-59 is related to their 
serum cholesterol and triglyceride levels. Also, previous stud- 
ies indicate the joint distribution of cholesterol and log triglyc- 
eride is well presented by a bivariate normal distribution (see 
Hulley et al. (1980) for a thorough description of the analy- 
sis and other possible risk factors). In this case, to apply the 
approaches proposed by Self and Mauritsen (1988) and Self 
et al. (1992), one may apply a class grouping scheme over the 
range of covariate configurations. Such a strategy results in a 
categorical approximation of the true covariate distribution; 
hence, they are then still applicable with the consensus that 
the categorization is arbitrary. At first look, this seems to be 
a questionable approach because information about the ac- 
tual serum cholesterol and triglyceride levels is thrown away. 
Furthermore, the interrelation between these two covariates 
may be distorted to some extent. Consequently, these two 
approaches do not fully exploit the distribution information 
about continuous covariates when it is available. More impor- 
tantly, it is not clear how the results will be affected for uti- 
lizing a categorical approximation, not to mention that there 
is no unified rule for categorizing the covariates into a finite 
number of configurations. 

In the present article, we generalize the Self et al. (1992) 
approach to  accommodate covariates with an infinite number 
of configurations. With this natural modification, one can per- 
form power and sample-size calculations in generalized linear 
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models with discrete and/or continuous covariates without 
any subjective or arbitrary class grouping process. In Sec- 
tion 2, the model and an approximation to the distribution 
of the likelihood ratio statistic are described. Section 3 pro- 
vides the details of implementation. In Section 4, simulation 
studies are performed and results are presented that evaluate 
the adequacy of the proposed approach under various covari- 
ate distributions with an infinite number of configurations. 
Section 5 contains some remarks. 

2. Model and Approximation 
Consider a generalized linear model consisting of the response 
yi and covariate (zi,xi) defined in (1.1) and (1.2), respec- 
tively] for i = 1 , .  . . , N .  Assume (yi, zi, xi) is a random sample 
from the joint distribution of (Y, Z, X) with p.d.f. f(Yl Z ,  X) = 
f (Y  I Z, X) . f ( Z ,  X), where f(Y I Z, X) has the form defined 
in (1.1) and f ( Z ,  X) is the joint p.d.f. for Z and X. The form 
of f (Z, X) is assumed to depend on none of the unknown pa- 
rameters + and A. The joint likelihood function of these N 
subjects is 

N N 

U+,N = n f ( Y i , z i , x i )  = Hf(Yi I % , X i )  . f ( Z i I X i ) .  
i=l i=l 

It follows that the likelihood ratio statistic is 2{l(4,A) - 
1(&,  Ao)}, where l ( + ]  A) is the log-likelihood function based 
on L(+, A) and (4, A) and (+o, Ao) are the maximum likeli- 
hood estimators of (+, A) under the alternative and null mod- 
els, respectively. The actual likelihood ratio test statistic is 
referred to its asymptotic distribution under the null hypoth- 
esis, which is a central chi-square distribution with p d.f. In 
order to perform power analysis, one needs to derive the distri- 
bution of the likelihood ratio statistic under the alternative 
hypothesis. Our formulation is analogous to that of Self et 
al. (1992). We approximate the distribution of the likelihood 
ratio statistic by a noncentral chi-square distribution with p 
d.f. The noncentrality parameter used in the approximation is 
computed by equating the expected value of a noncentral chi- 
square random variable to an approximation of the expected 
value of the likelihood ratio statistic. The expected value of 
the likelihood ratio statistic is approximated by the expected 
value of lead terms in an asymptotic expansion of the like- 
lihood ratio statistic under the alternative hypothesis. As in 
Self et al. (1992), the likelihood ratio statistic is decomposed 
into three terms, 

where A: is the limiting value of A0 as described in Self and 
Mauritsen (1988). To approximate the expected value of the 
first term in (2.1), only the lead term in Cordeiro's (1983) 
expansion for generalized linear models is retained, and it 
results in a value of p + q. 

The approximation of the second term is more troublesome 
because none of the expansions in Bartlett (1953), Lawley 
(1956), and Cordeiro (1983) are performed about the param- 
eter (@o,Ag). However, the expected value of the first term 
in the expansion is the trace of two q x q matrices, l 2 - I  and 

8, tr(X-'=), where 

- [b'(0) - b'(0*)] __ (;;:) 1 
and 

E[.] denotes the expectation taken with respect to the joint 
distribution of (Yl, . . . , Y N ,  Z, X) under the alternative hy- 
pothesis with true parameter values (+, A), and E(Z,x,[-] de- 
notes the expectation taken with respect to the joint distribu- 
tion of (Z, X) , which is not dependent on the value of (+ , A). 
Also, b" denotes the second derivative of b, 0 and t?* denote the 
canonical parameter values evaluated at (+, A) and (+a, A;), 
respectively, and Q* denotes the linear predictor evaluated at 
(+o,Xg). It was found in Self et al. (1992) and Shieh and 
O'Brien (1998) that the value of tr(E-'E) is very close to q 
for certain parameter values and discrete covariate distribu- 
tions in several generalized linear models. This phenomenon 
is fortified here from the numerical results in this paper. We 
found that there is essentially no practical difference in the 
adequacy for power and sample size calculations by replacing 
it with q. 

The third term does not involve any maximum likelihood 
estimators of (+,A). Its expectation can be written as N A * ,  
where 

A* = E(z,x)  [2a-l(4){b'(0)[0 - t?*] - [b(t?) - b(t?*)]}] . 
(2.2) 

By equating the expected value of a noncentral chi-square ran- 
dom variable with p d.f. and noncentrality y, namely p + y, to 
the respective expected value approximations of (2.1) derived 
above, which is (p + q)  - q + N A *  . This leads to an estimate 
of noncentrality, denoted by YN, of the proposed noncentral 
chi-square distribution for the likelihood ratio statistic under 
the alternative hypothesis, i.e., yp.~ = N A * .  The subscript N 
of 7~ represents its dependency on sample size N .  Hence, 
for given parameter values (+, A) and covariate distribution 
f(Z, X), the actual likelihood ratio statistic of sample size N 
under the alternative hypothesis is performed by referring it 
to a noncentral chi-square distribution with p d.f. and noncen- 
trality N A * .  Our approach differs from Self et al. (1992) in 
two respects. First, they proposed considering only categor- 
ical covariates, which are restricted to have a finite number 
of configurations such as Bernoulli or multinomial distribu- 
tions. This is naturally extended here since the joint distri- 
bution of covariates (Z,X) could be either discrete or con- 
tinuous with an infinite number of configurations, e.g., Pois- 
son and normal distributions. The expression of A* in (2.2) 
subsumes Self et al.'s equation (2.3) as a special case when 



1194 Biometrics. 

the joint distribution of (Z, X) is categorical with probabili- 
ties r j j ,  j = 1,. . . , m. Second, their noncentrality estimate is 
NA* + q - tr(Z-'Z), whereas ours is simply NA*. 

3. Implementation 
In this section, we shall describe the necessary steps to imple- 
ment the proposed approach. For a generalized linear model 
with specified parameter values ($, A) and chosen covariate 
distribution f (Z,  X), the sample size needed to test hypothe- 
sis Ho: $ = +o with specified significance level a and power 
1 - p against the alternative Hi :  $ # $0 is computed as 
follows. First, find the lOO(1 - a ) t h  percentile of a central 
chi-square distribution with p d.f., denoted by &,. Next, 
find the noncentrality Y N  of a noncentral chi-square distri- 
bution with p d.f. such that the 100. Pth percentile, denoted 
by X ; , ~ ( Y N ) ,  equals &-,. Then the sample size estimate 
N is computed as YN/A*, where A* is as defined in (2.2). 
For continuous covariate distributions, numerical integration 
is needed to carry out the expectation for A*. 

4. Simulation Studies 
Simulation studies are performed for evaluating the accuracy 
of the proposed approach for logistic regression models and 
Poisson regression models with an infinite number of covariate 
configurations. For illustrative purposes, we will restrict our 
attention to the logistic regression models here. 

Two sets of linear predictors of the form q = XI + Z$ 
and 77 = XI + XXs + Zq5 are examined. In the case of the 
simple linear predictor, 7 = XI + Z$J, we consider normal, 
double exponential, exponential, and Poisson distributions for 
covariate 2. For the second linear predictor, 7 = XI + XXs + 
Z$, the joint distribution of (2, X )  is of the form f(2, X) = 
f ( X  I Z)f(Z). We assume 2 is a Bernoulli covariate with 
p(Z  = 1) = 7r for 7r = 0.1, 0.5, and 0.9. The conditional 
distribution of X given 2, denoted by [X 1 21, is [X  1 2 = 11 
[ X  I 2 = 01 +d, where [X I 2 = 01 is a standardized version of 
a normal, double exponential, exponential, or Poisson with a 
mean of 10 random variables and d is described in the footnote 
of Table 2. 

The parameter of interest, $, is taken to be log(2) and 
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log(5) for the two linear predictors, respectively. The con- 
founding parameter As in the second model is set as log(2). 
The intercept parameter, XI, is chosen to satisfy different val- 
ues of overall response probability ,!i = EtZ,x,[exp(q)/{l + 

For a given model, covariate distribution, regression coeffi- 
cients, and overall response probability, the estimates of sam- 
ple size required for testing Ho: $ = 0 against the alternative 
hypothesis HI: $ # 0 with significance level 0.05 and power 
0.80, 0.90, and 0.95 are calculated. Due to the rounding of 
sample sizes, the precise nominal powers are not exactly 0.80, 
0.90, and 0.95. They are recalculated with the inversion of the 
proposed formula discussed in Section 3. 

Estimates of actual power associated with a given sam- 
ple size and model configurations are then computed through 
Monte Carlo simulation based on 5000 replicate data sets. The 
adequacy of the sample size formula is determined by the dif- 
ference between the estimated power and nominal power spec- 
ified above. All calculations are performed using programs 
written with SAS/IML (SAS, 1989). 

The results of the simulation studies are presented in Ta- 
bles 1 and 2. Table 1 contains results for the simple linear 
predictor, while Table 2 contains results of the multiple lin- 
ear predictor for p ( 2  = 1) = 0.5. In general, the sample sizc: 
needed to achieve the significance level and power is larger 
for overall response probability fi = 0.02 than for ,!i = 0.15. 
However, for most occasions, the absolute errors of overall re- 
sponse probability ,G = 0.02 are larger than those of p = 0.15. 
Hence, the proposed method is comparatively more accurate 
for larger overall response probability. Generally, it  maintains 
the accuracy within a reasonable range of nominal power for 
both cases. The simulation results for logistic regression in dif- 
ferent settings and for Poisson regression models also suggest 
the proposed method performs well and may be of practical 
use; however, they are not reported here. 

5. Discussion 
We propose in this article an approach for sample size and 
power calculations in generalized linear models. This approach 
is a direct extension of the work by Self et al. (1992) to ac- 

exp(l7))I. 

Table 1 
Calculated sample sizes and estimates of actual power f o r  the logistic regression model with linear predictor qa = XI + 2$ 

Distribution of Zb 
Normal Double exponential Exponential Poisson 

ji = 0.02 
Sample size 849 1136 1405 668 894 1105 
Nominal power ,8003 ,9001 ,9501 3004 ,9002 .9500 
Estimated power ,7774 .8818 .9406 .7504 3602 ,9168 
Error -.0229 -.0183 -.0095 -.0500 -.0400 -.0332 

,!i = 0.15 
Sample size 141 189 233 139 186 230 
Nominal power .8011 .go12 ,9502 .8018 ,9012 ,9507 
Estimated power .7930 .9016 .9470 .7968 .8908 .9444 
Error -.0081 ,0004 -.0032 -.0050 -.0104 -.0063 

a i = log(2) and E(Z) bP( l ? ) /{ l+  exp(l?)Il = B.  
The distribution of 2 is standardized to have mean zero and variance one. 

368 
,8009 
.7190 

-.0819 

101 
,8002 
.7742 

-.0260 

492 
,9003 
3328 

-.0675 

136 
.go18 
3768 

-.0250 

608 567 
,9500 ,8006 
,8888 .7586 

-.0612 -.0420 - 

168 113 
.9306 3002 
,9306 .7908 

-.0203 -.0094 - 

758 
,9001 
.8534 
..0467 

152 
.go15 
.8890 

-.0125 

938 
,9502 
.9144 

- ,0358 

187 
,9500 
.9338 

-.0162 
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Table 2 
Calculated sample sizes and estimates of actual power f o r  the logistic regression model with 

linear predictor va = XI + X X s  -I- Z$, where Z has a Bernoulli distribution (T = 0.5) 

Distribution of [X  1 ZIb 
Normal Double exponential Exponential Poisson 

,ii = 0.02 
Sample size 2250 3011 3724 1552 2078 2569 1460 1955 2417 648 867 1073 
Nominalpower 3002 ,9000 .9500 ,8001 .go01 ,9500 ,8001 .go01 ,9500 ,8003 ,9000 .9502 
Estimatedpower ,8354 .9280 ,9680 ,8420 ,9252 ,9744 .8326 ,9328 ,9728 3372 .9218 ,9692 
Error ,0352 .0280 .OH0 .0419 .0251 .0244 ,0325 .0327 ,0228 .0369 ,0218 ,0190 

fi  = 0.15 
Sample size 272 364 450 207 276 342 194 260 322 129 172 213 
Nominal power ,8004 .9002 ,9501 ,8017 .9001 .9504 ,8000 .9003 .9505 3027 ,9008 .9508 
Estimatedpower 3262 ,9150 .9610 3168 ,9114 ,9582 3226 .9082 .9576 ,8092 ,9072 .9540 
Error ,0258 .0148 ,0109 ,0151 .0113 .0078 .0226 ,0079 .0071 ,0065 ,0064 .0032 

a ?L = log(51, As = log(% and E ( z , x )  [exp(rl)/(l+ ev(r l ) l l  = P .  
The distribution [ X  I Z = 01 is standardized to have mean zero and variance one. The distribution of [ X  I 2 = 11 F [ X  I 2 = 01 + d, 

where d is 1.6832, 1.2958, 1.3863, and 5/(10)1/2 for normal, double exponential, exponential, and Poisson distributions, respectively. 

commodate covariate distributions with an infinite number of 
configurations. Their approach is restricted to the generalized 
linear models with a finite number of covariate configurations 
such as Bernoulli and multinomial distributions. Furthermore, 
we modify the approximation of the noncentrality parameter 
in a noncentral chi-square distribution of the likelihood ratio 
statistic. This simple structure permits computational sim- 
plifications and maintains great accuracy based on the sim- 
ulation results for different settings of logistic regression and 
Poisson regression models. 

For generalized linear models with continuous covariates 
of natural interval and ratio measurement scales, some re- 
searchers may prefer to work with a categorical approxima- 
tion by grouping the range of covariate values into finite inter- 
vals and then choosing representative class values (usually the 
class midpoints) and proportions for each class. This process 
will make the Self et al. (1992) approach still applicable for 
models with an infinite number of covariate configurations. 
However, there is no consensus in determining the covariate 
distribution approximation in terms of numbers of classes, 
the choices of class boundaries, and the class representative 
values. Consequently, one classification scheme may perform 
well for some cases but do poorly for others. Along with the 
proposed approach, we have simultaneously evaluated two dif- 
ferent classification schemes for each of the four covariate dis- 
tributions in the simulation studies. The results indicate that 
the proposed approach outperforms those two with categori- 
cal approximations of covariate distributions for most of the 
cases that we have considered. Therefore, when the covari- 
ate distributions are available, one should incorporate such 
information into the sample size calculations instead of their 
categorical approximations. However, as pointed out by the 
referee, the latter may be more robust when the distribution 
information about covariates is not accurately known. In such 
cases, one may try several different settings of finite configu- 
rations to provide guidance about the sample sizes required 
for the study. 
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RESUME 
Cet article prksente une extension directe de l’approche dkcrite 
dans Self, Mauritsen and Ohara (1992, Biornetrics 48, 31-39) 
pour les calculs de puissance et de taille d’kchantillon pour les 
modkles linhaires gknkralisks. L’apport majeur de l’approche 
propos6e est la modification qui permet aussi bien un nom- 
bre fini qu’infini de configurations de covariables. De plus il 
est aussi propos6 une simplification pour l’approximation du 
paramktre de non centralit6 de la distribution du chi-deux non 
centrk, approximation qui non seulement rkduit les calculs 
de manikre apprkciable, mais aussi conserve la prkcision. Des 
ktudes de simulation sont faites pour Bvaluer cette pr6cision 
pour diff6rentes configurations de modkles et de distributions 
des covariables. 
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