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Abstract

A modi"ed stochastic Luenberger observer (MSLO) structure is proposed to recover the optimal performance of the coventional
SLO for obtaining full-state estimates in linear discrete-time stochastic systems. The optimal MSLO (OMSLO) which gives the
MMSE estimates is derived by using the general two-stage Kalman "lter. A reduced-order form of the OMSLO is also proposed for
systems having singular measurement noises. The connection between the OMSLO and the optimal minimal-order observer of
Leondes and Novak is also shown. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The general state estimation problem in linear dis-
crete-time stochastic systems may be solved by the
stochastic Luenberger observer (SLO) (Aoki & Huddle,
1967) which is used as an alternative to the well-known
Kalman "lter (KF) (Kalman, 1960). The advantages of
using the SLO are due to its numerical and computa-
tional superiority associated with the real-time imple-
mentation. However, the SLO is in general, a suboptimal
estimator (Leondes & Novak, 1972). The suboptimal
essence of the SLO is due to the fact that it uses the
current measurement as part of system state, and then
tries to estimate the remaining state optimally. The SLO
is optimal in the minimum-mean-square-error (MMSE)
sense when applied to deterministic environment since
there is no need to estimate those states which are known
perfectly. However, when applied to stochastic systems,
the SLO may su!er from performance degradation. The
reason is that the current measurement no longer stands
for the optimal estimate of the corresponding system

state. Thus, the current measurement should be pro-
cessed to compensate for the noise e!ect in order to get
the optimal performance.

To seek out optimal performance of the SLO, re-
searchers have tried to apply reduced-order stochastic
observers (for example, Leondes & Novak, 1974; Tse &
Athans, 1970; Tse, 1973; Fairman, 1977; Fogel & Huang,
1980; Halevi, 1989) to handle singular measurement
problems. The above works adopt the structure of the
observer}estimator where the Luenberger observer (LO)
(Luenberger, 1964) is "rst de"ned and then the optimal
observer parameters are chosen by some optimization
methods to minimize the estimation error. Another prob-
lem of developing a reduced-order "lter to estimate only
a part of the state vector can also be solved (Sims
& Asher, 1978; Nagpal, Helmick & Sims, 1987). In these
results, the LO for the state to be estimated is "rstly
formed, and then the remaining parameters are opti-
mized with respect to the noise in the system. It was
shown that the LO and the KF are special cases of the
obtained minimal-order observer (Dwarakanath, 1982)
or optimum reduced-order "lter (Nagpal et al., 1987).
A di!erent approach which attempts to supplement the
current measurement with additional delayed measure-
ments to derive an optimal minimal-order observer in
general conditions can be found in Priel, Soroka and
Shaked (1991). This new reduced-order observer is de-
rived by using the di!erentiation-transformation block
(DTB) construction method of Soroka and Shaked
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(1988), which was developed originally for the continu-
ous-time case. The measurement vector is preprocessed
by applying forward shift operator and linear combina-
tions of the new measurements in order to derive a vector
of maximum number of independent noise-free measure-
ments. The obtained observer may have a lower order
than previous ones, but it is basically a "xed-lag
smoother.

All the above-mentioned e!orts to improve the perfor-
mance of the SLO are concerned with the reduced-order
observer designing problem. To the best of the knowl-
edge of the authors, few results are focused on reducing
the complexity of the SLO for obtaining full-state esti-
mates in linear discrete-time stochastic systems. In this
paper, we wish to address the complexity issue of the
SLO in view of the computational burden. Furthermore,
we consider observer designing problems in a completely
new direction: to recover the optimal estimation perfor-
mance of the SLO for obtaining full-state estimates in
linear discrete-time stochastic systems. In this regard, we
introduce a modi"ed SLO (MSLO) scheme that is based
on modifying the current measurement via a dynamical
equation to reduce the e!ect of the measurement noise.
This idea of reducing the estimating error can also be
found in Priel et al. (1991). Through a linear trans-
formation of the KF, the optimal MSLO (OMSLO)
which gives the MMSE can be derived. Unlike the
derivations in the previously mentioned optimization
approach, this new approach is characterized by its sim-
plicity in derivation, which is the result of the intuitive
two-stage decoupling method (Friedland, 1969; Hsieh
& Chen, 1999).

Thus, the aims of this paper are (1) to derive the
OMSLO which gives the optimal performance in the
MMSE sense when applied to linear discrete-time
stochastic systems; (2) to derive the optimal reduced-
order MSLO (OROMSLO) which gives the MMSE esti-
mate when applied to systems having singular measure-
ment noises, and (3) to address the complexity issue of the
proposed OMSLO. By means of a proper preprocessing
of the measurement matrix, the OMSLO can be readily
derived from the previously proposed GTSKF (general
two-stage Kalman "lter) (Hsieh & Chen, 2000). The con-
nection between the OMSLO and the optimal minimal-
order observer of Leondes and Novak (1972) is also
shown. With the OMSLO at hand, the OROMSLO can
be easily derived by a suitable preprocessing of the
measurement error covariance matrix and some matrix
manipulations. This approach of deriving the singular
case by using the nonsingular result can also be found in
Bekir's paper (Bekir, 1988). Owing to the decoupling
structure of the GTSKF, the proposed OMSLO is shown
to be less complex than the conventional SLO.

This paper is organized as follows. The problem of
interest and the structure of the MSLO are stated in
Section 2. In Section 3, the GTSKF of Hsieh and Chen

(2000) is presented to facilitate the derivation of the
proposed optimal observers. In Section 4, the OMSLO
serves as a special case of the GTSKF. The relationship
between this new observer and the observer of Leondes
and Novak (1972) is also shown. In Section 5, a reduced-
order form of the OMSLO is presented as an optimal
reduced-order observer when applied to singular
measurement cases. In Section 6, the computational load
of the OMSLO is analyzed to demonstrate the feasibility
of the new observer structure as compared to the conven-
tional one. In Section 7, a simulation example is used to
illustrate the performance of the proposed observer. Sec-
tion 8 gives the conclusions.

2. Modi5ed stochastic Luenberger observer

Consider the following discrete-time system:
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where x
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The following stochastic Luenberger observer (SLO)
may be used as a reduced-order estimator to estimate the
system state:
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(Leondes & Novak, 1974). However,

the above SLO is suboptimal in general since it uses
noisy measurements as part of system state estimates and
then tries to optimize the remaining part. To obtain the
optimal performance, the SLO should be modi"ed to
account for the noise e!ect. This is achieved by replacing
y
k

with y8
k

which is augmented by an mth order system
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with y
k

as input. Hence, the modi"ed SLO (MSLO) is
expressed by
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Then, the problem remains to determine (1) the dynamics
of y8

k
, and (2) the optimal observer gain such that the

MSLO can give an MMSE estimate.
Recently (2000), the authors have applied a two-stage

decoupling technique to extend Friedland's two-stage
"lter (1969) in general conditions; furthermore, we show
in this paper that the obtained two-stage "lter which will
be presented in the next section can also be used to solve
the above-mentioned modi"ed observer design problem.
The complexity introduced by those modi"ed terms is
shown to be not excessive as compared to the computa-
tional load of the conventional SLO.

3. The general two-stage Kalman 5lter

The key idea for developing a two-stage "lter is based
on the two-stage transformation that makes the
covariance matrices of the KF block diagonal (Hsieh
& Chen, 1999). First, consider the stochastic system given
by (1) and (2). Then, the two-stage "lter is obtained by
applying the following two-stage transformation:
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where
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denote the states, the gains, and the error covariances
of the two-stage decoupled sub"lters, respectively. The
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ensure that (12) and (14) are satis"ed, respectively.
Second, using the two-step iterative substitution method

(Hsieh & Chen, 1999), (10)}(14) become
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De"ning the following notations:
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one can expand (15)}(19) into the following two-stage
decoupled sub"lter 1:
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and the following two-stage decoupled sub"lter 2:
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The blending matrices ;
k

and <
k

are determined to
satisfy the following two constraints:

0"F
k~1

PM 1
k~1@k~1

¸@
k~1

#D
k~1

PM 2
k~1@k~1

M@
k~1

#¹M
k
Q

k~1
¹I @

k
, (35)

0";
k
!<

k
!KM 1

k
C

k
E
k
, (36)

and can be calculated as follows:

;
k
"P12

k@k~1
(PM 2

k@k~1
)~1, (37)

<
k
";

k
!KM 1

k
C

k
E
k
, (38)

where

P12
k@k~1

"H
k~1

PM 1
k~1@k~1

¸@
k~1

#S
k~1

PM 2
k~1@k~1

M@
k~1

#¹@
k
Q

k~1
¹I @

k
. (39)

Remark 1. To guarantee a unique solution of (35), it is
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process noise of the two-stage decoupled sub"lter 2 is
positive de"nite. Thus, the covariance matrix PM 2
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encountered in physical problems due to the presence of
modeling error. However, for the case where the
measurement noise is a time-wise correlated sequence,
then the covariance matrix may be singular. In such
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where (M)` is the Moore-penrose pseudo-inverse of M as
suggested in Leondes and Novak (1972). To simplify the
following discussions, we only consider the former case in
this paper.

To simplify the complexity of the above two-stage
decoupled sub"lters, some necessary assumptions
must be made about the measurement matrix C

k
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Without loss of generality, it will be assumed that the
measurement matrix C
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If it is not, then a linear transformation can be made to
achieve this under the assumption that C
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of the measurement equation (41), one obtains
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Using (42), the two-stage decoupled sub"lter 1 given by
(21)}(25) is simpli"ed to
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the two-stage decoupled sub"lter 2 given by (26)}(30) is
simpli"ed to
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and the blending matrices are given by
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Finally, using (11), (14), and (49), the Kalman estimate
can be reconstructed by the following general two-stage
Kalman "lter (GTSKF):
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4. Optimal modi5ed stochastic Luenberger observers

The proposed modi"ed stochastic Luenberger ob-
server (MSLO) is a new structure which intends to solve
the suboptimal problem presented in the conventional
stochastic Luenberger observer (SLO). The basic idea to
solve this problem is to replace noisy measurements,
which stands for part of the state estimate, with an
optimal "lter, which has order `ma, to compensate for the
noise e!ect. Through the aid of the GTSKF presented in
the preceding section, the optimal MSLO (OMSLO)
which gives the MMSE estimate of the system state can
be derived.

By setting the partition parameter p of the GTSKF to
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we propose the OMSLO via the simpli"ed two-stage
decoupled sub"lters (43)}(48) and Eqs. (39), (49), and (50)
as
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Note that the di!erence between the structure of the
above OMSLO and that of the conventional one is that
yJ
k

in the OMSLO is a "ltered version of the measure-
ment, while the corresponding term in a conventional
one is just the current measurement; furthermore, the
matrix ;

k
, which serves as the new observer gain, is

derived from the two-stage decoupling method. This is
di!erent from the conventional one which is obtained
mainly by minimizing the estimation error. From (13)
and using the relationships: KM 1
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clear that the relation of this new observer gain with the
Kalman gain is

K
k
"C
;

k
'

k
'

k
D. (62)

Owing to the optimality of the GTSKF (Hsieh & Chen,
2000), the substitutions in (53), the arguments in
remark 1, and the last notation in (61), we have directly
the following theorem.

Theorem 1. If the error covariance Q22
k

is positive dexnite,
then the OMSLO given by (54)}(60) gives the MMSE esti-
mate of the system state.

To give a connection with the suboptimal SLO of
Leondes and Novak (1972), we reformulate gain calcu-
lations (57)}(59) as follows:
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Eq. (64) is derived in the appendix. Then, if the measure-
ment noise intensity is small compared to that of the
system noise, '

k
in (60) is close to an identity matrix.

Thus, substituting this special form of '
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into the OMSLO which is given by (54)}(56) and

(63)}(64), we obtain the following optimal reduced-order
observer which was constrained to be of order `n!ma:
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#G

k
u
k
, (66)

x
k@k

"¹
k
z
k
#E

k
y
k
, (67)

;
k`1

"!12
k`1

(!22
k`1

#R
k`1

)~1, (68)

!
k`1

"A
kC

¹M
k
!
k
¹M @

k
#;

k
R

k
;@

k
;

k
R

k
(;

k
R

k
)@ R

k
DA@

k
#Q

k
. (69)

The above reduced-order observer is equivalent to the
optimal minimal-order observer of Leondes and Novak
(1972), and its optimality is stated in the following
Theorem 2.

Theorem 2. If measurements are noise-free, then the
optimal minimal-order observer given by (66)}(69) gives
the MMSE estimate of the system state.

Proof. Substitute R
k
"0 into (60), and then use the re-

sult of Theorem 1.
In view of Theorem 2, the proposed OMSLO may

serve as an alternative to derive Leondes and Novak's
minimal-order observer (1972).

5. Optimal reduced-order MSLO

In this section, the authors give a reduced-order form
of the OMSLO to apply to singular measurement cases,
and the obtained "lter will be named as the optimal
reduced-order MSLO (OROMSLO). Without loss of
generality, it will be assumed that the measurement error
covariance matrix R

k
is of the form

R
k
"C

RI
k

0

0 0
m8
D, (70)

where RI
k
'0 (if exist) and 0(m8 4m. If it is not, then

a linear transformation can be made to achieve this
(Leondes & Novak, 1974). De"ning

!22
k
"C

a
k

b
k

b@
k

c
k
D,

one obtains

'
k
"C

a
k

b
k

b@
k

c
k
D C

a
k
#RI

k
b
k

b@
k

c
k
D

~1
"C

'1
k

'2
k

0 I
m8
D, (71)

where

'1
k
"(a

k
!;I

k
b@
k
)Ma

k
!;I

k
b@
k
#RI

k
N~1, (72)

'2
k
"(I!'1

k
);I

k
, (73)

;I
k
"b

k
c~1
k

. (74)

C. S. Hsieh, F. C. Chen / Automatica 36 (2000) 1847}1854 1851



OK
SLO

(OMS¸O)"
flops(OMS¸O)!flops(S¸O)

flops(S¸O)

"

6m3#3m2#2m

4n3#6(m#1)n2!(6m2!m!2q!4)n#2m3!3m2!3m
. (88)

Using (70) and (71), one obtains

'
k
R

k
"C

'1
k
RI

k
0

0 0
m8
D. (75)

Using (75) and the following partitions: S
k
"[S1

k
S2
k
]

and M
k
"[M1

k
M2

k
], where S2

k
3Rn~m,m8 and M2

k
3Rm,m8 ,

one can reformulate the OMSLO as the following
OROMSLO:

z
k`1

"F
k
z
k
#D

k
y8
k
#G

k
u
k
, (76)

y8
k`1
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C
[I!'1

k`1
!'2

k`1
](¸

k
z
k
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k
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k
#N

k
u
k
!y

k`1
)

0
m8 C1

D
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k`1
, (77)

x
k@k

"¹
k
z
k
#E

k
y8
k
, (78)

;
k
"!12

k
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k
)~1, (79)
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k
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H@

k
#S1

k
'1

k
RI

k
(S1

k
)@

#Q11
k
!;

k`1
(!12

k`1
)@. (81)

The above OROMSLO has order n!m8 and may serve
as an optimal minimal-order MSLO. Speci"cally, in the
special case of no measurement noise, i.e., m8 "m and
RI

k
is null, one has y8

k
"y

k
and '1

k
RI

k
in (80) and (81) is

vanished, and hence the optimal reduced-order MSLO
will be equivalent to the optimal reduced-order observer
(66)}(69). On the other hand, in the nonsingular measure-
ment case, i.e., m8 "0 and RI

k
"R

k
'0, one has '1

k
"'

k
.

Then, the OROMSLO will be equivalent to the
OMSLO.

Remark 2. It should be remarked that the implementa-
tion of the OROMSLO is obtained by simplifying (55),
(58), (59), and (60) into (77), (80), (81), and (71), respective-
ly. These equations imply that the structures of the ORO-
MSLO and the OMSLO are similar and can be
processed using the same framework. This is due to the
fact that the dimension of z

k
is unchanged. This is obvi-

ously di!erent from the previous optimal reduced-order
observer's results (for example, Leondes & Novak, 1974;
Tse, 1970; Fairman, 1977), where the dimension of z

k
is

dependent on the noise-free measurement's dimension,
i.e., m8 . Thus, the data structure of these reduced-order

observers will vary with m8 . This may have some disad-
vantages when the singular measurement equation is not
known exactly.

6. Computational considerations

To illustrate that the computational load of the pro-
posed OMSLO [(54)}(60)] is superior than that of the
conventional SLO [(66)}(69)], the authors used #oating-
point operations, or `#opsa, in Matlab as a measure of
the computational complexity. Each multiplication and
each addition contributed one to the #ops count.

First, the authors listed the #ops counts of the SLO
and the OMSLO as follows:

-ops(S¸O)"4n3#6(m#1)n2!(6m2!m!2q!4)n

#2m3!3m2!3m, (82)

-ops(OMS¸O)"4n3!(2m!5)n2

#(2m2#2m#2q#4)n

#8m3#m2!m, (83)

with (54) and (66) being implemented respectively as

z
k`1

"¹M
k`1

(A
k
[¹

k
E
k
][z@

k
y8 @
k
]@#B

k
u
k
), (84)

z
k`1

"¹M
k`1

(A
k
[¹

k
E
k
][z@

k
y@
k
]@#B

k
u
k
). (85)

Note that to simplify the discussion, the symmetric
property of the covariance matrix is not used to reduce
the complexity of the considered algorithms.

Using (82) and (83), the #ops saving, denoted by
n-ops, of the OMSLO as compared to the SLO is given
as

n-ops
SLO

(OMS¸O)"(8m#1)n2!(8m2#m)n

!6m3!4m2!2m. (86)

It is clear from (86) that the saving will be evident when
n<m. This computational e$ciency is mainly due to the
fact that the original covariance update (69) is simpli"ed
by using a decoupled one which is characterized by (58)
and (59). However, if we implement the OMSLO by
using the conventional covariance updating structure,
i.e., (64), the #ops of the OMSLO will become

-ops(OMS¸O)"-ops(S¸O)#6m3#3m2#2m. (87)

In view of (87), the overhead, denoted by OK , of the
OMSLO as compared to the load of the SLO is given as
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Table 1
Performances of the OMSLO and the SLO "lters

Performances OMSLO1 OMSLO2 SLO

Tracking error 125.85 125.85 142.42
yops 1062 1466 1402

From (88), it is clear that the overhead of this OMSLO is
negligible as compared to the load of the SLO for n<m.

In summary, the OMSLO is a feasible solution to solve
the modi"ed observer design problem, which intends to
recover the optimal performance of the conventional
SLO.

7. Simulation example

To verify the previous analytical results, the following
target tracking simulation was conducted. Consider
a target maneuvers with accelerations xa"ya"
0.075 m/s2. The initial position and velocity of the target
were xp

0
"2000 m, xv

0
"0 m/s, yp

0
"10,000 m, and

yv
0
"!15 m/s. The sampling interval was ¹"10 s;

the simulation time was 500 s. The target position was
measured. The system matrices were given by

A
k
"C

1 10 0 0 0 0

0 1 0 0 0 0

0 0 1 10 0 0

0 0 0 1 0 0

10 50 0 0 1 0

0 0 10 50 0 1
D, B

k
"0,

C
k
"C

0 0 0 0 1 0

0 0 0 0 0 1D,

Q
k
"C

20 2 0 0 100 0

2 0.2 0 0 10 0

0 0 20 2 0 100

0 0 2 0.2 0 10

100 10 0 0 500 0

0 0 100 10 0 500
D,

R
k
"C

10000 0

0 10000D
and the state vector was x

k
"[xv

k
xa
k

yv
k

ya
k

xp
k

yp
k
]@.

The OMSLO1 [(54)}(60)], the OMSLO2 [(54)}(57),
(64), and (60)], and the SLO [(66)}(69)] are considered.
All "lters were initialized by taking the initial state esti-
mate x6

0
and the corresponding covariance matrix PM

0
as

x6
0
&N (x

0
,PM

0
) and PM

0
"Q

0
, respectively, where x

0
was

the initial target state. The tracking error is de"ned as the
root-mean-square of the state estimating error.

A Monte-Carlo simulation of 50 runs (using Matlab)
was performed. The simulation results in Table 1 show
the tracking error and the corresponding #ops generated
by Matlab. Table 1 shows that the tracking error of the
OMSLO is smaller than that of the SLO. It also shows
that the #ops of the OMSLO1 is fewer than that of the
SLO. Although the #ops of the conventional SLO is

slightly fewer than that of the OMSLO2, the estimate of
the SLO is degraded. This simulation result also shows
that the covariance update in the conventional observer
design can be simpli"ed by using the proposed one [(58)
and (59)]. Note that if one substitutes n"6, m"2, and
q"0 into (82), (83), and (87), the #ops of the SLO, the
OMSLO1, and the OMSLO2 are 1402, 1062, and 1466,
respectively. These results are exactly the same as the
simulation results.

8. Conclusions

This paper presents a modi"ed stochastic Luenberger
observer (MSLO) structure to recover the optimal per-
formance of the conventional SLO. Speci"cally, the opti-
mal MSLO (OMSLO), which is optimal in the MMSE
sense, is derived directly from the general two-stage Ka-
lman "lter (GTSKF). It is illustrated by analytical and
simulation results that the computational complexity of
the proposed OMSLO is less than that of the conven-
tional SLO. This paper also shows that how to modify
the SLO's structure to get the optimal performance. In
view of this fact, it is also shown by analytical and
simulation results that the overhead of this OMSLO is
not excessive as compared to the load of the conventional
SLO. A reduced-order form of the OMSLO is also pre-
sented for singular measurements. Our results suggest
that the proposed OMSLO can be used as a general
model to replace the SLO for obtaining state estimates in
time-varying, linear discrete-time stochastic and deter-
ministic systems.
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Appendix

Derivation of Eq. (64). Using (20), (65), and (57), we
obtain

¹M
k
!
k
¹M @

k
"!11

k
!;

k
!22

k
;@

k
"%

k
. (A.1)
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Using (65), (59), and (57), we obtain
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. (A.2)

Replacing (58) with the following one
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Using (65), (A.2), (A.3), (32), (49), (20), and (A.1), we obtain
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(A.4)
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