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ABSTRACT. In this paper we consider from maximum likelihood and Bayesian points of

view the generalized growth curve model when the covariance matrix has a Toeplitz

structure. This covariance is a generalization of the AR(1) dependence structure. Inferences

on the parameters as well as the future values are included. The results are illustrated with

several real data sets.
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1. Introduction

We consider a generalized multivariate analysis of variance model useful especially for

many types of growth curve problems. The generalized growth curve model, proposed by

Potthoff & Roy (1964), is de®ned as

Y
p3N
� X

p3m
ô

m3r
A

r3N
� å

p3N
(1)

where ô is unknown and X and A are known design matrices of ranks m , p and r , N,

respectively. The columns of å are independent p-variate normal with mean vector 0 and

common covariance matrix Ó. In general, p is the number of time (or spatial) points

observed on each of N individuals; m and r, which specify the degree of polynomial in

time (or space) and the number of distinct groups, respectively, are assumed known. The

design matrices X and A will therefore characterize the degree of polynomial for the

growth function and the distinct grouping out of N independent vector observations. For

some reviews, see Geisser (1980), Von Rosen (1991) and Kshirsagar & Smith (1995). For

related literature on repeated measurements, see Lindsey (1993).

When Ó is arbitrary and positive de®nite, the most general case, the estimation for ô and Ó as

well as the prediction problem to be addressed in this paper, the reader is referred to Khatri

(1966), Geisser (1970) and Lee & Geisser (1972). For the situation in which some parsimonious

covariance structure is more appropriate for the data at hand, then the arbitrary and positive

de®nite Ó will not be suitable for the data set. The covariance structure considered in this paper

is quite reasonable for a lot of growth curve data.

The general autoregressive, or banded, covariance structure, is de®ned as

Ó � ó 2C (2)

where C � (cij), cij � rjiÿ jj, i 6� j, cii � 1, for i, j � 1, . . ., p, ó 2 . 0 and rjiÿ jj are

unknown and ÿ1 , rjiÿ jj, 1 subject to C being positive de®nite. This covariance structure

is considered by Lee & Geisser (1975) offering a rough solution, and Jennrich &

Schluchter (1986) offering numerical search solution in a general setting. In this paper, we

let rr � (r1, r2, . . ., r pÿ1). In addition to the AR(1) dependence, or serial covariance
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structure, it is perhaps one of the more important covariance structures for the generalized

growth curve model. The purpose of this paper is to consider parameter estimation and

prediction of future values from maximum likelihood (ML) and Bayesian points of view. In

the Bayesian treatment of the model, we will consider both simple approximation which is

conditional in nature, as done in Lee & Hsu (1997) for the AR(1) dependence, and Markov

chain Monte Carlo (MCMC) methods. The Bayesian approach is emphasized because it

will be useful when the sample size is relatively small. Indeed, several published data sets

are relatively small in their sizes. We will compare our results obtained from both ML and

Bayesian approaches via several data sets.

In addition to the inferences of the parameters ô, ó 2 and r, we will also consider several types

of prediction problem for the growth curve model as speci®ed by (1)±(2). Let V be p 3 K

future observations drawn from the generalized growth curve model; that is, the future observa-

tions are such that given the parameters ô and Ó,

V � XôF� å� (3)

where F is a known r 3 K matrix, and the columns of å� are independent and p-variate

normal with mean vector 0 and common covariance matrix Ó. Geisser (1970, 1980) and

Lee (1982) considered prediction of V, given Y as the sample from a Bayesian viewpoint.

Lee & Geisser (1972, 1975), Fearn (1975), Rao (1987), and Lee (1988) considered the

problem of predicting V(2), given V(1) and Y, if V is partitioned as V � (V(1)9, V(2)9)9,

where V(i) is pi 3 K (i � 1, 2) and p1 � p2 � p. If p is interpreted as the number of

points in time being observed, then the problem is mainly concerned with predicting the

generalized growth curve for future values for the same p time points, or a subset of size

p2. When p2 , p and K � 1, it is also called the conditional prediction of the unobserved

portion of a partially observed vector.

In section 2, we consider parameter estimation and prediction of future values based on the

ML method. In section 3, Bayesian estimation of the parameters and prediction of the future

values are considered via Markov chain Monte Carlo (MCMC) methods and simple approxima-

tions. The results developed in the paper are illustrated in section 4 with real data. Finally, some

concluding remarks are given in section 5.

2. Estimation and prediction based on the ML method

2.1. Parameter estimation with Y and V(1) as the sample

In this section we will consider the situation in which both Y and the partially observed

vector, V(1), are used as the sample in the estimation of parameters and for the predictive

inference of V(2) given V(1) and Y. In case only Y is used as the sample, the estimation

results can be obtained from theorem 1 by setting p1 � 0 and deleting the terms involving

V(1).

Theorem 1

For the growth curve model, when covariance matrix Ó satis®es the structure given by (2)

and r � 1, the MLEs of ô and ó 2, denoted by ô̂ and ó̂ 2, respectively, are

ô̂ � Qÿ1(Q1ô̂1 �Q2ô̂2),
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ó̂ 2 � [(ô̂1 ÿ ô̂2)9Q1Qÿ1Q2(ô̂1 ÿ ô̂2)� tr(X9Ĉÿ1X)ÿ1X9Ĉÿ1SĈÿ1X

� tr(Z9ĈZ)ÿ1Z9YY9Z� tr(X(1)9Ĉÿ1
11 X(1))ÿ1X(1)9Ĉÿ1

11 S1Ĉÿ1
11 X(1)

� tr(Z91Ĉ11Z1)ÿ1Z91V(1)V(1)9Z1]=( pN � p1 K), (4)

where

Q1 � AA9(X9Ĉÿ1X), Q2 � FF9(X(1)Ĉÿ1
11 X(1)),

Q � Q1 �Q2,

ô̂1 � (X9Ĉÿ1X)ÿ1X9Ĉÿ1YA9(AA9)ÿ1,

ô̂2 � (X(1)9Ĉÿ1
11 X(1))ÿ1X(1)9Ĉÿ1

11 V(1)F9(FF9)ÿ1,

Z1 is a known p1 3 ( p1 ÿ m) matrix with rank p1 ÿ m such that X(1)9Z1 � 0,

S1 � V(1)[Iÿ F9(FF9)ÿ1F]V(1)9,

Ĉ � (Ĉab), Ĉab is of dimension pa 3 pb, pa � pb � p,

Ĉ � (ĉij), ĉij � r̂jiÿ jj, i 6� j, and r̂ � (r̂1, . . ., r̂ pÿ1), the MLE of r, is obtained by maxi-

mizing L(rjY, V(1)),

L(rjY, V(1)) / b
ÿ[( pN� p1 K)=2]

V(1) jCjÿ(N=2)jC11jÿ(K=2), (5)

subject to C being positive de®nite and

bV(1) � (ô̂1 ÿ ô̂2)9Q1Qÿ1Q2(ô̂1 ÿ ô̂2)� tr(X9Cÿ1X)ÿ1X9Cÿ1SCÿ1X

� tr(Z9CZ)ÿ1Z9YY9Z� tr(Z91C11Z1)ÿ1Z91V(1)V(1)9Z1:

2.2. Prediction of V( 2) given V(1) and Y

The approximate mean, denoted by V̂(2), of the distribution of V(2) given V(1) and Y is

V̂(2) � X(2)ô̂F� Ó̂21Ó̂
ÿ1
11 (V(1) ÿ X(1)ô̂F), (6)

where X � (X(1)9, X(2)9)9, Ó̂ � ó̂ 2Ĉ � (Ó̂ ij), ô̂ and ó̂ 2 are given in (4), X(i) is pi 3 m, and

Ó̂ij is of dimension pi 3 pj, p1 � p2 � p.

3. Bayesian inferences of the model

3.1. Parameter estimation

The likelihood of ô, ó 2 and r is

L(ô, ó 2, rjY) / ó ÿ pN jCjÿ(N=2)

3 exp ÿ 1

2ó 2
tr Cÿ1 Yÿ (X, Z)

ô
0

� �
A

� �
Yÿ (X, Z)

ô
0

� �
A

� �
9

� �
:

For the prior of ô, ó 2 and r, we will use the following non-informative prior

g(ô, ó 2, r) / 1

ó 2
: (7)

In (7), we have assumed that ô, ó 2 and r have independent prior distributions and no
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information is available for each of the parameters. This is in the same spirit as Zellner &

Tiao (1964).

Hence the posterior density of ô, ó 2 and r given Y is

P(ô, ó 2, rjY) / ó ÿ( pN�2)jCjÿ(N=2)

3 exp ÿ 1

2ó 2
tr Cÿ1 Yÿ (X, Z)

ô
0

� �
A

� �
Yÿ (X, Z)

ô
0

� �
A

� �
9

� �
: (8)

Integration of (8) w.r.t. ô, using Lee (1988, (3.6)) and the application of some algebraic

identities yield

P(ô, rjY) / jCjÿ(N=2)S1
ÿ( pN=2), (9)

where

S1 � tr(X9Cÿ1X)ÿ1(ôÿ ô̂0)AA9(ôÿ ô̂0)9� b0,

b0 � tr(X9Cÿ1X)ÿ1X9Cÿ1SCÿ1X� tr(Z9CZ)ÿ1Z9YY9Z

and ô̂0 is same as ô̂1 in (4) with Ĉ replaced by C.

From (9) we see that conditional on r,

P(ôjY, r) � tr(ô̂0, AA9, b0, X9Cÿ1X, pN ): (10)

Here ôm3r is distributed as tr(ì, B, b, Óÿ1, m(r � í)) if its pdf is

f (ô) � K(m, í, r)jBjm=2bmí=2jÓjÿ(r=2)[b� trÓÿ1(ôÿ ì)B(ôÿ ì)9]ÿ[m(r�í)=2], (11)

where

K(m, í, r) � Ã(m(r � í)=2)Ãÿ1(mí=2)ðÿmí=2:

The density of ô as given in (11) is called the trace T distribution by Lee & Hsu (1997) in

which some properties of the distribution are discussed.

Moreover, integrating out ô in (9) we have the following posterior density of r:

P(rjY) / bÿ( pNÿmr=2)jX9Cÿ1Xjÿ(r=2)jCjÿ(N=2): (12)

Since

P(ôjY) �
�

P(ô, rjY)dr �
�

P(ôjY, r)P(rjY)dr, (13)

the posterior density of ô can be approximated by

P(ôjY) �: P(ôjY, r̂), (14)

where r maximizes the posterior density of r, as given in (12). This approximation will be

reasonable if P(rjY) is concentrated and nearly symmetric, as pointed out by Ljung &

Box (1980). Thus, approximately, the posterior distribution of ô is a trace T distribution.

Hence, a 1ÿ á posterior region for ô can be obtained from the following inequality:

b̂ÿ1
0 tr(X9Ĉÿ1X)(ôÿ ô̂�0 )AA9(ôÿ ô̂�0 )9 <

mr

pN ÿ mr
Fá(mr, pN ÿ mr), (15)

where ô̂�0 , b̂0, Ĉ are the ô̂0, b0 and C evaluated at r � r̂ and Fá(í1, í2) is the upper 100á
per cent point of the F distribution. In (13), the integration can be carried out numerically

and will be considered as the `̀ exact'' posterior density. A better approximation than (14)

would be the Rao±Blackwellization approximation
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P(ôjY) �: 1

L

XL

i�1

P(ôjY, r(i)), (16)

where r(i) is the ith draw from P(rjY).

Integration w.r.t. ô and r in (2) and using arguments similar to (14), we obtain the

approximate posterior distribution of ó 2 as

P(ó 2jY) �: IG
pN ÿ mr

2
,

b̂

2

� �
where IG(í1, í2) is the inverse gamma distribution with parameters í1 and í2.

3.2. Predictive inference of future values V

The density function of V given ô, ó 2 and r is

f (Vjô, ó 2, r) / ó ÿ pK jCjÿ(K=2) exp ÿ 1

2ó 2
tr Cÿ1(Vÿ XôF)(Vÿ XôF)9

� �
: (17)

Upon combining with the posterior density of ô, ó 2 and r, as given in (8) and integrating

w.r.t. ó 2 and ô, we have

P(V, rjY) / b1
ÿ[( p(N�K)ÿmr)=2]jX9Cÿ1Xjÿ(r=2)jCjÿ(N�K=2), (18)

where b1 � b0 � tr G(Vÿ Xô̂F)(Vÿ Xô̂F)9, G �MCÿ1X(X9Cÿ1X)ÿ1X9Cÿ1 �
Z(Z9CZ)ÿ1Z9, M � Iÿ F9(A0A0)ÿ1F, A0 � (A, F), and b0 is de®ned in (9). From (18) we

see that P(VjY, r) is a trace T distribution. Hence, approximately,

P(VjY) �: P(VjY, r) � tr(Xô̂F, b̂0, G, p(N � K)ÿ mr), (19)

where r maximizes

P(rjY) / jX9Cÿ1Xjÿ(r=2)jCjÿ((N�K)=2)bÿ(( pNÿmr)=2)jGÿ( p=2), (20)

and b̂0 is the b0 de®ned in (9) evaluated at r � r̂.

An approximate 1ÿ á predictive region for V can be obtained through

b̂ÿ1
0 tr Ĝ(Vÿ Xô̂F)(Vÿ Xô̂F)9 <

pK

pN ÿ mr
Fá( pK, pN ÿ mr): (21)

We next consider the conditional predictive density of V(2) given V(1) and Y. From (18) we

get

P(V(2), rjV(1), Y) / jCjÿ((N�K)=2)jX9Cÿ1Xjÿ(r=2)

3 [b2 � tr(V(2) ÿ V̂(2))9G22(V(2) ÿ V̂(2)]ÿ(( p(N�K)ÿmr)=2) (22)

where b2 � b0 � tr(V(1) ÿ X(1)ô̂F)9G11:2(V(1) ÿ X(1)ô̂F),

V̂(2) � X(2)ô̂FÿGÿ1
22 G21(V(1) ÿ X(1)ô̂F),

G � (Gij), i, j � 1, 2, G11:2 � G11 ÿG12Gÿ1
22 G21, p1 � p2 � p: (23)

It is clear that conditional on r,

P(V(2)jr, V(1), Y) � tr(V̂(2), I, b2, G22, p(N � K)ÿ mr): (24)

Meanwhile, integrating out V(2) in (22), we have

P(rjV(1), Y) / b
ÿ(( pN� p1 Kÿmr)=2)
2 jX9Cÿ1Xjÿ(r=2)jCjÿ(N�K=2)jG22jÿ( p2=2): (25)
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As in (14), we have

P(V(2)jV(1), Y) �: P(V(2)jr̂, V(1), Y), (26)

where r maximizes (25) subject to C being positive de®nite and when P(rjV(1), Y) is

symmetric and concentrated.

Thus, we obtain the following approximation,

P(V(2)jV(1), Y) �: tr(V̂(2)�, I, b̂2, Ĝ22, p(N � K)ÿ mr), (27)

where V̂(2)�, b̂2, and Ĝ22 are the V̂(2), b2, and G22, de®ned in (23), evaluated at r � r̂,

and r̂ maximizes P(rjV(1), Y) subject to C being positive de®nite.

An approximate 1ÿ á predictive region for V(2) given V(1) and Y can be obtained through

b̂ÿ1
2 tr Ĝ22(V(2) ÿ V̂(2)�)(V(2) ÿ V̂(2)�)9 <

p2 K

pN � p1 K ÿ mr
Fá( p2 K, pN � p1 K ÿ mr):

(28)

On the other hand, we can integrate P(V(2), rjV(1), Y) with respect to r to obtain the `̀ exact''

predictive distribution of V(2) given V(1) and Y. We can then compare the `̀ exact'' predictive

distribution with the approximation as given in (27).

3.3. MCMC predictive inference of V(2) given V(1) and Y

For ease of presentation and some practical consideration, we will restrict our attention to

the special situation in which r � K � 1 for the rest of the paper. We will next describe

the non-trivial part in the MCMC methodology and forecasting procedure and discuss the

MCMC approximation to the predictive distribution of V(2) given V(1) and Y. For more

details on MCMC, see Metropolis et al. (1953), Hastings (1970), Gelfand & Smith (1990),

Gelfand et al. (1990), Casella & George (1992), and Gilks et al. (1996), among others.

3.3.1. Forecast

Once the posterior distribution of the parameters are obtained through the MCMC sampler,

we can use it to predict the future values of Y. Suppose we are at the nth period. Let Dn

denote the data set fY1, Y2, . . ., Yng. Let è denote the parameters. Prediction for the

(n� 1)th period follows from the predictive density

f (Yn�1jDn) �
�

f (Yn�1jDn, è)ð(èjDn)dè, (29)

where Yn�1 denotes the random future observation at period n� 1. This density can be

approximated by Monte Carlo integration using the MCMC samples

f̂ (Yn�1jDn) � 1

L

XL

s�1

f (Yn�1jDn, è(k,s)): (30)

The mean of this predictive distribution is computed from

E(Yn�1jDn) � E(E(Yn�1jDn, è)jDn): (31)

3.3.2. MCMC approximation of posterior density of V(2) given V(1) and Y

We can use the MCMC sampler to obtain an approximate posterior density of V(2) given

V(1) and Y by
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P(V(2)jV(1), Y) �: 1

L

XL

s�1

P(V(2)jV(1), Y, è(k,s)), (32)

where è(k,s) � (ô(k,s), (ó 2)(k,s), r(k,s)) are the realizations of ô, ó 2, r for the k th iteration

and sth replication, respectively, and the approximate predictor of V(2) is computed from

V̂(2) �: 1

L

XL

s�1

(V̂(2))(k,s),

where (V(2))(k,s) is the realization of V(2) for the k th iteration and sth replication.

The approximation as given in (32) is expected to be better than (27) and an illustration is

shown in Fig. 1. In the MCMC approximation (32), the generation of ó 2, ô, V(2) will be self-

evident. As for r, we generate r given ô, ó 2, V(2), V(1), Y using the Metropolis algorithm where

f (rjô, ó 2, V, Y) / jCjÿ((N�1)=2) exp ÿ 1

2ó 2
tr Cÿ1(Y0 ÿ XôA0)(Y0 ÿ XôA0)9

� �
,

ÿ1 ,ri , 1, for i � 1, . . ., pÿ 1.

To elaborate on the Metropolis algorithm in generating r, let us assume that the prior on ri is

uniform over (ÿ1, 1) for i � 1, . . ., pÿ 1. We can transform ri to r9i 2 (ÿ1, 1) by

r9i � log
1� ri

1ÿ ri

� �
, for i � 1, . . ., pÿ 1:

Then

ri � exp(r9i)ÿ 1

exp(r9i)� 1

and the Jacobian of the transformations from r � (r1, . . ., r pÿ1) to r9 � (r91, . . ., r9pÿ1) is

J �
Ypÿ1

l�1

2 exp(r91)

(exp(r91)� 1)2
:

Hence the conditional density of r9 is

fr9(r9) � fr(r(r9)):J : (33)

Fig. 1. Comparison of exact and approximate predictive distributions of V(2) given V(1) and Y. V is the last

vectorial observation of the girl data and V(2) is the last component of V
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Then we apply the Metropolis algorithm to the probability density function of r9. Here we

must note that we de®ne a transition kernel q(r9, y) such that y � r9�Ù1=2Z with Z

being the standard multivariate normal random variates and Ù re¯ecting the conditional

covariance of r9 in (33). We can estimate the conditional covariance matrix Ù of r9 by

inverting the sample information matrix at the generated ô, ó 2, r and V(2).

An alternative approximation for P(V(2)jV(1), Y) is

P(V(2)jV(1), Y) �: 1

L

XL

i�1

P(V(2)jV(1), Y, r(i)), (34)

where r(i) is the ith draw from

f �r (r) � P(rjV(1), Y) / jCjÿ((N�1)=2)jX9Cÿ1Xjÿ1=2b
ÿ(( pN� p1ÿmr)=2)
1 jG22jÿ( p2=2),

which can be generated via the Metropolis algorithm.

The mean of this approximate predictive distribution is computed from

E(V(2)jV(1), Y) � E(E(V(2)jV(1), Y, r)jV(1), Y):

As before, we transform ri to r9i for i � 1, . . ., pÿ 1, and then apply the Metropolis

algorithm to generate r9. We can then estimate the conditional covariance matrix Ù of r9 by

inverting the sample information matrix at the generated r.

4. Numerical illustrations

For illustration purposes, we will apply some of the results developed in sections 2 and 3

to four biological data sets including three sets (dental data with 16 boys and 11 girls,

ramus data and mice data) analysed by Rao (1987) and Lee (1988) and one set (glucose

data) analysed by Chi & Reinsel (1989). For the dental data, since individual 20 is

suspected to be an aberrant observation (Lee & Geisser, 1975), the prediction comparison

will be considered for the situation in which this particular observation is excluded as well.

In this situation, N � 26 for the dental data and N � 15 for the boy data.

It is noted that in all four data sets the covariate is time. Also, our purpose here is for

illustration showing that the results presented in earlier sections can be implemented. Of course,

for a data set if an AR(1) dependence is suitable, then the general autoregressive covariance

structure considered in this paper should be a possible candidate as well.

Similar to Lee & Geisser (1975), Fearn (1975) and Lee (1988), we will predict the last

observation of a partially observed vector, that is, K � 1, p2 � 1, and p1 � pÿ 1. For

prediction purposes, we withhold one vector and use the rest for predicting the last component

of that vector, and repeat this for each of the N observations. This gives N predicted values for

the last N observed values. The mean squared deviation (MSD), the mean absolute deviation

(MAD), and the mean absolute relative deviation (MARD) of the predicted values from the

actual observations are used to assess the relative merits of the various predictors.

From the prediction results given in Table 1, it is clear that for the dental data set, the

individual 20, which is a boy, does contribute heavily to the prediction error as seen from MSD,

MAD and MARD. For example, in terms of MAD, it increases from 1.2211 to 1.3759 for the

Bayesian result which means that the absolute prediction error for this individual is 5.4007. This

is much bigger than the MAD of 1.2211 when the individual 20 is excluded. Also, for the

glucose data, the last time point ( p � 8) is harder to predict than the previous three time points

( p � 5, 6, 7). Overall, the Bayesian results are somewhat comparable or slightly better than

those using the ML method.
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For illustration purposes, we use the last vectorial observation of the girl data as V and the

rest as Y to obtain the approximate predictive density of V(2) given V(1) and Y, when p1 � 1.

The comparison among the exact, obtained by numerical integration, approximations (27), (32)

and (34) is given in Fig. 1. It is seen that for this data set the simple approximation (27) is not

adequate while (32) and (34) are almost as good as the exact. The MCMC approximations to the

predictive distribution of V(2) given V(1) and Y and the posterior distributions of ô1, ô2, ó 2, r1,

r2, and r3 are given in Table 2 when (32) is applied. Meanwhile, when (34) is applied, the

MCMC approximation to the predictive distribution of V(2) given V(1) and Y is given in Table 3.

By inspecting the two approximations of the predictive distribution of V(2) given V(1) and Y, we

see that both (32) and (34) yield very similar approximations. The Bayes estimates are computed

from the MCMC samples with 50 iterations and 500 replications. Moreover, 30 loops are carried

out for each iteration. The convergence of the Gibbs samples is monitored by examining their

empirical quantiles.

Table 1. Comparison of conditional predictions: based on V(1) and Y as the sample

ML Bayes

MSD MAD MARD MSD MAD MARD

Dental data, N � 27 3.2131 1.3854 0.0543 3.1317 1.3759 0.0538

Dental data, N � 26 2.5488 1.2296 0.0482 2.4893 1.2211 0.0479

Boy data, N � 16 4.0979 1.5828 0.0593 3.8780 1.5674 0.0584

Boy data, N � 15 2.8701 1.3544 0.0503 2.6648 1.3202 0.0489

Girl data 1.0570 0.8676 0.0369 1.0100 0.8568 0.0365

Ramus Bone data 0.7717 0.6268 0.0121 0.7698 0.6209 0.0120

Mice data

p � 4 0.0024 0.0430 0.0458 0.0024 0.0426 0.0455

p � 5 0.0023 0.0390 0.0426 0.0024 0.0410 0.0466

p � 6 0.0027 0.0454 0.0501 0.0026 0.0441 0.0489

p � 7 0.0024 0.0412 0.0444 0.0023 0.0408 0.0441

Glucose data

p � 5 0.0949 0.2530 0.0675 0.0946 0.2513 0.0670

p � 6 0.0797 0.2342 0.0638 0.0798 0.2341 0.0638

p � 7 0.0874 0.2467 0.0654 0.0880 0.2470 0.0657

p � 8 0.1189 0.2659 0.0734 0.1174 0.2643 0.0730

Table 2. MCMC approximations to the distributions of V(2) given V(1) and Y and other parameters for the

last column of girl data using (32)

mean S.D. 2.5% 5% 25% 50% 75% 95% 97.5%

ô1 20.233 0.668 18.980 19.122 19.814 20.212 20.671 21.370 21.478

ô2 0.952 0.158 0.659 0.704 0.847 0.958 1.062 1.221 1.259

V2 27.731 1.102 25.606 25.959 27.022 27.743 28.468 29.482 29.759

ó 2 4.426 1.732 2.425 2.591 3.316 4.073 5.043 7.464 8.169

r1 0.814 0.080 0.630 0.671 0.773 0.828 0.869 0.917 0.933

r2 0.775 0.095 0.561 0.620 0.725 0.790 0.841 0.896 0.908

r3 0.703 0.129 0.406 0.476 0.624 0.725 0.801 0.868 0.894
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5. Concluding remarks

The ML and Bayesian methods presented in this paper provide some alternative ways of

dealing with the growth curve data when the banded covariance structure holds. The banded

covariance structure is de®nitely one of the more important dependence structure for the

general growth curve model in addition to the serial covariance structure.

It is noted that MCMC methods presented in this paper provide superior ways of constructing

reliable intervals for the parameters and the future values. Furthermore, the computations

involved are relatively easy and should present no dif®culty.
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