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Abstract

Loop scheduling is an important issue in the development of high performance multiprocessors. As modern multiprocessors have

high and non-uniform memory access (NUMA) costs, the communication costs dominate the execution of parallel programs.

Previous a�nity algorithms perform better than dynamic algorithms under non-clustered NUMA multiprocessors, but they su�er

heavy overheads when migrating work load under clustered NUMA machines. In this paper, we propose a new loop scheduling

policy, hierarchical policy, to improve various a�nity scheduling algorithms (AFSs) for clustered NUMA machines. We cyclically

distribute the iteration chunks to clusters. When imbalance occurs, the migration of iterations is carried on hierarchically. We use

hierarchical policy to improve AFS and modi®ed AFS (MAFS), and we call them Hierarchical AFS (HAFS) and Hierarchical

MAFS (HMAFS), respectively. AFS uses a deterministic assignment policy to assign repeated executions of loop iteration to the

same processor. MAFS modi®es the migration policy of AFS, and reduces the number of synchronization operations. We con®rm

our idea by running many applications under a clustered NUMA simulator. Our experimental result shows that hierarchical policy

reduces the inter-cluster remote memory accesses, decreases the locks to the queues, and e�ectively balances the work load. We also

show that HMAFS is the best choice among these algorithms in most cases. Ó 2000 Elsevier Science Inc. All rights reserved.

1. Introduction

Clustered shared-memory multiprocessors are the
trends of modern multiprocessors. As these machines
have large numbers of processors, the system is often
divided into clusters, each containing a small number of
processors. These clusters are connected by hierarchical
network to form the system. Since the memory modules
are distributed across the system, yet share one ad-
dressing space, processors may access local or remote
memory modules in the system. So these machines have
non-uniform memory access (NUMA) costs. Moreover,
as the accesses are to the inter-cluster memory, the costs
are high. Toronto HECTOR (Vranesic et al., 1991;
Stumm et al., 1992) and NUMAchine (Vranesic et al.,
1995), MIT Alewife (Agarwal et al., 1995), and Stanford
Dash (Lenoski et al., 1992) are examples of clustered
NUMA machines.

On the other hand, loop scheduling is an important
issue to design the system software for multiprocessor
systems. Under uniform-memory access (UMA) multi-

processors, static and dynamic algorithms have been
extensively studied. The main considerations are load
balance and synchronization overhead (Polychronopo-
ulos and Kuck, 1987; Tzen and Ni, 1993; Hummel et al.,
1992; Kruskal and Weiss, 1985; Markatos and LeBlanc,
1992). After the evolution of multiprocessor architec-
ture, the communication cost becomes the bottleneck
and dominates the performance of parallel program
executions in NUMA multiprocessors. To reduce the
communication cost, some a�nity scheduling algo-
rithms (AFSs) have been proposed for NUMA multi-
processors. AFSs deterministically partition and
schedule the loop iterations to the processors. The data
for an iteration are placed on the cache of some dedi-
cated processor to be used again and again. Markatos
and LeBlanc derived the ®rst one called AFS (Markatos
and LeBlanc, 1994). Li et al. (1993) proposed LDS with
data placement taken into consideration. Wang and
Chang (1995) proposed modi®ed AFS (MAFS) to
combine the advantages of both AFS (Markatos and
LeBlanc, 1994) and guided self-scheduling (GSS)
(Polychronopoulos and Kuck, 1987). Subramaniam and
Eager (1994) proposed dynamic partitioned a�nity
scheduling and wrapped partitioned a�nity scheduling
for iterations with widely varying execution times. Wang
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et al. (1997) proposed CAFS for larger NUMA multi-
processors.

Although the above a�nity algorithms perform well
on UMA and non-clustered NUMA machines, these
algorithms cannot be directly applied to clustered
NUMA machines. As we will show, when load imbal-
ance occurs, iteration migration and data move are
needed. A�nity algorithms waste time in accessing in-
ter-cluster memory. Furthermore, as the number of
processors is increased, the synchronization overhead
will be increased.

In this paper some well-known loop scheduling al-
gorithms are experimented on clustered NUMA ma-
chines by simulation. We propose a simple a�nity
scheduling policy, hierarchical policy, to improve the
performance of various a�nity algorithms. Our policy
may be easily applied to many AFSs. For example, it
can be used to improve the performance of AFS and
MAFS in most cases, as we will show. We call the new
ones as Hierarchical AFS (HAFS) and Hierarchical
MAFS (HMAFS). Our policy reduces the number of
inter-cluster remote memory accesses, decreases the
synchronous operations to the work queues, and e�ec-
tively balances the work load.

The idea of our policy is that when imbalance occurs,
the migration of iterations is carried on hierarchically.
As an example, when executing parallel applications on
Hector (Vranesic et al., 1991; Stumm et al., 1992) with 4
stations (each station contains 4 processors), the idle
processor ®rst migrates a fraction of iterations from the
most loaded processor in its local-cluster (station), be-
fore searching other clusters. Only if all of the proces-
sors' work queues in the local cluster are empty, the idle
processor does search and migrate from the other clus-
ters. Since the idle processor ®rst searches the work
queues in its own cluster for the iteration indices, the
number of remote accesses and that of synchronous
operations are reduced. Moreover, because the idle
processor migrates most of the work only from these
processors in local-cluster, the inter-cluster memory ac-
cesses are reduced.

We use an on-line, execution-driven simulator to
simulate a clustered NUMA multiprocessor with 16
clusters, and each cluster contains 4 nodes. The simu-
lator consists of two parts: Mint (Veenstra and Fowler,
1994) and a clustered NUMA memory system simula-
tor. Mint is a software package, top of which multi-
processor memory system simulators can be
constructed. We modify and enhance the simple cache
simulator provided by Mint, and make it a clusterd
NUMA memory system simulator. Mint calls the
memory system simulator on each memory reference,
and the memory system simulator must decide the lo-
cations of the memory reference. Each node in our
memory simulator has a processor and a ®nite-size
cache. The caches use a write-invalidate protocol that is

directory based. The simulator also takes into consid-
eration the synchronization operations and the non-
uniform remote memory access latency.

The applications we choose include Gaussian elimi-
nation, all-pairs shortest paths, adjoint convolution,
reverse adjoint convolution, and two synthetic parallel
programs. By running various applications on the sim-
ulator, we characterize the execution times, synchroni-
zation overhead, and inter-cluster memory accesses for
various scheduling algorithms. We implement static,
GSS, AFS, CAFS, MAFS, HAFS, and HMAFS on the
simulator. Compared with AFS and MAFS, our policy
may remove many synchronous operations to the work
queues and reduce a lot of inter-cluster memory accesses
in most cases. As a result, the hierarchical policy may
shorten the execution times of these applications.

The organization of this paper is as follows: in Sec-
tion 2, some popular loop scheduling algorithms are
brie¯y described. Then hierarchical policy is described in
Section 3. In Section 4, we describe our experimental
environment. In Section 5, we show the results of sim-
ulations under various loop scheduling algorithms.
Finally, the conclusion is given in Section 6.

2. Loop scheduling algorithms

Loops are the main source of parallelism in most
programs (Subramaniam and Eager, 1994). To shorten
the execution of programs on multiprocessors, the in-
dependent iterations may be executed in parallel on the
multiprocessors. Loop scheduling algorithms partition
and schedule the loop iterations on the processors in the
hope that the multiprocessors will complete the work as
soon as possible.

A static scheduling algorithm would assign a ®xed
number of iterations to each processor at compile time.
It would divide the N iterations into P chunks, and as-
sign dN=Pe consecutive iterations to each processor,
where N is the number of total iterations, and P is the
number of processors. This approach performs well if
the work loads of all chunks are equal. However, in
practice the work loads of iteration distributions may be
non-uniformed. So static algorithms always achieve
poor speed-up.

Dynamic scheduling algorithms, such as ®xed-size
chunking (Tzen and Ni, 1993), GSS (Polychronopoulos
and Kuck, 1987), factoring scheduling (Hummel et al.,
1992), and trapezoid self-scheduling (TSS) (Tzen and
Ni, 1993), share the same characteristics. They always
maintain a global queue containing indices of iterations.
At run time, when a processor is idle, it issues syn-
chronous operations to the global queue and fetches
some iterations for execution. Dynamic scheduling
usually provides an advantage in terms of load balance.
However, it also requires more frequent exclusive
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accesses to the global work queue. So dynamic algo-
rithms result in more synchronization overhead. Among
these dynamic algorithms, GSS (Polychronopoulos and
Kuck, 1987) is the ®rst algorithm to dynamically adjust
the granularity of task at run time. Each idle processor
fetches d1=Pe of unscheduled iterations from the global
queue for execution, where P is the number of proces-
sors. With this method, at the start of computation, the
idle processor will have larger number of iterations to
execute. At the end of computation, the idle processor
will have only one or two iterations to execute. So the
work load will be balanced at most cases. However, GSS
does not perform well for NUMA machines. The reason
is that GSS does not exploit a�nity e�ect.

Markatos and LeBlanc (1993, 1994) proposed the
®rst a�nity loop scheduling algorithm that called AFS.
AFS uses a deterministic assignment policy to assign
repeated executions of loop iteration to the same pro-
cessor. The progress of AFS includes initialization phase
and execution phase. In the initialization phase, AFS
assigns each processor about N=P iterations, where N is
the total number of iterations and P is the number of
processors. Instead of using a global queue to store all
iterations' indices, AFS uses distributed local queues to
store the work. The execution phase of AFS follows this
rule. Every processor fetches �1=P � of the unscheduled
iterations from its local queue for execution again and
again until the local queue is empty. If no imbalance
occurs before all the iterations are completed, no mi-
gration is needed. But if imbalance occurs, some work
must be migrated. The idle processor then searches
among the other processors for the most loaded one,
and migrates �1=P � of the iterations remaining in that
work queue to itself for execution. AFS ensures that
most of the data accesses are to the cache or to the local
memory. AFS also alleviates the contention to global
queue for accessing the indices of unscheduled itera-
tions. However, as load imbalance occurs, only a frac-
tion �1=P � of iterations are migrated from the most
heavily loaded processor. AFS uses conservative mi-
gration policy to avoid load imbalance, but it causes
unnecessary synchronization operations (Wang and
Chang, 1995).

To reduce the number of synchronization operations,
Wang and Chang (1995) proposed a modi®ed migration
policy for AFS called MAFS. The main di�erence be-
tween AFS and MAFS is the migration quantum.
MAFS divides the iterations remained in the most
loaded processor (Nmost iterations) into two parts: one
part contains N1 iterations and another one contains N2
iterations. N1 equals 1=P of the total number of itera-
tions in all processors, and N2 equals N most ÿ N1.
MAFS migrates the minor of the two parts to the idle
processor, and the other part is left to the most loaded
processor. With this method, MAFS not only migrates a
very reasonable load to the idle processor in order to

balance the load but also avoids the unnecessary data
movement during migration.

However, when programs are executed on clustered
NUMA machines, AFS and MAFS have the following
disadvantages. First of all, when load imbalance occurs,
the data and iterations have to be migrated. However, as
the iterations are migrated, a�nity algorithms do not
consider the locations of the moved data. As we know,
the cost of inter-cluster memory access is larger than
that of local-cluster memory, some time will be wasted
in accessing inter-cluster memory. Furthermore, because
the idle processor must search the most loaded proces-
sors for migrating work. As the number of processors
gets larger, the searching procedure will take many inter-
cluster remote accesses to some processors' work queues
for the iteration indices. So the synchronization over-
head is increased.

3. The hierarchical policy

Like AFS and MAFS, the progress of hierarchical
policy is divided into the initialization phase and the
execution phase. During the initialization phase, N
parallel iterations are also divided into P chunks, and
each chunk contains about N=P consecutive iterations,
where P is the number of processors. But unlike AFS
and MAFS, consecutive chunks are assigned to adjacent
processors, instead, they are cyclically distributed to
di�erent clusters. By grouping consecutive iterations
into chunks and cyclically distributing those chunks into
di�erent clusters, we may retain data locality and e�ec-
tively balance the work load. Fig. 1 shows an example
that cyclically distributing 16 chunks (numbered from
Chunk1 to Chunk16) of iterations into 4 clusters, and
each cluster contains 4 processors. In this example,
Cluster1 contains Processor1, Processor2, Processor3,
and Processor4, and Chunk1, 5, 9, 13 are assigned to
these processors, respectively.

During the execution phase of hierarchical policy, if
no imbalance occurs, no migration is needed. But if
imbalance occurs, some work must be migrated from
heavy loaded processors to the idle ones. We retain the
basic skeleton of AFS and MAFS, but make some
modi®cations to the migration policies of AFS and
MAFS. The idea of hierarchical policy is that when
imbalance occurs, the migration of iterations is carried
on hierarchically. The idle processor ®rst migrates a
fraction of iterations from the most loaded processor in
its local-cluster, before searching other clusters. Only if
all of the processors' work queues in the local-cluster are
empty, the idle processor does search and migrate work
from the other clusters.

Now we apply the hierarchical policy to AFS under
the example shown in Fig. 1, we call the modi®ed al-
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gorithm as HAFS. The migration policy of HAFS can
be stated as follows:
· During the ®rst stage of migration, the idle processor

migrates 1=Plocal-cluster of the iterations from the most
loaded processor within its local-cluster, where
Plocal-cluster�� 4� is the number of processors in its lo-
cal-cluster.

· If all of the processors' work queues in the idle pro-
cessor's local-cluster are empty, the idle processor
then searches for the most loaded processor among
the idle processor's super-cluster. If the idle processor
®nds the most loaded processor, then it migrates
1=Psuper-c1uster of the iterations from that processor
for execution. Since there are only two levels in the
system, the value of Psuper-c1uster is the total number
of processors in the whole system (� 16).
The execution phase of Hierarchical MAFS

(HMAFS) can be stated as follows:
· In the ®rst stage of migration, each time the idle pro-

cessor migrates min(N 1; N 2) iterations from the most
loaded processor in its local-cluster for execution. N 1

equals Nlocal-cluster=Plocal-cluster, and N 2 equals
N local-most-one ÿ N 1, where Plocal-cluster�� 4� is the num-
ber of processors in the local-cluster, N local-most-one

the number of iterations in the most loaded proces-
sor's work queue, and Nlocal-cluster is the total number
of iterations left in the queues of the processors with-
in the local-cluster.

· If all of the processors' work queues in the idle pro-
cessor's cluster are empty, the idle processor searches
the most loaded processor among the idle processor's
super-cluster. Then it migrates min(N 1; N 2) iterations
to itself for executing from the most loaded proces-
sor. N 1 equals Nsuper-cluster=Psuper-cluster, and N 2 equals
N super-most-one ÿ N 1, where the value of Psuper-cluster is
also 16 (the total number of processors in the whole
system), N super-most-one is the number of iterations in
the most loaded processor's work queue, and
Nsuper-cluster is the total number of iterations left in
the work queues of the processors in the super-
cluster.

The hierarchical policy can be easily applied to the
other loop scheduling algorithms and we do not describe
them here.

4. Experimental environment

To compare the performance of various loop sched-
uling algorithms under clustered NUMA machines,
some e�ects on the performance must be carefully and
correctly characterized. These e�ects include execution
time, remote memory access overhead, and synchroni-
zation operation. By the use of simulator, we may easily
set the values of architecture parameters into simulation.
These parameters include memory access latency, the
number of processors, network latency, . . . ; and so on.
Simulation is appropriate for our experiments. In this
section, we introduce the clustered NUMA machine
simulator we used, and then present our test programs
and the characteristics of these programs.

As described in Section 1, we use an on-line, execu-
tion-driven simulator to simulate a clustered NUMA
multiprocessor with 64 nodes. There are 16 clusters in
the system, and each cluster contains 4 nodes. The
simulator consists of two parts: Mint (Veenstra and
Fowler, 1994) and a clustered NUMA memory system
simulator. The applications are input to Mint, and Mint
calls the memory system simulator on each memory
reference. The memory simulator decides whether the
reference is in the cache, in the local-cluster memory, or
in the remote cluster memory. We modify and enhance
the simple cache simulator provided by Mint (Veenstra
and Fowler, 1994). In the modi®ed memory system
simulator, each node has a single processor and a ®nite-
size cache which uses a write-invalidate protocol that is
directory-based. The simulator also takes into consid-
eration the remote memory access cost and the syn-
chronization overhead.

Each node in the simulator has a 64KB four way set-
associative cache with 32B cache line, and the processors
in one cluster share 64MB local-cluster memory. We

Fig. 1. Distributing 16 chunks of iterations into 4 clusters under hierarchical policy.
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assume that it takes 1 cycle to access the cache and 25
cycles to access the local-cluster memory (Lenoski et al.,
1992; Hennessy and Patterson, 1990). As for inter-clus-
ter memory access, we assume there to be 125 cycles of
latency. The ratio of remote to local-cluster memory
access is about 5.

We choose the following parallel programs as test
suites: Gaussian elimination, all-pairs shortest paths,
adjoint convolution, reverse adjoint convolution, and
synthetic programs with decreasing and increasing work
load. We use barrier synchronization among outer se-
quential loops under all applications.

The ®rst problem is to perform Gaussian elimination
of a 480� 480 matrix A. The algorithm to solve the
problem can be stated as follows:

for �j � 0; j < 480; j���f
parallel for �i � 0; i < 480; i���f

if �i6 j� continue;
tmp � A�i��j�=A�j��j�
for �k � j; k < 480; k ���
A�i��k� � A�i��k� ÿ tmp � A�j��k�

g
g

It takes 480 phases to complete the work, and there are
480 parallel iterations for each phase. During the jth
phase, the ®rst j parallel iterations have little work to do
(each iteration needs just an if instruction), but the other
�480ÿ j� parallel iterations have (480ÿ j) sequential
loops to complete its work. Load imbalance will occur in
this case. The ith iteration of the 480 parallel iterations
always accesses the ith row of matrix. Thus both load
imbalance and a�nity e�ects must be studied for this
case.

The second program is to compute the all-pairs
shortest paths of a graph with 600 vertices, and the
graph is represented by a 600� 600 matrix A. The
pseudo-code to solve the problem is shown as follows:

for �k � 0; k < 600; k ���f
parallel for �i � 0; i < 600; i���f

if (A�i��k� has path)
for �j � 0; j < 600; j���
A�i��j� � minfA�i��j�;A�i��k� � A�k��j�g

g
g

For all 06 i < 600 and 06 j < 600, if there exists a path
from vertex i to j, A�i��j� equals the value randomly
chosen from 1 to 15, or there is no path, and the pos-
sibilities of both cases (with path and without path) are
equal. The work load of the ith iteration of the 600
parallel iterations depends on A�i��k�, and it takes O�1�
or O�N� work to complete. As each processor's work
queue initially contains about N=P consecutive itera-
tions, the total load for all processors is about the same,
it is not necessary to study the imbalance e�ect. The ith

iteration always accesses the ith row of the matrix, so
a�nity e�ect must be studied.

The third program is adjoint convolution and the
pseudo-code can be stated as follows:

parallel for �i � 0; i < 120 � 120; �i���f
for �j � i; j < 120 � 120; j���
A�i� � A�i� � X � B�j� � C�iÿ j�

g
The problem is a case of decreasing work load, but no
a�nity e�ect needs to be studied.

The fourth program is reverse adjoint convolution
and the pseudo-code can be stated as follows:

parallel for �i � 0; i < 120 � 120; i���f
for �j � 1; j < i; j���
A�i� � A�i� � X � B�j� � C�iÿ j�

g
The problem is a case of increasing work load, and no
a�nity e�ect needs to be studied.

The ®fth and sixth programs are synthetic programs
with decreasing and increasing work load (Subraman-
iam and Eager, 1994). The two problems are cases of
load imbalance, and we must take care the a�nity e�ect
for them. The size of matrix A is 9600� 32, and the
pseudo-codes are shown as follows:

for (k � 0 ; k < 10, k ��) f
parallel for (i � 0 ; i < 9600 ; i��) f

for (j � i ; j < 9600, j � j� 32) f
A�i��j%32� � 1;
g

g
g
for (k � 0 ; k < 10, k ��) f

parallel for (i � 0 ; i < 9600 ; i��) f
for (j � 1 ; j < i, j � j� 32) f
A�i��j%32� � 1;
g

g
g

5. Experimental results

We implement static, GSS, AFS, HAFS, MAFS,
HMAFS, and CAFS algorithms and run them on the
simulator, then we evaluate their performance by run-
ning various applications. The metrics of our experiment
are execution times, the number of locks to the queues
for updating iteration indices, and the number of inter-
cluster remote memory accesses.

In our experiment, we assume that each cluster con-
tains 4 processors, and there are at most 16 clusters in
the system. As for the distribution of chunks to clusters,
as described in Section 3, HAFS and HMAFS algo-
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rithms group consecutive iterations into chunks and
cyclically distribute those chunks into di�erent clusters.
CAFS also cyclically distributes those chunks into dif-
ferent clusters. However, as imbalance occurs, migra-
tions are carried only on within the idle processor's
cluster, there are no migrations among clusters. AFS
and MAFS distribute those consecutive chunks into
adjacent processors, so most consecutive chunks are
assigned to the same cluster. To study the impact of
di�erent distribution of chunks to clusters, we imple-
ment a modi®ed version of AFS algorithm called
CD_AFS. The migration policy of CD_AFS is the same
as AFS. But unlike AFS and MAFS, consecutive
chunks are assigned to adjacent processors, instead,
consecutive chunks are cyclically distributed to di�erent
clusters.

Fig. 2 shows the execution times for Gaussian elimi-
nation problem with 4±24 processors running under
various scheduling algorithms. This problem exploits
a�nity and shows load imbalance e�ect. AFSs perform
better than the GSS and static algorithms. GSS su�ers
heavy load in accessing inter-cluster memory and the
static algorithm su�ers from load imbalance. There are
no signi®cant di�erences among AFS, CAFS, MAFS,
and CD_AFS. Most important of all, the ®gure shows
that HAFS performs better than AFS and that HMAFS
performs better than MAFS. In fact, HMAFS is the best
among these algorithms.

To con®rm the results described above, we collect the
number of inter-cluster memory accesses and the num-
ber of locks to the work queues under various algo-
rithms, and the results are shown in Figs. 3 and 4,
respectively. Obviously the inter-cluster memory acces-
ses of GSS are the largest among these algorithms, and
the accesses of hierarchical algorithms (HAFS and
HMAFS) are smaller than the original ones (AFS and
MAFS). The results also show that hierarchical policy
may reduce the number of locks to the work queues by
about half.

Fig. 5 shows the execution times for all-pairs shortest
paths problem with 8±24 processors running under
various scheduling algorithms. This problem only ex-
ploits a�nity e�ect, so GSS is the worst one among all

algorithms. As migrations rarely occur in this case, there
are no signi®cant di�erences among various a�nity al-
gorithms. Static algorithm is the best one among these
algorithms, because the synchronization overhead is not
needed under this algorithm. However, static algorithm
and a�nity algorithms show little di�erence. Fig. 6
shows the inter-cluster memory accesses for these algo-

Fig. 2. Execution times for Gaussian elimination.

Fig. 3. Inter-cluster remote accesses for Gaussian elimination.

Fig. 4. Locks to the work queues for Gaussian elimination.
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rithms. As we have discussed above, GSS su�ers heavy
inter-cluster accesses, and there are slight di�erences
among various AFSs.

Fig. 7 shows the execution times of the adjoint con-
volution problem with 4±40 processors running under
various scheduling algorithms. The case is an example of
decreasing work load, but no a�nity e�ect can be ex-
ploited. As the ®gure shows, a�nity scheduling algo-
rithms perform better than GSS and static algorithm.
The reason is that a�nity algorithms well balance the
work load at run time. But GSS assigns too much work
to the processors at the start of computation, and static

algorithm does not balance the work load at run time.
This ®gure also shows that CD_AFS and AFS are worse
than the other a�nity algorithms, and that both MAFS
and HMAFS are the better ones among these algo-
rithms. The reason is that under CD_AFS and AFS
policies, the idle processor migrates too much work
from inter-cluster processors as the number of processor
increases. As Fig. 8 shows, AFS and CD_AFS have the
largest number of inter-cluster memory accesses among
these algorithms. Fig. 9 shows the number of locks to
the work queues. As the ®gure shows, hierarchical al-
gorithms reduce at least 1=2 of the locks compared with
the original ones.

Fig. 10 shows the execution times of the reverse ad-
joint convolution problem with 4±40 processors running
under various algorithms. The case is an example of
increasing work load, but no a�nity e�ect can be ex-
ploited. The result is similar to that of adjoint convo-
lution except that GSS performs almost as good as both
MAFS and HMAFS. The reason is that with increasing
work load, the ®rst a few iterations have light work load
but the last a few ones have heavy work load. According
to the policy of GSS, at the beginning of loops, chunks
with large number of iterations are assigned to the
processors, but at the end of loops, single iteration is
assigned. In this way, variance of work load among it-
erations will not dominate the performance of GSS. So
GSS will well balance the work load. As for the number
of inter-cluster memory accesses and the locks to the
work queues, Figs. 11 and 12 shows the results under

Fig. 7. Execution times for adjoint convolution.

Fig. 5. Execution times for all-pairs shortest paths.

Fig. 6. Inter-cluster remote accesses for all-pairs shortest paths.
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various AFSs, and the results are similar to those of
adjoint convolution.

The execution times of the ®fth problem, synthetic
problem with decreasing work load, is shown in Fig. 13.
In this case, we must consider load imbalance and af-
®nity e�ects. But the load imbalance e�ect is lighter than
that of adjoint convolution, and a�nity e�ect is also
lighter than that of Gaussian elimination. As the ®gure
shows, AFSs perform better than static algorithm and

GSS. The reason is that a�nity algorithms not only
exploit a�nity but also well balance the work load at
run time. But static algorithm does not balance the work
load at run time. GSS cannot exploit a�nity e�ect and
su�ers load imbalance because of the heavy load for the
®rst a few iterations. The ®gure also shows that HAFS is
better than AFS, and that HMAFS is better than
MAFS. Again, because AFS su�ers too many inter-
cluster memory accesses, AFS is the worst among these

Fig. 10. Execution times for reverse adjoint convolution.

Fig. 12. Locks to the work queues for reverse adjoint convolution.Fig. 9. Locks to the work queues for adjoint convolution.

Fig. 11. Inter-cluster remote accesses for reverse adjoint convolution.Fig. 8. Inter-cluster remote accesses for adjoint convolution.
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a�nity algorithms. HMAFS is the best one because it
reduces both inter-cluster memory accesses and locks to
the work queues. Figs. 14 and 15 show the number of
inter-cluster memory accesses and the number of locks
to the work queues. The ®gures show that hierarchical
policy may reduce a lot of inter-cluster memory accesses
and locks to the work queues.

The execution times of the last problem, synthetic
problem with increasing work load, is shown in Fig. 16.
The same as the previous problem, this is a case of load
imbalance and a�nity. The result is similar to that of the
previous one, except that as the number of processor
increases, GSS performs as good as AFS. The reason is
that non-a�nity will reduce the performance of GSS,
but the iteration assigned policy of GSS well balances
the work load. As the number of processor increases, the
a�nity e�ect will become insigni®cant. As is shown in
Fig. 17, if the number of processors increases, the dif-
ferences between GSS and a�nity algorithms decrease.
Fig. 17 also shows that the numbers of inter-cluster
memory accesses under hierarchical algorithms are
smaller than those under original ones. The result of the
locks to the work queues is shown in Fig. 18, and it is
similar to that of the previous problem.

It is interesting to study the impact of memory la-
tency on loop scheduling algorithms on NUMA ma-
chines. We select Gaussian elimination as test
application, and implement static, GSS, AFS, and
HAFS on the simulator. As to the local/remote memory
latency, we have the following four assumptions:
· Case 1: We assume that all local/inter-cluster memory

accesses take no time to complete, it is the ideal case.
· Case 2: We assume that all memory accesses are to

the local memory, and they take 25 cycles to com-
plete.

· Case 3: This case is the same as the previous experi-
ments in this section, that is, it takes 25 cycles to ac-
cess the local memory, and it takes 125 cycles to
access the inter-cluster memory.

· Case 4: The case is similar to case 3 except that it
takes 225 cycles to access the inter-cluster memory.
Fig. 19 shows the executions for Gaussian problem

with 12 and 24 processors running under various as-
sumptions of memory latency. The results show that:
· The impact of memory latency on GSS algorithm is

more signi®cant than that of the other algorithms.
The reason is that the inter-cluster memory accesses
of GSS are the largest among these algorithms. The
execution times increase signi®cantly as the cost of in-
ter-cluster memory access gets larger.

Fig. 14. Inter-cluster remote accesses for synthetic problem with de-

creasing work load.

Fig. 15. Locks to the work queues for synthetic problem with de-

creasing work load.

Fig. 13. Execution times for synthetic problem with decreasing work load.
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· The impact of memory latency on static algorithm is
the least signi®cant among all scheduling algorithms.
The execution times do not increase signi®cantly un-
der the in¯uence of high inter-cluster memory cost.
However, as static algorithm su�ers from load imbal-
ance, static algorithm does not perform well.

· Among these algorithms, HAFS performs better than
the other algorithm. The reason is that HAFS not on-

ly well balances the work load but also reduces the
number of inter-cluster accesses.

6. Conclusion

As modern large-scale multiprocessors are clustered,
have high speed processors and hierarchical non-uni-
formed slow memory access time, communication be-
comes the most important consideration in the
development of high performance multiprocessors
(Markatos and LeBlanc, 1992; Markatos and LeBlanc,
1994; Crovella et al., 1991). Though a�nity algorithms
as AFS (Markatos and LeBlanc, 1994), MAFS (Wang
and Chang, 1995), and LDS (Li et al., 1993) perform
well for non-clustered NUMA multiprocessors, they do
not run e�ciently on clustered NUMA machines. There
are two major reasons. As load imbalance occurs, iter-
ations migration and data movements are needed.
However, these a�nity algorithms do not guarantee that
most of the remote memory accesses are as close to the
processor as possible. As the locations of memory ac-
cesses are ignored, too many inter-cluster memory ac-
cesses occur. The other is that the migration overhead
becomes heavy as the number of processors increases.
The overhead includes more remote accesses to the work
queues for the iteration indices and more locks to up-
date the iteration indices.

In this paper, a new scheduling policy, called hierar-
chical scheduling policy, is proposed to improve various
a�nity algorithms under clustered NUMA machines.
Under this policy, migrations are carried on hierarchi-
cally. The policy may reduce the number of inter-cluster
memory accesses, decrease the number of locks to the
work queues, and well balance the work load. We apply
the new policy to AFS and MAFS, and make them
HAFS and HMAFS, respectively. We con®rm our idea
by running various applications under a realistic clus-
tered NUMA simulator. Our experimental results show
that:
· A�nity algorithms perform better than GSS and stat-

ic algorithm. The reason is that a�nity algorithms
not only retain a�nity but also balance the work load
at run time.

Fig. 16. Execution times for synthetic problem with increasing work load.

Fig. 17. Inter-cluster remote accesses for synthetic problem with in-

creasing work load.

Fig. 18. Locks to the work queues for synthetic problem with in-

creasing work load.
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· Hierarchical a�nity algorithms perform better than
the original ones because they reduce many inter-
cluster memory accesses as well as a lot of locks to
the work queues. For example, HAFS is better than
AFS and HMAFS is better than MAFS.

· HMAFS is the best choice among these algorithms in
most cases.
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