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Optimization of parameter design: an intelligent approach using
neural network and simulated annealing

CHAO-TON SUy* and HSU-HWA CHANGy

Parameter design optimization problems have found extensive industrial applications,

including product development, process design and operational condition setting. The

parameter design optimization problems are complex because non-linear relationships

and interactions may occur among parameters. To resolve such problems, engineers

commonly employ the Taguchi method. However, the Taguchi method has some limita-
tions in practice. Therefore, in this work, we present a novel means of improving the

eVectiveness of the optimization of parameter design. The proposed approach employs

the neural network and simulated annealing, and consists of two phases. Phase 1

formulates an objective function for a problem using a neural network method to predict

the value of the response for a given parameter setting. Phase 2 applies the simulated
annealing algorithm to search for the optimal parameter combination. A numerical

example demonstrates the eVectiveness of the proposed approach.

1. Introduction

The optimization of parameter design problems has

been extensively performed in industry. Engineers fre-

quently encounter parameter design problems, particu-

larly in product development, process design and

operational condition setting. Parameter design prob-

lems are complex because non-linear relationships and

interactions may occur among parameters. Although

engineers conventionally apply the Taguchi method to

resolve these problems (Phadke 1989, Fowlkes and

Creveling 1995), the Taguchi method has some limita-

tions in practice. First, this method can only ® nd the

best one of the speci® ed parameter level combinations.

Once the parameter levels are determined, the feasible

solution space is constrained concurrently. Second,

while only addressing the discrete control factor, the

Taguchi method cannot obtain the optimal condition

when the parameter values are continuous. Third, the

adjustment factor cannot be guaranteed to exist in prac-

tice. Fourth, for a new product development or process

design, the Taguchi method uses screening experiments

to diminish the range of control factor levels, thereby

decreasing the solving e� ciency owing to an increasing

number of experiments (Pignatiello 1988).

An alternative means of using the neural network has

recently been proposed to improve Taguchi’s parameter

design, capable of eŒectively treating continuous par-

ameter values (Rowlands et al. 1996, Chiu et al. 1997,

Tay and Butler 1997). However, the method cannot e� -

ciently obtain the optimal parameter combination.

To resolve the limitations of previous methods, this

work presents an arti® cial intelligence-based technique

which combines the neural network with simulated

annealing (SA). Neural network is a mathematical

model, capable of accurately representing a complex

relationship between inputs and outputs. SA algorithm

is a stochastic optimization technique, which adopts the

strong analogy between the physical annealing process

of solids and the process of solving optimization prob-

lems (Khan et al. 1997).

The approach proposed herein has two phases. First,

the neural network approach is applied to map out the

relationship between inputs and outputs; the trained

neural model is also used to accurately predict the

response (output) at a given parameter setting (input).

Second, the SA algorithm is applied (through the

trained neural model) to search for the optimal response

and the corresponding parameter setting. The searched

parameter setting is not limited to a discrete value. In
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addition, we do not need to utilize the adjustment fac-

tors to adjust the process mean. Moreover, it is more

e� cient in obtaining the optimum than previous

methods. Furthermore, a numerical example demon-

strates the eŒectiveness of the proposed approach.
The rest of this paper is organized as follows. Section

2 describes the operating process of the neural network.

Section 3 introduces the SA algorithm. Section 4 pro-

poses a method that combines the neural network with

the SA algorithm to resolve parameter design problems.

Section 5 presents an illustrative example from previous
literature to demonstrate the eŒectiveness of the pro-

posed approach. Concluding remarks are ® nally made

in Section 6.

2. Neural network

Neural network is a mathematical model, consisting of

many processing elements connected from layer to layer.
Each processing element (node) has an output signal

that fans out along connections to each of the other

processing elements. Each connection is assigned a rela-

tive weight. A node’s output depends on the speci® ed

threshold and the transfer function. Learning and recal-
ling are two major processes of the neural network,

where the learning process can modify the connecting

weights and the recalling process involves understanding

how the network creates a response at the output layer

by processing a signal through the whole network. Two
types of learning are commonly addressed: supervised

and unsupervised learning. For supervised learning, a

set of training input vectors with a corresponding set

of target vectors is trained to adjust the weights in a

neural network. For unsupervised learning, although a

set of input vectors is proposed, no target vectors are
speci® ed. Generally, the clustering problem frequently

employs the unsupervised learning and the prediction

or mapping problem usually employs the supervised

learning.

Our approach to solving Taguchi’ s parameter design
problem is based on the supervised neural network. A

backpropagation neural network is commonly used

among the several well-known supervised learning net-

works, e.g. learning vector quantization and counterpro-

pagation neural networks. Herein, we adopt the
backpropagation neural network owing to its ability to

map a complex non-linear relationship between the

inputs and the corresponding outputs (Funahashi

1989). A typical backpropagation network consists of

three or more layers, including an input layer, one or

more hidden layers and output layer. Figure 1 illustrates
the topology of a backpropagation network with three

layers. Backpropagation learning employs a gradient-

descent algorithm to minimize the mean-square error

between the target data and the predictions of the

neural network (Rumelhart and McClelland 1989).

The training data set is initially collected to develop a

backpropagation neural network model. Through a

supervised learning rule the data set comprises of an
input and an actual output (target). The gradient-des-

cent learning algorithm enables a network to enhance its

performance by self-learning. The training of a back-

propagation network involves three stages: the feedfor-

ward of the input training data, the calculation and

backpropagation of the associated error, and the adjust-
ment of the connected weights. The equation utilized to

adjust the weights for the output layer k is

Wkj ˆ ²¯koj

where Wkj ˆ the change to be made in the weight from
the jth to kth unit.

² ˆ the learning rate

¯k ˆ the error signal for unit k

oj ˆ the jth value of the output pattern

The backpropagation rule for changing weights for

the hidden layer j is

Wji ˆ ²¯joi

where Wji ˆ the change to be made in the weight from

the ith to jth unit

² ˆ the learning rate

¯j ˆ the error signal for unit j

oi ˆ the jth value of the output pattern

The detailed operating process is given as follows

(Fausett 1994).

Step 1. Initialize the weights between layers.

1544 C.-T. Su and H.-H. Chang
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Figure 1. Topology of the backpropagation neural network.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

0:
09

 2
8 

A
pr

il 
20

14
 



Step 2. Select the learning schedule (e.g. set the transfer

function, learning rate, momentum, learning

count).

Step 3. Repeat steps 4± 10 until learning counts or the

error criterion has arrived.

Feedforward:

Step 4. Each input node receives input data and passes

this data to all nodes in the next layer.

Step 5. Each hidden nodes sums up its weighted input

data, applies the transfer function to compute
its output data and, then, sends these data to all

nodes in the next layer.

Step 6. Each output nodes sums up its weighted input

data, then applies the transfer function to com-

pute its output data.

Backpropagation of error:

Step 7. Each output node receives a target data cor-

responding to the input training data, computes

its error term, calculates its weight correction
term and, then, sends the error term to nodes

in the previous layer.

Step 8. Each hidden node sums up its weighted input

error term, computes its error term, calculates

its weight correction term and, then, sends the

error term to nodes in the previous layer.

Update weights:

Step 9. Each output node updates its weights.

Step 10. Each hidden node updates its weights.

3. Simulated annealing

Simulated annealing (SA), which was introduced by
Kirkpatrick et al. (1983) and independently by Cerny

(1985), has been applied to various di� cult combina-

torial optimization problems. SA is a stochastic opti-

mization technique, which derives from an analogy

between the annealing process of solids and the
strategy of solving optimization problems. SA is a

type of local search algorithm, but with the added

advantage of not being trapped in local optima

(Eglese 1990). Starting from an initial solution, SA

generates a new solution x 0 in the neighbourhood of
the current solution x. Then, calculate the change in

the objective function, i.e. E ˆ f …x 0† ¡ f …x†. In mini-

mization problems, if E < 0, transition to the new

solution is accepted. If E ¶ 0, then transition to the

new solution is accepted with a speci® ed probability

obtained by the function e¡ E=T , where T is a control
parameter called the temperature. SA repeats this pro-

cess M times at each temperature, where M is a con-

trol parameter called the epoch length. The value of T

is gradually decreased by a cooling function. The

typical procedure for implementing a SA algorithm

is shown in ® gure 2 (Koulamas et al. 1994, Park

and Kim 1998).

To implement an SA algorithm to a speci® c problem,

we have to de® ne: (i) the con® guration of the possible

solutions; (ii) neighbourhood of a solution; (iii) an

objective function; (iv) the annealing schedule. In addi-

tion, the annealing schedule consists of: (i) the initial

temperature; (ii) a cooling function for decreasing the

temperature; (iii) epoch length at each temperature; and

(iv) a stopping condition to terminate the algorithm (Su

and Hsu 1998).
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Let T = Cooling function (T).

*TT <

Obtain the optimal solution x.

Set an initial solution 0x Î S
(S is the feasible solution spaces).

Set an initial temperature 0T >0.
Set a stopping temperature 0* TT < .
Set the epoch length M.

Set x = 0x  and T= 0T .

Randomly generate solution x ¢
(a neighbor of x).

Evaluate )(xf ¢ and )(xf .
Calculate )()( xfxfE -¢=D .

0<D E

Set x = x ¢ . r < TEe /D-

Create a random
value r, 0 < r < 1
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Y

N

N
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Figure 2. The schema of the SA algorithm.
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4. Proposed approach

Taguchi’s parameter design method uses an orthogonal

array to arrange the experiment for a particular prob-

lem. The corresponding response can be obtained by the

speci® ed parameter combination. Taguchi applies the

signal-to-noise ratio to perform the response analysis.

Next, the Taguchi method employs the two-step optimi-

zation procedure to attain the best response and par-

ameter combination. In this work, we propose an

alternative means of resolving the above problems.

The proposed approach applies a combined method

using the backpropagation network and SA to analyse

the parameter design problem. Figure 3 schematically

depicts the proposed approach.

The proposed procedure consists of two phases. The

® rst phase in the proposed procedure involves identi-

fying the objective function for a parameter design prob-

lem. A backpropagation network is trained to derive the

relationship between the control factor values and the

responses. The trained network can accurately predict

the behaviour of possible control factor combinations.

Thus, inputting the control factor values into the trained

network allows us to obtain the corresponding response.

The trained network is used as the objective function in

the SA. In phase two, SA is directly applied to solve the

problem. SA can be used to obtain the optimal value of

the control factor from the possible solution spaces.

Here, a possible solution is represented by a vector of

parameter values. For instance, a system has ® ve par-

ameters A, B, C, D, and E. A vector (9, 3, 6, 1, 4) can

represent the values of the ® ve parameters (A, B, C, D,

E), respectively. The de® nition of the neighbourhood of

the vector is referred to the j-neighbourhood (Cheh et al.

1991). The j-neighbourhood of the vector means

selecting any j parameters and then randomly assigning

another setting for each of them. For instance, the 1-

neighbourhood of vector (9, 3, 6, 1, 4) involves selecting

a parameter (e.g. parameter C) and then assigning

another setting (e.g. 5) to replace the value 6. In the

instance, the neighbour of (9, 3, 6, 1, 4) is set as (9, 3,

5, 1, 4). The procedure of the proposed approach is

given as follows.

Phase 1. Identify the objective function to predict the

response.

Step 1. Collect the training and testing patterns by

randomly selecting the data from the ortho-

gonal table.

Step 2. Develop a backpropagation network model to

derive the relationship between control factor

values and responses. This trained network is

referred to herein as the objective function.

Phase 2. Determine the optimal control factor combina-

tion.

Step 3. Create an initial solution (x0) by randomly

selecting the value of the control factors

within the upper and lower bounds.

Step 4. Set an initial temperature T 0 > 0.

Step 5. Set x ˆ x0, T ˆ T0, and de® ne the neighbour-

hood structure.

Step 6. Set the epoch length M, and the cooling factor

¬, 0 < ¬ < 1.

Step 7. Repeat steps 8± 14 until a predetermined stop-

ping temperature is reached.

Step 8. Repeat steps 9± 13 M times.

Step 9. Randomly generate solution x 0.

Step 10. Calculate the change of response

E ˆ f …x 0† ¡ f …x†, where the objective func-

tion f istaken from step 2.

Step 11. Generate a random value r.

Step 12. If E < 0, then set x ˆ x 0, else

if r < e¡ E=T , then

set x ˆ x 0.

1546 C.-T. Su and H.-H. Chang

A
backpropagation
neural network

Control factor
 value Response

Set operation condition:
initial solution

       initial temperature
epoch length 
colling factor 

Decrease the temperature

No

Yes

Determine the new solution
by

the change of response
 and 

a specified probability

Evaluate response
(by a well-trained back-

propagation
neural  network)

Yes

No

Generate a neighbor solution

Evaluate the response

Phase 1: Identify the objective function

Phase 2: Determine the optimal control factor combination

stop Obtain optimal combination
 and response

M times

Figure 3. The schema of the proposed approach.
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Step 13. Call the current parameter settings the optimal

condition.

Step 14. Set T ˆ ¬T .

Step 15. Obtain the predicted response value by input-

ting the optimal control factor value to the
objective function.

5. Numerical example

This section presents a numerical example of a gas-
assisted injection moulding process with a single

response to demonstrate the proposed approach’s eŒec-

tiveness (Hsu 1995). The response of this case is the

length in the gas channel. This study attempts to make

the response as small as possible by selecting parameter
set values. Eight controllable factors were selected:

mould temperature, melt temperature, injection speed,

gas injection time, gas pressure, gas distance, gas delay

time and constant pressure time, and they were denoted

by A, B, C, D, E, F, G and H, respectively. The Taguchi

L18 orthogonal array was used to allocate the parameter

combinations. Table 1 lists the values of the parameter

levels and the responses of the experiment. This numer-

ical example is analysed again by our proposed

approach.

When Phase 1 is applied to this example, the training

and testing patterns for the backpropagation network

are initially formed. In this study, we randomly select

72 training patterns and 18 testing patterns from table 1.

The control factor values and responses serve as inputs/

outputs of the network. A neural network package soft-

ware, Qnet97 (1997), is used to develop the required

network. The convergence criterion employed in the net-

work training is the root of mean square error (RMSE).

Table 2 lists several options of the network architecture;

in addition, the structure 8-5-1 is selected to obtain a

Optimization of parameter design 1547

Table 1. Control factor values and responses of the experiment

Control factors Responses

A B C D E F G H y1 y2 y3 y4 y5

1 50 230 50 1 90 64 0 0 42 40 57 68 74

2 50 230 60 1.5 110 65 0.5 3 71 76 74 74 75

3 50 230 70 2 130 66 1 6 84 80 83 80 82

4 50 240 50 1 110 65 1 6 37 29 34 38 41

5 50 240 60 1.5 130 66 0 0 117 115 121 123 116

6 50 240 70 2 90 64 0.5 3 37 36 36 39 36

7 50 250 50 1.5 90 66 0.5 6 85 87 88 93 90

8 50 250 60 2 110 64 1 0 28 26 24 25 29

9 50 250 70 1 130 65 0 3 84 79 84 79 73

10 60 230 50 2 130 65 0.5 0 74 84 64 69 65

11 60 230 60 1 90 66 1 3 84 87 95 88 94

12 60 230 70 1.5 110 64 0 6 71 68 68 70 65

13 60 240 50 1.5 130 64 1 3 25 24 25 28 24

14 60 240 60 2 90 65 0 6 88 88 89 90 79

15 60 240 70 1 110 66 0.5 0 114 124 125 117 118

16 60 250 50 2 110 66 0 3 106 106 104 99 107

17 60 250 60 1 130 64 0.5 6 31 41 43 36 40

18 60 250 70 1.5 90 65 1 0 60 53 58 51 61

Table 2. The performance of six diŒerent networks.

RMSE (training) RMSE

(Testing)

Architecture 5000 epochs 10 000 epochs 15 000 epochs 15 000 epochs

8-3-1 0.0 382 0.0 358 0.0 354 0.0 463

8-4-1 0.0 328 0.0 327 0.0 327 0.0 431

8-5-1 0.0 334 0.0 319 0.0 296 0.0 412

8-6-1 0.0 332 0.0 324 0.0 312 0.0 419

8-7-1 0.0 335 0.0 323 0.0 324 0.0 417

8-8-1 0.0 344 0.0 334 0.0 334 0.0 448
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better performance. At this moment, the trained net-

work 8-5-1 is employed as the objective function of the

SA which will be used in Phase 2.

In Phase 2, SA is performed. The algorithm is coded

in C language and implemented on a Pentium 166 PC.

The operational condition is set as follows.

(1) The eight parameter ranges are reasonably set as

(45.0, 65.0), (220, 260), (45.0, 75.0), (0.85, 2.15),

(80.0, 140.0), (63.0, 67.0), (0, 1.15) and (0, 7.0), re-

spectively.

(2) The neighbourhood structure is 1-neighbourhood.

(3) The initial temperature is 1.

(4) The stopping temperature is 0.001.

(5) The epoch length M ˆ 20.

(6) The cooling factor ¬ ˆ 0:95.

The above information is used and the SA program is

executed over 20 runs to obtain the optimum settings

(48.2, 235, 46, 0.85, 85.1, 64, 1, 6). Table 3 summarizes

the implementation results. The smallest response is 7.4.

Table 4 lists the optimal control factor values.

If the 18 original observations in table 1 are analysed

using the Taguchi method, we have the optimum set-

tings (50, 240, 50, 2, 130, 64, 1, 3) for the eight control

factors (A, B, C, D, E, F, G, H), and the predicted

response under this optimal condition is 19.8. In addi-

tion, Chiu et al. (1997) proposed a neural network-based

method to resolve the same problem. Table 4 compares

the analysis results of their and our study. This table

reveals that Chiu et al.’s approach and the Taguchi

method only slightly diŒer in terms of the control

factor settings. In addition, the parameter settings of

the proposed approach largely diŒer from the other

two approaches. However, the proposed approach out-

performs the Taguchi method and Chiu et al.’s

approach. Correspondingly, the validity of the proposed

approach is established.

6. Conclusions

Parameter design problems are di� cult for engineers to

develop products and processes because complex non-

linear relationships may exist among the parameters and

responses. Although conventionally employed to solve
such problems, the Taguchi method cannot attain the

optimal condition when the parameter values are con-

tinuous. Moreover, a neural network-based method can

conquer the continuous parameter values, which is occa-

sionally ine� cient in terms of obtaining the optimal con-
dition. In this work, we present an e� cient approach to

overcome these problems. Based on arti ® cial intelligence

techniques, the proposed approach combines the neural

network with the SA to optimize the parameter design.

The proposed approach consists of two phases. The ® rst

phase identi® es the ® tness function for the problem,
while phase two directly applies SA to determine the

optimal condition of the problem. A numerical example

demonstrates the eŒectiveness of the proposed

approach. The proposed approach possesses ® ve

merits of considerable importance.

(1) The proposed approach can treat both quantitative

parameters and qualitative parameters.

(2) The proposed approach can eŒectively deal with the

interactions among the parameters.

(3) As long as the historical experimental data are su� -

cient, no additional experiments are necessary and

the data can be directly applied to the proposed

approach.

(4) The proposed approach is an improvement over pre-

vious parameter design techniques, and is more e� -

cient to ® nd the optimum.

(5) The proposed approach is relatively simple and is

fairly easy for engineers to apply to diverse indus-

trial applications.

1548 C.-T. Su and H.-H. Chang

Table 3. Implementation results of SA

Item Data

The smallest response in 20 runs 7.42

The largest response in 20 runs 7.47

Average ® nal response 7.44

Standard deviation 0.0 134

Average CPU time (s/run) 36

Table 4. A comparison of the analysis results

Parameter values Predicted

response

Method A B C D E F G H ŷ

Taguci’s method 50 240 50 2 130 64 1 3 19.8

Chiu et al.’ s method 50 240 50 2 130 63.5 1 6 13.5

Proposed approach 48.2 235 46 0.85 85.1 64 1 6 7.4
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Restated, it does not require much statistical back-

ground for engineers. In addition, applying the pro-

posed approach allows engineers to directly use neural

network software and SA program to optimize the prob-

lems without any theoretical knowledge of neural com-
puting and SA.
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