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Abstract

A residual type a posteriori error estimator is presented for the least squares ®nite

element method. The estimator is proved to equal the exact error in a norm induced by

some least squares functional. The error indicator of each element is equal to the exact

error norm restricted to the element as well. In other words, the estimator is perfectly

e�ective and reliable for error control and for adaptive mesh re®nement. The exactness

property requires virtually no assumptions on the regularity of the solution and on the

®nite element order in the approximation or in the estimation. The least squares method

is in a very general setting that applies to various linear boundary-value problems such

as the elliptic systems of ®rst-order and of even-order and the mixed type partial dif-

ferential equations. Numerical results are given to demonstrate the exactness. Ó 2000
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1. Introduction

A posteriori error estimation is one of the most important components in
adaptive methodology [19,22,28]. It seems that there are no exact a posteriori
error analyses available for all the ®nite element, ®nite volume, and boundary
element methods in the literature. An estimator for the least squares ®nite
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element method (LSFEM) is presented here and is proved to be not only
globally but also locally exact.

Since the pioneering work of Babu�ska and Rheinboldt [6], it has been an
important subject to study the reliability of error estimators for adaptive nu-
merical methods in various applications. The reliability is usually quanti®ed by
the so-called e�ectivity index h de®ned as

h � e
kek ;

where e denotes an error estimator and the denominator is the exact error e

measured in a suitable norm k � k. Theoretically as well as practically, the
quantity is often desired to be either bounded below and above by some
positive constants, say C1 and C2, which are independent of the mesh param-
eter h of the approximation, i.e.,

C16 h6C2

or asymptotically exact, i.e.,

lim
h!0

h � 1

or both, see e.g., [1,2,6,7,10,15,16,21,24,26,27].
The error estimator described here is for LSFEM in a very general setting. It

is obtained by calculating the residual in L2 norm and is proved not only
globally exact, i.e.,

h � 1;

but also locally exact, i.e.,

hi :� ei

keki

� 1;

where ei denotes the residual norm (an error indicator) of an element i in a
particular triangulation of the domain associated with the parameter h and keki
is the exact error norm restricted to that element. Here, the norm k � k is in-
duced by the bilinear form derived from a least squares functional which in
turn is associated with a given boundary value problem. In other words, this is
a perfect error estimator if the error of numerical integration is not taken into
account. Even more surprisingly, the proof of the exactness in the context of
least squares formulation is almost trivial when compared with the previous a
posteriori error analysis. Furthermore, no extra assumptions on the regularity
of the solution or on the ®nite element spaces used in the approximation are
required for this exactness.

The residual type error estimation is, of course, not new [6,15,18,19,22,24]
and is presented in various formulations for various applications. The present
analysis shows that the exactness of the estimator may be an additional out-
standing feature for LSFEM which has been recognized as an attractive
method in many applications in recent years, see e.g., [3,5,8,9,11±14,18,20].
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2. An exact estimator

The boundary value problems considered herein are in a very general setting
and are expressed in the form

Lju � fj; j � 1; 2; . . . ;m; in X; �1�
Bku � gk; k � 1; 2; . . . ; n; on oX; �2�

where X � Rd , d � 1; 2; 3, is a bounded domain with the boundary oX,
u � �u1; . . . ; um�t, Lj are linear di�erential operators and Bj are linear
boundary operators. We always assume that the problem (1) and (2) has a
unique solution u in some (m-tuple) Cartesian product of function spaces de-
noted by H�X� with the given functions fj 2 L2�X�, gk 2 L2�oX�. The setting is
so general that it applies to a wide class of linear boundary value problems such
as the elliptic systems of Refs. [3,25], the ®rst-order systems of [8,9,11±14] and
the mixed type PDEs of [4,5,17,23] in the ®rst-order formulation, etc.

The problem (1) and (2) will be approximated by the LSFEM. The method
itself will also be presented in a very general setting by this we mean that the
associated least squares functional contains equation residuals and boundary
residuals all weighted by positive parameters. It is convenient to weight (1) and
(2) before de®ning the functional. Let (1) and (2) be weighted as follows:

Lwu � fw; in iX; �3�
Bwu � gw; on oX; �4�

where

Lw :� �l1L1; . . . ; lmLm�t;
Bw :� �b1B1; . . . ; bnBn�t;
fw :� �l1f1; . . . ; lmfm�t;
gw :� �b1g1; . . . ; bngn�t;

and lj and bk are the weighting parameters.
The functional, denoted by J : H�X� ! R, is de®ned as

J�v� �
Xm

j�1

Z
iX

l2
j �Ljvÿ fj�2 dX�

Xn

k�1

Z
oX

b2
k�Bkvÿ gk�2 ds

�: kLwvÿ fwk2
0;X � kBwvÿ gwk2

0;oX: �5�
Here, the norms k � k0;X and k � k0;oX are associated with the inner products
��; ��0;X and ��; ��0;oX, respectively. Evidently, the solution u 2 H�X� of (1) and (2)
minimizes the functional and vice versa, i.e.,

J�u� � min
v2H�X�

J�v�:
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Taking the ®rst variation, the solution equivalently satis®es the equation

B�u; v� � F �v� 8v 2 H�X�; �6�
where

B�u; v� :� �Lwu;Lwv�0;X � �Bwu;Bwv�0;oX;
F �v� :� �fw;Lwv�0;X � �gw;Bwv�0;oX:

The LSFEM for (1) and (2) is to solve (6) in a ®nite element subspace Sh of
H�X�, that is, to ®nd uh 2 Sh such that

B�uh; vh� � F �vh� 8vh 2 Sh; �7�
where h is the mesh size of a regular triangulation Th of X. Note that if the
boundary condition (2) is computed exactly, i.e., if the ®nite element space Sh

consists of functions that satisfy (2), the weighting parameters bk are indi�er-
ent. Hence, the least squares functional (5) leads to a very general setting of
LSFEMs with weighted or non-weighted di�erential and/or boundary residu-
als. It thus applies to all the above mentioned least squares problems.

Evidently, the uniqueness assumption of the solution of (1) and (2) implies
that the bilinear form B��; �� induces a norm by which we denote k � kB. For
most ®rst-order systems, the norm is equivalent to the H 1 norm [8,11±14]. It
also implies the following result for which a proof can be found in [5].

Theorem 1. If the problem (1) and (2) has a unique solution u 2 H�X�, then there
exists a unique function uh 2 Sh � H�X� satisfying Eq. (7).

Once the approximate solution uh is available, one of the major concerns in
practice is to assess the reliability of this approximation, i.e., to estimate the
exact error uÿ uh in some suitable norm. A posteriori error estimators repre-
sent an important means towards the assessment. For LSFE solution, we in-
troduce a residual error estimator e de®ned as

e2 � kLwuh ÿ fwk2
0;X � kBwuh ÿ gwk2

0;oX: �8�
The estimator is readily computable. In fact, if we compute the residual in each
element si of the current triangulation Th, we obtain an error indicator ei for
that element, i.e.,

e2
i � kLwuh ÿ fwk2

0;si
� kBwuh ÿ gwk2

0;oX\si
: �9�

The square of the estimator is thus the sum of all squares of the indicators.
De®ne the e�ectivity index

h � e
kekB

: �10�
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We also de®ne local e�ectivity indices by

hi � ei

kekB;si

; �11�

where kekB;si
is the restriction of kekB on si.

Theorem 2. Let u 2 H�X� and uh 2 Sh � H�X� be the solutions of (6) and (7),
respectively. Then

h � hi � 1 �12�
for all si 2Th.

Proof.

e2
i � kLwuh ÿ fwk2

0;si
� kBwuh ÿ gwk2

0;oX\si

� kLwuh ÿLwuk2
0;si
� kBwuh ÿBwuk2

0;oX\si

� �Lwe;Lwe�0;si
� �Bwe;Bwe�0;oX\si

� B�e; e�jsi
:

Therefore, we have the exactness of the local e�ectivity indices. The global
exactness is again immediate. �

Several remarks are in order.

Remark 1. The global as well as local exactness of (12) appears to be ®rst
presented in the literature. The proof of this statement is almost trivial when
compared with the previous a posteriori error analysis, see e.g. [1,2,6,7,10,
16,21,24,26,27]. Furthermore, there are virtually no assumptions for this
exactness, i.e., no saturation assumptions like those of [7,21], no extra
regularity assumptions on the exact solution like those of [1,2,6,10,16,24,26]
and no restrictions on the ®nite element orders used in the approximation. In
fact, we even do not require the approximate solutions uh of (7) to be
convergent at all (cf. Theorem 1).

Remark 2. It is well-known that the LSFEM inherently provides very attractive
properties in applications. For example, the trial and test functions are not
required to satisfy the boundary conditions, its discretization results in
symmetric and positive de®nite algebraic system, a single piecewise polynomial
®nite element space may be used for all test and trial functions and it does not
require the inf±sup condition to be satis®ed when compared with the mixed
®nite element method etc., see loc. cit. The exactness of the error estimator may
yet provide an additional outstanding feature of the LSFEM versus other
methods, since it is perfectly reliable and e�ective.
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Remark 3. Obviously, the implementation of the residual estimator is simple.
The exactness is also preserved in terms of the numerical integration. The error
indicators can be computed on parallel processors without any communication
cost since no jump terms across element boundaries and no local boundary
conditions are involved. Together with the symmetric property of the algebraic
system, the entire adaptive procedure of least squares computations can be
parallel and distributed if a conjugate gradient solver is used since, in this case,
there is no need for a global assembly and the iterative process can be done
locally [18].

3. Numerical example

By introducing the vorticity x � ov=oxÿ ou=oy, the 2-D dimensionless
Stokes equations can be written as [13]

Lu �

0 0 mo=oy o=ox

0 0 ÿ mo=ox o=oy

o=ox o=oy 0 0

o=oy ÿ o=ox 1 0

26664
37775

u

v

x

p

26664
37775 �

f1

f2

0

0

26664
37775 � f in X;

�13�
where u and v are the x and y components of velocity, p the total head
of pressure, m the inverse of Reynolds number and f1 and f2 the given body
forces. We consider a model problem [8] of (13) to which the exact solution is
given by

Fig. 1. Initial mesh.
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u1 � �x
h
ÿ a�2 � �y ÿ b�2

ic=2

;

u2 � �x
h
ÿ a�2 � �y ÿ b�2

ic=2

;

x � �x
h
ÿ a�2 � �y ÿ b�2

ic=2

;

p � �x
h
ÿ a�2 � �y ÿ b�2

ic=2

;

in a unit square f�x; y� j 06 x6 1; 06 y6 1g, where a � b � 0:1234 and
c � 0:9. Singularity appears at the point �a; b�. The appropriate boundary
condition (2) can be constructed via the exact solution. For the least squares

Table 1

NN kekB hmin hmax h

21 0.4416 1 1 1

30 0.3549 1 1 1

39 0.0962 1 1 1

137 0.0456 1 1 1

165 0.0313 1 1 1

243 0.0221 1 1 1

289 0.0180 1 1 1

294 0.0174 1 1 1

353 0.0131 1 1 1

823 0.0054 1 1 1

1071 0.0038 1 1 1

1522 0.0026 1 1 1

2382 0.0016 1 1 1

Fig. 2. Final mesh.
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approximation (7), we impose the boundary condition in biquadratic ®nite
element spaces Sh and set all weighting parameters to one. An adaptive process
using the residual error estimator (8) begins with the initial mesh Fig. 1 and
ends with the ®nal mesh Fig. 2. All of the (global and local) e�ectivity indices
of the adaptive computation are equal to one and are shown in Table 1 where
NN denotes the number of nodes, hmin � mini hi and hmax � maxi hi.
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