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Abstract— In this paper, we demonstrate for the first time a
high-performance and high-reliability 80-nm gate-length dynamic
threshold voltage MOSFET (DTMOS) using indium super steep
retrograde channel implantation. Due to the steep indium super
steep retrograde (In-SSR) dopant profile in the channel depletion
region, the novel In-SSR DTMOS features a low in the off-state
suitable for low-voltage operation and a large body effect to fully
exploit the DTMOS advantage simultaneously, which is not pos-
sible with conventional DTMOS. As a result, excellent 80-nm gate
length transistor characteristics with drive current as high as 348

A/ m (off-state current 40 nA/ m), a record-high = 1022

mS/mm, and a subthreshold slope of 74 mV/dec, are achieved at 0.7
V operation. Moreover, the reduced body effects that have seriously
undermined conventional DTMOS operation in narrow-width de-
vices are alleviated in the In-SSR DTMOS, due to reduced indium
dopant segregation. Finally, it was found for the first time that
hot-carrier reliability is also improved in DTMOS-mode operation,
especially for In-SSR DTMOS.

Index Terms—DTMOS, indium, super-steep-retrograde (SSR)
channel.

I. INTRODUCTION

A S MOSFETs scale to subquarter-micrometer regime
and beyond, an effective way to improve subthreshold

turn-off and to alleviate short-channel effects (SCEs) is to
increase the substrate doping. A uniform increase in substrate
doping, however, suffers from undesirable channel mobility
reduction, junction capacitance increase, and high threshold
voltage. To circumvent these shortcomings, MOSFETs with a
retrograde channel profile have been proposed [1]. In a retro-
grade channel, the peak substrate doping is positioned beneath
the surface, leaving a lightly doped surface channel region
[2]. Super-steep-retrograde (SSR) channel, which features a
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sharp transition from the lightly doped surface to the heavily
doped substrate, has been proposed for transistors with channel
length smaller than 0.1m [3]–[5]. The SSR scheme allows
the transistor to exhibit a high driving current characteristic
of the lightly doped surface channel with a low surface impu-
rity scattering, while also simultaneously preserving a good

-roll-off behavior due to a reduced channel depletion width
which improves punchthrough control. Indium dopant with its
low diffusion coefficient at elevated temperature is known to be
an ideal candidate to form SSR profile for subquarter-micron
nMOSFETs.

On the other hand, the power supply voltage, , is scaling
down at a faster pace than threshold voltage scaling. This has
resulted in current drive reduction and therefore speed degra-
dation. To improve the current drive capability of MOSFETs
at low supply voltage (e.g., 0.7 V), Assaderaghiet al.
[6] proposed the use ofDynamicThreshold VoltageMOSFET
(DTMOS) for ultralow voltage applications. By shorting the
gate to the body, the in DTMOS mode is reduced in the
on-state to boost the current drive; while the device exhibits the
normal in the off-state to maintain a low stand-by power.
The DTMOS scheme thus appears to be very promising for
future low-power and high-speed circuit applications, since it
improves the circuit speed without compromising the stand-by
power. Previously reported DTMOS’s, however, suffer from a
small body-effect-factor () [7]. This is because the normal
suitable for low operation is usually too small to be com-
patible with a high substrate doping concentration, resulting in a
low . A low prevents the DTMOS from enjoying a large
reduction in the on-state, thus minimizes its gain in on-state cur-
rent-drive during DTMOS-mode operation [7]–[10]. Recently,
we have proposed a new DTMOS using an SSR channel pro-
file by indium implantation to overcome the above shortcomings
[11]. In this paper, a comprehensive comparison of the In-SSR
DTMOS and conventional BF-DTMOS, with 80-nm channel
length has been reported.

II. EXPERIMENTAL

Devices with channel length down to 80 nm were fabricated
on 8-in silicon wafers with resistivity of 15 to 25-cm. Wafers
were processed using a conventional CMOS twin-well process
flow. Shallow trench isolation (STI) was used for device isola-
tion. To form SSR channel, a 150 keV indium channel implant
with a dose of cm was conducted. Conventional
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Fig. 1. Schematic of indium super steep retrograde (In-SSR) DTMOS.

Fig. 2. SIMS profiles of In and B in the channel region.

devices with BF-implant (at 50 keV, cm ) were
also processed in the same lot to serve as the control. A 2.6-nm
gate oxide was grown using rapid thermal oxidation (RTO) at
850 C, followed by the deposition of a 200-nm polysilicon
gate. After gate patterning, a 20-nm offset-space (i.e., a narrow
spacer) was used to reduce the gate-to-drain capacitance and
suppress the short channel effects. Ultrashallow S/D extensions
were then formed by a 4 keV As implant, followed by a boron
pocket implant (i.e., 20 keV, cm , tilt angle 20 ). Af-
terwards, a 0.1 m sidewall spacer was formed. Then, a deep
source/drain junction was formed by As ion implantation at 40
keV. Finally, wafers were annealed by rapid thermal processing
(RTP) at 1000 C for 20 s, followed by CoSi salicidation.
Wafers were then processed through a standard backend flow to
completion. The device structure of 80-nm gate-length In-SSR
DTMOS is shown in Fig. 1.

III. RESULTS AND DISCUSSION

A. Short-Channel In-SSR DTMOS Performance

The resultant channel profiles measured by the secondary
ion mass spectroscopy (SIMS) for In-SSR and conventional
BF -implanted samples are shown in Fig. 2. The channel profiles
are measured after all processing steps. Compared to BF-im-
planted control, In-implanted sample exhibits a well-behaved
Gaussian profile, in which the surface doping concentration is
low while the concentration underneath the channel increases
abruptly. The surface channel concentration is cm

Fig. 3. Threshold voltage versus gate length (Lg) for In-SSR and
BF -implanted devices, both under standard- and DTMOS-modes. The
threshold voltage is taken atV d = 0.1 V.

Fig. 4. Thegm versus drain-induced-barrier-lowering (DIBL) for In-SSR and
BF -implanted devices, both under standard- and DTMOS-modes. The DIBL
is taken betweenV d = 0.1 and 0.7 V.

for In-SSR sample, compared to cm for BF -im-
planted control. roll-off characteristics are shown in Fig.
3. The threshold voltage is deduced from method
at 0.1 V. It can be seen that short-channel effects are
effectively suppressed in In-SSR DTMOS due to a smaller
drain depletion layer. In addition, In-SSR devices also depict
a larger reduction under DTMOS mode, compared to BF
counterparts, due to a larger body effect factor (). It has
also been explicitly explained that SSR DTMOS shows the
improved and hence performance [8]. It is worthy to note
here that the amount of reduction in 80-nm gate length
devices are 40 mV for In-SSR DTMOS, compared to 18 mV
for BF DTMOS, despite the fact that the of In SSR device
is smaller than that of the BFcontrol. Fig. 4 compares the
saturated transconductance ( ) versus drain-induced-bar-
rier-lowering (DIBL) for In-SSR and BF-implanted devices
both under standard- and DTMOS-modes at 0.7 V operation.
For the standard-mode operation, In-SSR device depicts better
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Fig. 5. TheGm–V g characteristics for In-SSR and BF-implanted devices,
both under standard- and DTMOS-modes. The gate length is 80 nm.

characteristics than the BF-implanted counterpart, and can
be attributed to its super steep channel profile. While for the
DTMOS-mode operation, In-SSR DTMOS also depicts higher
saturated for a given DIBL, compared to BF-DTMOS.
Furthermore, the improvement of In-SSR DTMOS is higher
than that of BF DTMOS. We believe this is again due to the
higher substrate doping and a larger body factor in In-SSR
device. This is because the larger body factor of In-SSR
DTMOS will lead to a larger current drive increment, and
therefore a higher improvement. Furthermore, a larger
body factor of In-SSR DTMOS will also result in a more
effective reduction in the drain depletion layer, and therefore
more effective DIBL suppression. In fact, a record high
of 1022 mS/mm was achieved at 0.7 V operation for the
80-nm gate-length In-DTMOS, as shown in Fig. 5. In addition,
the ratio ( ) are 1.34 and 1.21
for In-SSR and for BF devices, respectively. It is worthy
to note here that the off-state current of In-SSR DTMOS is
larger than that of BF-DTMOS (i.e., 40 nA/ m compared
to 31 nA/ m) due to the smaller . In general, low
devices also show a small body effect (gamma) and thus
reduce the dynamic efficiency of DTMOS. On the contrary,
In-SSR device shows the combination of low and high
body effect simultaneously (i.e., higher dynamic efficiency)
which allows a full exploitation of DTMOS. The subthreshold
swing factors are plotted as a function of channel length
in Fig. 6. It is interesting to note that In-SSR devices actu-
ally depict worse subthreshold swing than the BF-implanted
counterparts under standard-mode operation. This is because
of a shallower channel depletion layer in the indium-implanted
channel, resulting in a larger depletion capacitance and there-
fore a larger subthreshold swing. However, the subthreshold
swing of the In-SSR devices operating under DTMOS mode is
significantly improved, and becomes even better than that of
the BF -implanted controls operating under DTMOS mode,
due to a larger . This is because as the increases, the

decreases more aggressive for a largerDTMOS, thus
the drain current increases more rapidly, resulting in a sharp

– slope (i.e., better subthreshold swing). Fig. 7 shows

Fig. 6. Subthreshold swing as a function ofLg for In-SSR and BF-implanted
devices, both under standard- and DTMOS-modes.

Fig. 7. Drain current of (a), BF-implanted, and (b) In-SSR devices, both
under standard- and DTMOS-modes. The gate length is 80 nm.V g varies from
0 to 0.7 V in 0.1 V steps.

the output characteristics of 80 nm BF-SSR and In-implanted
devices both under standard- and DTMOS-mode operations.
The gate voltage is varied from 0 to 0.7 V in 0.1 V steps. The
improvement in current drive (measured at
V) due to DTMOS-mode operation are 18.8% and 32% for
BF -DTMOS and for In-SSR DTMOS, respectively.

B. Narrow-Channel Characteristics

Fig. 8 shows the body effects of nMOSFETs with In-SSR
and BF -implant (i.e., control). The device threshold voltage

is plotted as a function of the body bias for long channel
transistors with narrow- and wide-channel widths. We found
that the of In-SSR split is more sensitive to body bias (i.e.,
it depicts a larger ) for both wide and narrow transistors,
compared to BF-implanted control. This is primarily due to
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Fig. 8. Dependence of threshold voltage on the body bias for BF-implanted
and In-SSR devices with channel width of 0.22 and 2�m. Inset shows the result
for short-channel devices withL=W = 0:13 �m/10�m.

the steep indium dopant profile in the channel depletion layer,
as has been confirmed from SIMS analyses (shown previously
in Fig. 2). In addition, the of In-SSR devices show a less
dependence on channel width, compared to BF-implanted
controls. In the insert of Fig. 8, we plot the as a function
of body bias for a short channel (i.e., 0.13m) device. It is
found that In-SSR device indeed depicts a larger body effect,
albeit its is lower than that of BF-implanted control.
It is worthy to note here that we have chosen an indium
implant dose of cm , because it has been previously
reported that the achievable body effect factor saturates at
around this dose, with a corresponding doping concentration
of no more than 7– cm [12]. In addition, the

of In-SSR devices are larger than BFdevices in long
channel region (i.e., 10 m), and smaller than BFdevices
in short channel region. This is mainly because the In-SSR
devices suffer from indium de-activation. So the (standard
device) shows a long-distance roll-off behavior which have
been reported previously [12]. Fig. 9 shows the plot of linear
transconductance ( ) ratio ( ) and
the body effect factor () versus the coded channel width

for both In-SSR and BF-implanted controls. Compared
to the BF -implanted counterparts, In-SSR DTMOSs show a
higher ratio and . More importantly, while the ratio of
BF -implanted devices shows a 6% reduction whenWcoded
reduces from 2 to 0.22m, a 5.5% increase is found for In-SSR
devices instead. The undesirableand reduction in the
narrow-channel devices for the BF-implanted controls are
believed to be due to the boron diffusion and segregation into the
edge in the channel width direction [13]. Since In-SSR DTMOS
is less susceptible to such undesirable dopant segregation, it
can therefore fully exploit the high current drive and low
standby power features of DTMOS, even in narrow-channel
devices.

Fig. 9. Gm ratio and
 versus gate width for BF-implanted and In-SSR
DTMOS. BF -DTMOS showsGm ratio degradation in narrow-channel
devices.

Fig. 10. Hot-carrier degradation of 80-nm gate-length standard and DTMOS
devices.

C. Hot-Carrier Reliability

Hot-carrier reliability of In-SSR and BF-implanted 80-nm
gate-length devices both under standard- and DT-modes has
been investigated. Hot-carrier-induced drain current degrada-
tion is plotted in Fig. 10. In-SSR device shows a worse hot-car-
rier resistance, compared to BF-implanted control, both under
standard-mode operation. This is consistent with previous liter-
ature report that most channel conducting electrons are located
in the lightly doped surface channel in In-SSR device, thus more
electrons are available for injection into the oxide [14]. Surpris-
ingly, it is observed for the first time that hot carrier degradation
is actually reduced in DTMOS-mode operation for both In-SSR
and BF -implanted control. More importantly, the improvement
is so dramatic in In-SSR DTMOS that it depicts an even smaller
hot-carrier degradation than BF-implanted DTMOS control.
This can be attributed to the bulk charge being shared by the high
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Fig. 11. Simulated lateral channel electric field distributions for both In-SSR
and BF -implanted devices under standard- and DT-modes.

Fig. 12. Hot-carrier lifetime of 80-nm gate-length standard and DTMOS
devices.

body potential under DTMOS-mode, thus the maximum drain
electric field is reduced. The simulated lateral channel electric
field distributions for both In-SSR and BF-implanted devices
under standard- and DT-modes are shown in Fig. 11. The simu-
lated lateral channel electric field is at 3 nm below the Si/SiO
interface. Although the lateral channel electric field of In-SSR
device is larger than that of BFunder standard-mode opera-
tion, the electric field of In-SSR DTMOS is indeed smaller than
that of BF -implanted DTMOS. This is because In-SSR device
has a higher , thus the bulk charge sharing is larger than that of
BF -implanted DTMOS with a smaller, resulting in a smaller
channel electric field. The hot carrier lifetime versus stressing
drain voltage is plotted in Fig. 12. Although In-SSR device de-
picts a worse hot-carrier lifetime than BFcontrol under stan-
dard-mode operation, In-SSR DTMOS exhibits a superior life-
time than BF-implanted DTMOS.

IV. CONCLUSION

A novel high-performance and high-reliability 80-nm
gate-length DTMOS suitable for low-voltage (
0.7 V) applications has been proposed by using indium
super-steep-retrograde (SSR) channel implantation. The new
In-SSR DTMOS has a large dynamic threshold efficiency at a
low compatible with low-voltage applications, due to its
low surface concentration and steep channel dopant profile.
As a result, In-SSR DTMOS depicts significant performance
improvements in terms of driving current, dynamic threshold
property, subthreshold swing and , which are difficult
to achieve with conventional BF-implanted DTMOS. In
addition, contrary to conventional narrow-channel BF-im-
planted DTMOS that suffers from degraded dynamic threshold
gain, In-SSR DTMOS maintains its high performance in
narrow-channel devices, due to reduced channel dopant seg-
regation into the isolation edge oxide. Finally, it is found for
the first time that the hot-carrier resistance is improved for
devices under DTMOS-mode operation, especially for In-SSR
DTMOS. The new In-SSR DTMOS thus appears to be a
very promising candidate for future ultralow-voltage ULSI
applications.
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