
1514 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

A High-Throughput Memory-Based VLC Decoder with Codeword
Boundary Prediction

Bai-Jue Shieh, Yew-San Lee, and Chen-Yi Lee

Abstract—In this paper, we present a high-throughput memory-
based VLC decoder with codeword boundary prediction. The re-
quired information for prediction is added to the proposed branch
models. Based on an efficient scheme, these branch models and
the Huffman tree structure are mapped onto memory modules.
Taking the prediction information, the decompression scheme can
determine the codeword length before the decoding procedure is
completed. Therefore, a parallel-processor architecture can be ap-
plied to the VLC decoder to enhance the system performance. With
a clock rate of 100 MHz, a dual-processor decoding process can
achieve decompression rate up to 72.5 Msymbols/s on the average.
Consequently, the proposed VLC decompression scheme meets the
requirements of current and advanced multimedia applications.

Index Terms—Codeword boundary prediction, Huffman coding,
memory-based, VLD.

I. INTRODUCTION

W ITH the progress of multimedia technologies, a large
amount of data is used for representing video films and

photographic images. To transmit and keep the information,
high bandwidth communication systems and large-capacity
storage devices are developed. Nevertheless, they cannot
satisfy the requirements of many advanced applications. An
efficient data-compression scheme is necessary for reducing
the transmission costs and saving the storage space. A classical
data-compression scheme is the Huffman code [1], also called
the variable length code (VLC). It is the most popular lossless
compression technique, which is recommended as the entropy
coding method by many international standards, such as JPEG,
MPEG, and H.263. Based on the predetermined weight of each
symbol, the Huffman procedure assigns shorter codewords to
the higher probability symbols and longer codewords to the
less frequency symbols. Therefore, it exploits data redundancy,
and the achieved compression ratio is very close to the source
entropy.

Although the Huffman encoding procedure reduces a great
amount of data, two cases make the realization of high-perfor-
mance decompression schemes difficult. The first: codeword
lengths are variable. The codeword boundary in a bit stream
cannot be detected until the decoding procedures of previous
codewords are completed. This recursive dependence results
in an upper bound on iteration speed. The second: pipeline
schemes are not very efficient to increase the throughput of

Manuscript received June 1, 1998; revised June 12, 2000. This work was
supported by the National Science Council of Taiwan, R.O.C., under Grant
NSC87-2215-E-009-035. This paper was recommended by Associate Editor N.
Ranganathan.

The authors are with the Department of Electronics Engineering, Na-
tional Chiao Tung University, Hsinchu, 300, Taiwan, R.O.C. (e-mail:
titany@royals.ee.nctu.edu.tw).

Publisher Item Identifier S 1051-8215(00)10623-8.

Fig. 1. An example of Huffman coding procedure.

VLC decoders. For most applications, pipeline techniques
can improve the performance of systems by optimizing the
clock rate. However, the VLC decompression scheme has to
go through one level of the Huffman trees in each operation.
The time that this operation takes limits the possible decoding
throughput even though it is divided into several pipeline
stages.

Several VLC decoders and Huffman decompression schemes
have been discussed. The PLA-based and ROM-based designs
are presented in [2]–[6], [12], and [13]. Because their archi-
tectures are the direct mapping of coding tables, the VLSI
implementations have to be redesigned when the tables are
changed. Besides, the designs in [3] and [4] use the concurrent
and parallel architectures to break the bottleneck of the de-
coding throughput. Nevertheless, they are designed for multiple
independent bit streams. The iteration bound of a single bit
stream remains unsolved. The memory-based VLC decoders
are presented in [7]–[11]. Based on the memory-mapping
schemes, the coding table information is loaded into on-chip
memories to obtain flexibility. Therefore, the Huffman tables
can be changed without redesign and the architectures can be
used by various applications. In addition, the pipeline schemes
in [8] and [9] optimize the operation clock rate. However, the
total time that spends in going through one tree level is not
reduced. The system performance is not improved significantly.

The motivation behind our research is developing a high
throughput and flexible VLC decoder that can satisfy the
requirements of current and advanced multimedia applica-
tions. According to the proposed branch models and the
efficient memory-mapping scheme, the decoding procedure
with codeword boundary prediction is presented. Because the
recursive dependence of a single bit stream is broken by this
procedure, a parallel-processor VLC decoder is proposed to

1051–8215/00$10.00 © 2000 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1515

Fig. 2. Branch types and the 2-bit tree structure of MPEG-2 VLC table 15.

Fig. 3. Branch models and bit assignments.

increase the decoding throughput. Based on a dual-processor
decoding process, simulation results show that the average
decompression rate up to 72.5 Msymbols/s can be achieved at
100-MHz clock rate.

The organization of this paper is as follows. In Section II,
the branch models and the memory-mapping scheme are pro-
posed. Then the decoding procedure with codeword boundary
prediction is described. A parallel-processor VLC decoder is



1516 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

TABLE I
ANALYSES OFMEMORY REQUIREMENTS. (a) MEMORY LOCATIONS (LOC

NODES) OF EACH METHOD. (b) WORDLENGTH FOREACH MEMORY LOCATION.
(c) TOTAL MEMORY REQUIREMENTS OF THETABLES

(a)

(b)

(c)

presented, too. Based on a dual-processor decoding process,
simulation results, and performance comparisons are given for
reference. Finally, the conclusion is given in Section III.

II. THE VLC DECODER WITH CODEWORD BOUNDARY

PREDICTION

A. Branch Models

To achieve high-performance decoding schemes, it is essen-
tial to analyze the characteristics of encoding procedures. An
example of Huffman coding procedure is shown in Fig. 1. It
combines two symbols having the lowest probabilities and gen-
erates a composite symbol having the probability equal to the
sum of the combined symbols. By observing the result of this
procedure, it is found that the codewords will have the same
prefix and length if their source symbols are combined. For ex-
ample, the codewords of the symbols, such as X5, X6, X7, and
X8 in Fig. 1, have the same codeword length, 4-bit, and prefix,
2’b11. When this prefix is recognized, VLC decoders can de-
termine the codeword length and boundary in the bit stream be-
fore the decoding procedure is completed. However, tree-based
decoding schemes are performed by comparing the bit stream
with the branch types which specify the conditions between the

TABLE II
PERFORMANCECOMPARISONS OFDIFFERENTVLC DECOMPRESSIONSCHEMES.
(a) INFORMATION OF THERANDOM CODEWORDBIT STREAMS. (B) DECODING

CYCLES OFEACH SCHEME. (c) COMPARISONS OF THEDECOMPRESSION

SYMBOL RATE. (d) COMPARISONS OF THEDECODING THROUGHPUT

(a)

(b)

(c)

(d)

parent-nodes and child-nodes. The codeword boundary predic-
tion must be realized by detecting the branch types rather than
recognizing the codeword prefix.

The branch types that are presented in [8] and the 2-bit tree
structure of MPEG-2 VLC table 15 are now depicted in Fig. 2.
In addition to the information of these branch types, two mes-
sages are necessary for accomplishing the codeword boundary
prediction. The first, called ACT, indicates whether All Child-
nodes of a parent-node are Terminal-nodes. The second, de-
noted S, expresses that some child-nodes are Special terminal-
nodes having single bit labels. According to the branch types
and the required messages, branch models that can perform the
codeword boundary prediction are generated as shown in Fig. 3.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1517

Fig. 4. An example of the proposed memory mapping scheme.

Furthermore, to enhance the prediction efficiency, two Group
branch models that indicate all grandchild-nodes are terminal-
nodes are created since their source symbols are combined and
the same codeword prefix and length are received.

B. Memory-Mapping Scheme

An efficient memory-mapping scheme that can enhance the
system performance and reduce the memory requirement is very
important for memory-based VLC decoders. Based on the effi-
cient scheme presented in [11], the decoding information, LOC,
T, C, and R are mapped onto the memories. To save the memory
space, the child-nodes of a parent-node are merged into a LOC.
For 2-bit tree structure, each LOC contains 4-set bit assignments
of the branch models. The information for calculating the de-
coded symbol address and the next LOC address is provided
by T and C. The th entry of T is the total number of the ter-
minal-nodes from LOC[0] to LOC[i-1]. On the contrary, the
th entry of C indicates the total number of the nodes having

child-nodes from LOC[0] to LOC[i-1]. In addition, the LOC be-
hind the C th entry only consists of terminal-nodes and un-
used-nodes. To save the memory space, a 4-bit R instead of the
4-set bit assignments is used for indicating the terminal-nodes
and C is eliminated because the next LOC is not required. Be-
sides, T represents T in this condition. Based on this pro-
posed scheme, three memories are requested to perform the
memory-mapping. The first memory module stores LOC, T, and
C. Both R and T are loaded into the second memory. The third
memory stores the decoded symbols. Beside, {LOC[1], T[1],
C[1]} are copied into individual registers to enhance the de-
coding throughput.

To access more decoding information in one operation, the
distribution of LOC in the tree structure has to be fixed. Both
LOC[0] and LOC[1] must be located in tree level 0 and level 1,
respectively. Because some nodes in tree level 1 do not generate
child-nodes, the LOC distribution is not regular in tree level 2.
An unused-LOC which consists of 4 unused- nodes is intro-
duced into the tree level 2 as the child-LOC of the unused-node
or terminal-node of tree level 1. Consequently, the tree level 2
must be composed of LOC[2 : 5] and the LOC distribution is
fixed from tree level 0 to level 2. Because the parent-node of
the unused-LOC is treated as having child-nodes, the number
of C has to be updated. An example of the proposed
memory-mapping scheme is shown in Fig. 4 where Cis
5. The analyses of memory requirements are given in Table I.
Although the branch models need more memory space, the
overall memory requirement of the proposed scheme is reduced
about 5% 10% compared with [8].

C. Decoding Procedure with Codeword Boundary Prediction

The decoding procedure with codeword boundary prediction
is performed by iterating the operation steps shown in Fig. 5,
which is a high level description of this decoding procedure.
Based on the memory-mapping results shown in Fig. 4, an ex-
ample of a bit stream (11001...)is given as follows for illustra-
tion.

Iteration 1, the initial cycle:

1.1) {LOC[1], T[1]} are loaded into registers, {dMDR,
T }, since every codeword begins with tree level 1.
According to the bit_stream[0 : 1] , the branch



1518 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

Fig. 5. A high-level description of the decoding procedure with codeword boundary prediction.

model set 11 of LOC[1] in dMDR are selected for
decoding operations.

1.2) Because LOC[2 : 5] distribute in tree level 2, the re-
quired LOC address 5 is the sum of the constant

2 and the bit_stream[0 : 1] . {LOC[5],
T[5], C[5]} are accessed from the memory module 1
and stored in registers, {pMDR, T, C }. According
to the bit_stream[2 : 3] , the prediction branch
model is the set 00 of LOC[5] in pMDR.

2.1) Neither terminal-nodes nor prediction messages
are detected form the set 11 of LOC[1]. With the
bit_stream[0 : 1], the codeword cannot be decoded,
nor can the codeword length be predicted. Based
on the set 00 of LOC[5], the bit_stream [2 : 3] is in
both ACT and S conditions. After comparing the
bit_stream[4 : 5] with the prediction branch model, it
is found that the codeword is the special terminal-node
and one single bit, 1, remains to be decoded after the



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1519

Fig. 6. Block diagram of a parallel-processor VLC decoder.

bit_stream [2 : 3]. Therefore, the 5-bit codeword length
is predicted and the “predict” signal is set.

2.2) Because the codeword has not been decoded, it is es-
sential to find the decoding information of the next
cycle. The address of the next required {LOC, T, C}
is expressed by (C[5]7) (OFSC 1) 8, where
the OFSC is the number of nonterminal nodes before
the set 00 of LOC[5] in pMDR. But this address8
is greater than , {R[2], T [2]} instead of
{LOC[8], T[8], C[8]} are accessed from the memory
module 2, where the new address2 is the result of
( ).

3) Return the code-length 5 and “predict” signal to a con-
troller.

Iteration 2, the second cycle:

1.1) LOC[5], T[5] in pMDR, T are shifted into
dMDR, T .

1.2) R[2], T [2] are loaded into pMDR, T .

2.1) The branch model set 00 of LOC[5] in dMDR is used
for decoding the bit_stream [2 : 3] which is not the ter-
minal- node. The codeword length needs not be pre-
dicted since it has been known in the previous cycle.

Iteration 3, the third cycle:

1.1) {R[2], T [2]} are shifted into {dMDR, T }.

2.1) The terminal of the codeword is detected by the set10
of R[2] in dMDR.

2.2) The decoded symbol address is (T )
(OFST ) where OFST is the number of
terminal nodes before the set 10 of R[2]. Besides, the
“finish” signal is enabled.

3) Return the symbol_address and “finish” signal to
the controller.

D. Parallel-Processor VLC Decoder

According to the proposed decoding procedure, the valid bit
stream of the next codeword is available when the codeword
length and boundary are determined. However, the VLC de-
coding processor has to complete the procedures for finding the
decoded symbol address. To increase the decoding throughput,
another processor is used for decoding the valid bit stream of the
next codeword. A block diagram of a parallel-processor VLC
decoder is depicted in Fig. 6. The processor starts the decoding
procedure when the “Bit_Stream & Start” are available. Be-
sides, it transmits the “Sym_address & Finish” to notify the con-
troller that the decoding procedure is completed and the symbol
address is found. On the other hand, the controller can deter-
mine the codeword boundary when the “CodeLength & Pre-
dict” are received. Since the codeword lengths are variable, the
latter codeword in the bit stream can be decoded earlier than the
former long codeword. The controller has to rearrange the de-
coded symbol addresses in order of the input codeword before
accessing the symbol memory. Because the decoding informa-
tion is identical for every processor, the multi-read-port memory
modules are applied to save the memory requirement. As a re-
sult, the overhead of the parallel-processor VLC decoder is ac-
ceptable since only decoding processor needs to be duplicated.

The number of processors determines the system perfor-
mance and hardware efficiency of the parallel-processor VLC
decoder. If the valid bit stream is not available consecutively, the
hardware efficiency will be degraded due to idle operations. On
the other hand, the system performance will not be enhanced if
the VLC decoder has no available processor to decode the valid
bit stream continuously. Based on the coding table given by
MPEG and JPEG, simulation results show that the triple-pro-
cessor VLC decoder has the highest performance because the



1520 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

Fig. 7. The dual-processor decoding process.

bit stream can be decoded continuously. Nevertheless, several
stalls are detected in the allocated processors. Compared to the
triple-processor, the decoding throughput of the dual-processor
becomes degraded a little bit, but the hardware efficiency is
improved significantly. Therefore, the dual-processor decoder
structure is selected for multimedia applications.

The dual-processor decoding process is presented in Fig. 7.
The controller will determine the codeword boundary and
the valid bit stream when the “CodeLength & Predict” are
received. When processor transmits “Sym_address & Finish,”
the controller frees the busy processor and rearranges the
decoded symbol address. Then, the symbol can be accessed in
order of the input codeword. Besides, the controller assigns
“Bit_Stream & Start” to the free processor. If there is no free
processor, the controller will queue the bit stream and wait for
available processor.

E. Performance Estimation

Based on codeword boundary prediction, performance of
the parallel-processor VLC decoder depends on whether the
branch models can predict the lengths of the codewords in a
given bit stream efficiently. Therefore, random codeword bit
streams are generated to evaluate the performance, where the
frequency of each codeword coincides with the probability
of the related symbol. Performance comparisons of different
VLC decompression schemes are given in Table II. It is found
that the dual- processor VLC decoder achieves the average de-
compression rate of 72.5 Msymbol/s operating at 100 MHz. In
other words, the decoding throughput of this decoder can be up
to 810 Mbps for MPEG-2 DCT coefficient table 15 containing
11-bit symbols and with 60% compression ratio. Besides, with
the same clock rate, the average decoding throughput of the
proposal is about 1.5 times of a single-processor VLC decoder,
3.4 times of [9], and 8.2 times of [8].

III. CONCLUSION

In this paper, we present a VLC decompression scheme with
codeword boundary prediction to break the iteration bound of a
single bit stream. The required prediction messages are added
to the coding table information by the proposed branch models.
Based on an efficient memory-mapping scheme, the informa-
tion is loaded into memory modules for both decoding and pre-
diction operations. Hence, the codeword length can be deter-
mined before the decoding procedure is completed. To enhance
decompression throughput, a parallel-processor VLC decoder
is developed for bit stream decoding. Simulation results show
that the dual-processor decoder structure is the optimal solution
for video films and images applications. Therefore, the VLC
decoder with codeword boundary prediction scheme is suitable
for current and advanced multimedia systems, such as MPEG-2,
H.263, and MPEG-4.

ACKNOWLEDGMENT

The authors would like to thank their colleagues within the
SI2 group of NCTU for many fruitful discussions, especially
T.-Y. Hsu and J.-J. Jong. The MPC support from NSC/CIC is
also acknowledged.

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE, vol. 40, pp. 1098–1101, Sept. 1952.

[2] K. K. Parhi, “High-speed Huffman decoder architectures,”Proc. 25th
Asilomar Conf. Signals, Systems and Computers, vol. 1, pp. 64–68,
1991.

[3] A. Mukherjee, H. Bheda, and T. Acharya, “Multibit decoding/encoding
of binary codes using memory-based architectures,” inProc. Data Com-
pression Conf., Snowbird, UT, Apr. 1991, pp. 352–361.

[4] S.-F. Chang and D. G. Messerschmitt, “Designing a high-throughput
VLC decoder Part I—Concurrent VLSI architectures,”IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 2, pp. 187–196, June 1992.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1521

[5] H.-D. Lin and D. G. Messerschmitt, “Designing a high-throughput VLC
decoder Part II—Parallel decoding methods,”IEEE Trans. Circuits Syst.
Video Technol., vol. 2, pp. 197–206, June 1992.

[6] K. K. Parhi, “High-speed VLSI architecture for Huffman and Viterbi de-
coders,”IEEE Trans. Circuits Syst. II, vol. 39, pp. 385–391, June 1992.

[7] A. Mukherjee, N. Ranganathan, and M. Bassiouni, “Efficient VLSI de-
sign for data transformations of tree-based codes,”IEEE Trans. Circuits
Syst., vol. 38, pp. 306–314, Mar. 1991.

[8] A. Mukherjee, N. Ranganathan, J. W. Flieder, and T. Acharya,
“MARVLE : A VLSI chip for data compression using tree-based
codes,”IEEE Trans. VLSI Syst., vol. 1, pp. 203–213, June 1993.

[9] H. Park and V. K. Prasanna, “Area efficient VLSI architectures for
Huffman coding,” IEEE Trans. Circuits Syst., vol. 40, pp. 568–575,
Sept. 1993.

[10] L.-Y. Liu, J.-F. Wang, and J.-Y. Lee, “Cam-based VLSI architecture for
daynamic Huffman coding,”IEEE Trans. Consumer Electron., vol. 40,
no. 3, pp. 282–289, Aug./Sept. 1994.

[11] Y.-S. Lee and C.-Y. Lee, “A memory-based architecture for very-high-
throughput variable length codec system,” inProc. ISCAS’97, vol. 3,
June 1997, pp. 2096–2099.

[12] M. K. Rudberg and L. Wanhammar, “Implementation of a fast
MPEG-2 compliant Huffman decoder,”Proc. EUSIPCO’96, vol. 3, pp.
1467–1470, Sept. 1996.

[13] J.-Y. Wu and L.-G. Chen, “A variable length decoder for MPEG-2,”
Proc. 1996 HD-Media Technology and Applications Workshop, no. A5,
pp. 3/13–3/18.


