1514 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

A High-Throughput Memory-Based VLC Decoder with Codeword
Boundary Prediction

Bai-Jue Shieh, Yew-San Lee, and Chen-Yi Lee

Abstract—in this paper, we present a high-throughput memory- X1: 0.2500 0
based VLC decoder with codeword boundary prediction. The re- 0
quired information for prediction is added to the proposed branch ~ X2: 0.2500 1
models. Based on an efficient scheme, these branch models anc S

ource

the_Huffman tree structure are mapped onto memory modules. 3. 0.1250 0 Symbol Codewords
Taking the prediction information, the decompression scheme can
determine the codeword length before the decoding procedure is X4: 0.1250 1 0 X1 00
completed. Therefore, a parallel-processor architecture can be ap- t X2 o1
plied to the VLC decoder to enhance the system performance. With X3 100
a clock rate of 100 MHz, a dual-processor decoding process can X5: 0.0625 0 1 x4 101
achieve decompression rate up to 72.5 Msymbols/s on the average :)— X5 1100
Consequently, the proposed VLC decompression scheme meets the X6: 0.0625 1 X6 1101
requirements of current and advanced multimedia applications. 1 X7 1110

Index Terms—Codeword boundary prediction, Huffman coding, X7:0.0625 0 X8 i
memory-based, VLD. } 1

X8: 0.0625 1
|. INTRODUCTION Fig. 1. An example of Huffman coding procedure.

ITH the progress of multimedia technologies, a large L L .
Wamount of data is used for representing video films ani-C _decoders. For most applications, pipeline techniques
photographic images. To transmit and keep the informatiof? improve the performance of systems by optimizing the
high bandwidth communication systems and large-capacfi{pcK rate. However, the VLC decompression scheme has to
storage devices are developed. Nevertheless, they carﬂ%tth_rOUQh one_level of Fhe Huffmz?m _trees n eaph operatl(_)n.
satisfy the requirements of many advanced applications. ARE time that this operation takes limits the possible decoding
efficient data-compression scheme is necessary for reductAgPughput even though it is divided into several pipeline
the transmission costs and saving the storage space. A classita€S: ,
data-compression scheme is the Huffman code [1], also calle®€Veral VLC decoders and Huffman decompression schemes
the variable length code (VLC). It is the most popular losslef@ve been discussed. The PLA-based and ROM-based designs

compression technique, which is recommended as the entrg§ Presented in [2]-[6], [12], and [13]. Because their archi-

coding method by many international standards, such as JPEgstUres are the direct mapping of coding tables, the VLSI

MPEG, and H.263. Based on the predetermined weight of edfP'ementations have to be redesigned when the tables are
symbol, the Huffman procedure assigns shorter codewordsCRnged. Besides, the designs in [3] and [4] use the concurrent

the higher probability symbols and longer codewords to ahd parallel architectures to break the bottleneck of the de-

less frequency symbols. Therefore, it exploits data redundan_%?ding throughput. Nevertheless, they are designed for multiple

and the achieved compression ratio is very close to the soufiddependent bit streams. The iteration bound of a single bit

entropy. stream remains unsolved. The memory-based VLC decoders

Although the Huffman encoding procedure reduces a gréd€ Presented in [7]-[11]. Based on the memory-mapping
amount of data, two cases make the realization of high-perfGEn€mes, the coding table information is loaded into on-chip
mance decompression schemes difficult. The first: codewdRfmories to obta|r_1 flexibility. Therefore, the HF’ﬁma” tables
lengths are variable. The codeword boundary in a bit stre&" P& changed without redesign and the architectures can be
cannot be detected until the decoding procedures of previdiR€d Py various applications. In addition, the pipeline schemes
codewords are completed. This recursive dependence resiité] @nd [9] optimize the operation clock rate. However, the
in an upper bound on iteration speed. The second: pipeli al time that spends in going through one tree level is not

schemes are not very efficient to increase the throughput r&duced. The system performance is not improved significantly.
The motivation behind our research is developing a high

throughput and flexible VLC decoder that can satisfy the

Manuscript received June 1, 1998; revised June 12, 2000. This work V‘f@quirements of current and advanced multimedia applica-
supported by the National Science Council of Taiwan, R.O.C., under Greint

NSC87-2215-E-009-035. This paper was recommended by Associate Edito Qns. According to the proposed branch models and the

Ranganathan. efficient memory-mapping scheme, the decoding procedure

The authors are with the Department of Electronics Engineering, Ngvith codeword boundary prediction is presented. Because the
tional Chiao Tung University, Hsinchu, 300, Taiwan, R.O.C. (e-malil; ive d d f inale bi is brok by thi
titany@royals.ee.nctu.edu.tw). recursive dependence of a single bit stream is broken by this

Publisher Item Identifier S 1051-8215(00)10623-8. procedure, a parallel-processor VLC decoder is proposed to

1051-8215/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1515

Reqular Branch:
All 2-bit Child-nodes

Special Branch:
Two 1-bit Terminals

Special Branch:
One 1-bit Terminal=0

01 0 00

?i

0101 0 101100011011

Special Branch:
One 1-bit Terminal=1

L1000

00011011 00 101

A A A DA AT

01 10 11 0001 10 11 00011011 00011011 00011011 00011011 01010101 010101

AA A A

00011011 00011011 00011011 00011011 01010108 01010101

Fig. 2. Branch types and the 2-bit tree structure of MPEG-2 VLC table 15.

{ACT, T, S0, S1} Traditional {ACT, T, S0, S1} ACT
& Function Branch Models & Function Branch Models
{0,0,0,0} arent {1,0,0,0}
Regular: all 2-bit child; P Regular: all 2-bit child, parent
All Child-nodes are not /\ All Child-nodes are /\
Terminalls; ' 00 o1 10 1 Terminals; 00 01 10 1
No Special terminal; /\Mﬂ\ No Special terminals;
{0,0,1,0} {1,0,1,0}
parent patent

Special: one 1-bit 0 ; Special: one 1-bit 0;

All Child-nodes are not /\ All Child-nodes are /\

Tetminals; 0 10 1 Terminals; 0 10 1
Special terminal; N Special terminal;
{0,0,0,1} 11,001}
Special: one 1-bit 1 ; parent Special: one 1-bit 1; parent
All Child-nodes are not /\ Ay Cb]i[d—node are —7 T~
Terminals; 00 01) Terminals; 00 01 1
Special terminal; AN YA Spectal cerminal;
{0,0,1,1} {1,1,0,1} parent
Special: two 1-bit ; parent Group: 8 symbols ; T N —
All Child-nodes are T 3 bits remain to decode 00 01 10 11
Terminals; 0 1 after parent-node; NN N\ o
Special terminals; .
All Terminals
{1,1,1,0}
{0, 13 0,0} No Child nodes Group: 16 symbols ; patent
Terminal node ; 4 bits remain to decode 7 ST

after parent-node; 00 01 10 11

{0,1,1,1} .
No Child nodes /\W\

Nonuse node ;
All Terminals

Fig. 3. Branch models and bit assignments.

increase the decoding throughput. Based on a dual-processdrhe organization of this paper is as follows. In Section I,
decoding process, simulation results show that the average branch models and the memory-mapping scheme are pro-
decompression rate up to 72.5 Msymbols/s can be achievegased. Then the decoding procedure with codeword boundary
100-MHz clock rate. prediction is described. A parallel-processor VLC decoder is

1516 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

TABLE |
ANALYSES OF MEMORY REQUIREMENTS (&) MEMORY LOCATIONS (LOC
NODES) OF EACH METHOD. (b) WORDLENGTH FOREACH MEMORY LOCATION.

TABLE I
PERFORMANCECOMPARISONS OFDIFFERENTVLC DECOMPRESSIONSCHEMES
(a) INFORMATION OF THE RANDOM CODEWORDBIT STREAMS. (B) DECODING

(c) TOTAL MEMORY REQUIREMENTS OF THETABLES

CYCLES OF EACH SCHEME. (c) COMPARISONS OF THEDECOMPRESSION
SymBoL RATE. (d) COMPARISONS OF THEDECODING THROUGHPUT

Table Ref[8] Proposed
Dasa Formar | PHAFECS | (Lo T.C) | (RTu) |(Symbol) Table | he bt steam | he ot stheam
MPEG2 TB1 71 13 3 34 MPEG2 TB1 2025 5095
MPEG2 TB9 109 17 15 64 MPEG2 TB9 511 2591
MPEG2 TB15 206 35 23 113 MPEG2 TB15 65392 267072
CCITT black 170 27 21 104 CCITT black 8160 25644
CCITT white 170 36 12 104 CCITT white 4080 22842
TPEG Cy 31 2 o) 62 JPEG Cy 131068 431806
JPEG ChCr 32 31 30 162 JPEG CbCr 65535 222820
(@) (a) A
Table Ref[8] Proposed Table Ref[8] Ref[9] ongle | pua-
Data Format | Pata Field + (Lo, ,C} | {R,Tr} |{ Symbol } MPEG2 TB1 19240 7120 3401 2515
Branch Types MPEG2 TB9 7726 3102 1442 815
MPEG2 TB1 743 16+4+5 4+6 6 MPEG2TBI5| 733072 332464 149407 89186
MPEG2 TB9 7+3 16+5+5 446 6 CCITT black 78700 33804 14107 10519
MPEG2 TB1S 1143 16+6+6 4+7 11 CCITT white 64400 26922 12063 8277
CCITT black 1243 16+7+6 4+7 12 JPEG Cy 1296358 562874 233056 161455
CCITT white 1243 16+7+6 4+7 12 JPEG CbCr 669955 288355 120883 78596
JPEG Cy 8+3 16+6+6 448 8
JPEG CbCr 8+3 16+6+6 448 8 (b)
(b) Table Ref[g] Ref[9] ls’;g%lgsor PD:(I)?JIC-SSOI‘
Table Ref[S) Proposed MPEG2TB1 | 1052495 | 2844101 59.54131 80.51690
MPEGZ TB1 ps 00 MPEG2 TB9 6.61403 | 16.47324 35.43689 62.69939
MPEG2 TBY 1090 976 MPEG2TBI15| 892027 | 19.66890 43.76769 73.32092
MPEG2TBIS 2884 VLT CCITTblack | 1036849 | 24.13916 57.84362 77.57391
CCITT 3 black 2550 2262 CCITT white 6.33540 | 15.15489 33.82243 49.29322
COITT G5 white 2550 EYER) JPEG Cy 10.11048 | 23.28550 56.23884 81.17928
TPEG lamance 572 504 JPEG CbCr 9.782 2272719 5421358 83.38211
TPEG chrominance 7552 7504 Average 8.950804 | 2141284 48.69891 72.56653
(c) (c)

Table Ref[s] Ref[9] gi'g%leeS-SOI” PDrtl)ilc-ssor
presented, too. Based on a dual-processor decoding proc Mbps | Ratio | Mbps | Ratio | Mbps | Ratio | Mbps | Ratio
simulation results, and performance comparisons are given MPEGTB! | 63 1 170 | 2.698 | 357 | 5667 | 484 | 7.683
reference. Finally, the conclusion is given in Section Il1. MPEGTBY | 39 1 98 | 2.513 | 212 | 5436 | 377 | 9.667

MPEG TB15] 98 1 216 | 2204 | 481 | 4908 | 806 | 8.224

CCITT black | 124 1 289 | 2331] 694 | 5597 | 930 | 7.500

CCITT white] 76 1 181 | 2382 405 | 5329] 591 | 7.776

Il. THE VLC DECODER WITH CODEWORD BOUNDARY JPEG Cy %0 N 186 2325 1 250 15625 | 650 8125

PREDICTION JPEGCbCr | 178 1 182 | 2333 | 434 | 5564 | 667 | 8.551

A. Branch Models Avg Ratio 1 2.398 5.447 8.218
(d)

To achieve high-performance decoding schemes, it is essen-
tial to analyze the characteristics of encoding procedures. An
example of Huffman coding procedure is shown in Fig. 1. parent-nodes and child-nodes. The codeword boundary predic-
combines two symbols having the lowest probabilities and geten must be realized by detecting the branch types rather than
erates a composite symbol having the probability equal to thecognizing the codeword prefix.
sum of the combined symbols. By observing the result of this The branch types that are presented in [8] and the 2-bit tree
procedure, it is found that the codewords will have the samns&ructure of MPEG-2 VLC table 15 are now depicted in Fig. 2.
prefix and length if their source symbols are combined. For ebz addition to the information of these branch types, two mes-
ample, the codewords of the symbols, such as X5, X6, X7, asdges are necessary for accomplishing the codeword boundary
X8 in Fig. 1, have the same codeword length, 4-bit, and prefigrediction. The first, called ACT, indicates whether All Child-
2'b11. When this prefix is recognized, VLC decoders can deodes of a parent-node are Terminal-nodes. The second, de-
termine the codeword length and boundary in the bit stream bmted S, expresses that some child-nodes are Special terminal-
fore the decoding procedure is completed. However, tree-basedles having single bit labels. According to the branch types
decoding schemes are performed by comparing the bit streand the required messages, branch models that can perform the
with the branch types which specify the conditions between thedeword boundary prediction are generated as shown in Fig. 3.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1517

000]1(\ AR Lm[4%5¥ . 10\
 EOOY Q0o @ @ |

R [0} R[] R[2) R{3]

Symbol Codel
S mmmm————oo Memory Module 1{Loc, T, C}: Memory Module 3
a 10 set00 set01 setl1Q setll {symbol} : A
b 000 = == == === (a
; g:‘;o Loc[0] : 0000 0111 0111 0111 T[0]= 0 C[0]=0 2
. o111 Loc[t]: 0010 1010 0100 0001 T[1]= 0 C[1]=1 S= d
p 1101 Loc[2] : 0100 0111 1000 1011 TR= 1 C[2J=5 e
g 001000 : 0100 0111 0100 0100 T[3]= 2 3 £
b 001001 ocldl: 0111 0111 UL Gl THi= 5 8
; gg:gi? Loc[5}: 1001 0100 0000 0111 T[5]= 5 C[3]=7 'l‘
k 00110 Memory Module 2{R, T;}: Cmax=5 i
1 00111 set00 set01 set10 setll k
m 110000 S —== = !
" oot RO (1 1 1 1 0= 6 "
> 110100 R[] :1 0 1 0 T[] = 10 o
q 110110 R[Z) :1 1 1 0 Tel2] =12 P

RBl :1 0 1 0 T3 =15 L9

Fig. 4. An example of the proposed memory mapping scheme.

Furthermore, to enhance the prediction efficiency, two Group To access more decoding information in one operation, the
branch models that indicate all grandchild-nodes are termindistribution of LOC in the tree structure has to be fixed. Both
nodes are created since their source symbols are combined [2@€[0] and LOC[1] must be located in tree level 0 and level 1,

the same codeword prefix and length are received. respectively. Because some nodes in tree level 1 do not generate
_ child-nodes, the LOC distribution is not regular in tree level 2.
B. Memory-Mapping Scheme An unused-LOC which consists of 4 unused- nodes is intro-

An efficient memory_mapping scheme that can enhance tﬂéced into the tree level 2 as the child-LOC of the unused-node

system performance and reduce the memory requirement is v@hjerminal-node of tree level 1. Consequently, the tree level 2
important for memory-based VLC decoders. Based on the effiust be composed of LOC[2:5] and the LOC distribution is
cient scheme presented in [11], the decoding information, LOtxed from tree level O to level 2. Because the parent-node of
T, C, and R are mapped onto the memories. To save the memm unused-LOC is treated as haVing Child'nOdes, the number
space, the child-nodes of a parent-node are merged into a LOE Cax has to be updated. An example of the proposed
For 2-bit tree structure, each LOC contains 4-set bit assignmeff{8mory-mapping scheme is shown in Fig. 4 whetg.Cis

of the branch models. The information for calculating the d& The analyses of memory requirements are given in Table I.
coded symbol address and the next LOC address is providdihough the branch models need more memory space, the
by T and C. Theith entry of T is the total number of the ter-overall memory requirement of the proposed scheme is reduced
minal-nodes from LOC[0] to LOCJi-1]. On the contrary, the2bout 5%~ 10% compared with [8].

ith entry of C indicates the total number of the nodes having

child-nodes from LOC[0] to LOC][i-1]. In addition, the LOC be-C. Decoding Procedure with Codeword Boundary Prediction

hind the G, .«th entry only consists of terminal-nodes and un-

used-nodes. To save the memory space, a 4-bit R instead of th&!'® decoding procedure with codeword boundary prediction
4-set bit assignments is used for indicating the terminal-nodégPerformed by iterating the operation steps shown in Fig. 5,
and C is eliminated because the next LOC is not required. B&ICh is a high level description of this decoding procedure.

sides, T; represents T in this condition. Based on this prd2@sed on the memory-mapping results shown in Fig. 4, an ex-

posed scheme, three memories are requested to performa}ﬂwle of a bit stream (110015, is given as follows for illustra-
memory-mapping. The firstmemory module stores LOC, T, ad®": o

C. Both R and T, are loaded into the second memory. The third !tération 1, the initial cycle:

memory stores the decoded symbols. Beside, {LOC[1], T[1], 1.1) {LOC[1], T[1]} are loaded into registers, {dMDR,
C[1]} are copied into individual registers to enhance the de- T4}, since every codeword begins with tree level 1.
coding throughput. According to the bit_stream[0: H 11, the branch

1518

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

Decoding_processor(start, bit_stream, predict, code-length, finish, symbol_address)
input start, bit_stream;
output predict, code-length, finish, symbol_address;
{ /1 Start of procedure, receive the (start & bit_stream):

if (start) {initialcycle=1; finish=0; L=0;} //Listree level;

while(finish ==0) {

/I Step 1: access the decoding information.
Ag=bit_stream[(2*L + 1) :(2*L)]; A, =bit_stream[(2%(L+1)+1):(2*L+1))];

/I Step 1.1: load the required LOC, T, and branch model for decoding operations.
if (initial cycle) { {dMDR, Tg}re={Loc[1], T[1] }; (branch model)s=dMDR [set(Ag) J; }
else {{dMDR, T4} = {pMDR, T, }; (branch model)4= (branch model)ps)

/I Step 1.2: load the required LOC, T, C, and branch model for prediction operations.
if (initial cycle)
{ {PMDR, T}, Cp} e = {LOC[2+A4], T[2+A4], C[2+A4] I8
branch_model , = pMDR [set(A)]; }
else if (next_Loc < Cpax)
{ {pPMDR, T, C,} e = {LOC[next_Loc], T[next_Loc], C[next_Loc] };
branch_model, = pMDR {set(A)]; }
else if (next_Loc > Cpae)
{ {pPMDR, T, } reg = {R[new_addr], T{new_addr] IS
if (R[A;]==1) { (branch model), = terminal; }
else { (branch model) , = unused; } }

/

=

Step 2: perform the decoding and prediction operations.

/I Step 2.1: compare the bit strem with the branch models.

if (bit_stream[2*(L.)+1:2%L)] is terminal decoded by (branch model) 4)
{ finish = 1; predict=1; determine code-length; }

elseif (bit_stream[2*(L+1)+1 : 2%(L+1)] is terminal predicted by (branch model) 4)

{ predict =1, determine code-length; }
else if (bit_stream[2*(L+2)+1 : 2%(L+2)] is terminal predicted by (branch model) p)
{ predict =1; determine code-length; }

elseif (bit_stream[2*(L+3)+1 : 2%(L+3)] is group-terminal predicted by (branch model) o)
{ predict =1, determine code-length; }

/I Step 2.2: calculate the next LOC address and the decoded symbol address.
OFST = the # of terminal node before the set(A 4) of the LOC in dMDR
OFSC = the # of non-terminal node before the set(A p) of the LOC in pMDR;
if (finish==1){ symbol_address=T 4+ OFST-1; }
else { next_Loc=C,+OFSC;L=L+1; }
if (next_Loc>Cpx) { new_addr=next_Loc—Cpu—1; }
initial cycle = 0;
/I Step 3: return the results.

return(predict & code-length) and (finish & symbol_address);

}// End of while

} #/ End of procedure

Fig. 5. A high-level description of the decoding procedure with codeword boundary prediction.

1.2

~

model set 11 of LOC[1] in dMDR are selected for 2.1) Neither terminal-nodes nor prediction messages

decoding operations. are detected form the set 11 of LOC[1]. With the
Because LOCJ2: 5] distribute in tree level 2, the re- bit_stream[0: 1], the codeword cannot be decoded,
quired LOC address- 5 is the sum of the constant nor can the codeword length be predicted. Based
= 2 and the bit_stream[0: H 11, = 3. {LOCJ[5], on the set 00 of LOCI5], the bit_stream [2:3] is in
T[5], C[5]} are accessed from the memory module 1 both ACT and S conditions. After comparing the
and stored in registers, {pMDR,,,J C,}. According bit_stream[4 : 5] with the prediction branch model, it
to the bit_stream[2: 3k 00, the prediction branch is found that the codeword is the special terminal-node

model is the set 00 of LOC[5] in pMDR. and one single bit, 1, remains to be decoded after the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1519

Decoding -

Processot O\Co c;t\St,-Eam
J S,
[1] O\S}’m Le’lgth & tal‘t\o
~dregy o Clice, Symbol

njgy, - Addtess

I~
[~) °]
= Start
§ Decoding ‘/B“’S“ea‘:: predict
S | _CodeLengt her C\
< ! |Processot || dress & Finis \
Y S| 121 | s 2
5 § ‘e %
)
& - N
-3
Table e -
Information P
, Processor |
Multi-read-port Table Information———————» [n] |

memoties

Fig. 6. Block diagram of a parallel-processor VLC decoder.

bit_stream [2: 3]. Therefore, the 5-bit codeword lengtD. Parallel-Processor VLC Decoder
is predicted and the “predict” signal is set.

2.2) Because the codeword has not been decoded, it is esfccording to the proposed decoding procedure, the valid bit
sential to find the decoding information of the nexstream of the next codeword is available when the codeword
cycle. The address of the next required {LOC, T, Clength and boundary are determined. However, the VLC de-
is expressed by (C[5]7) + (OFSC=1) = 8, where coding processor has to complete the procedures for finding the
the OFSC is the number of nonterminal nodes befoffecoded symbol address. To increase the decoding throughput,
the set 00 of LOC[5] in pMDR. But this address8 another processor is used for decoding the valid bit stream of the
is greater tharC,,... = 5, {R[2], Tr[2]} instead of next codeword. A block diagram of a parallel-processor VLC
{LOCI8], T[8], C[8]} are accessed from the memorydecoder is depicted in Fig. 6. The processor starts the decoding
module 2, where the new address? is the result of procedure when the “Bit_Stream & Start” are available. Be-
®—-5-1). sides, it transmits the “Sym_address & Finish” to notify the con-

3) Return the code-lengta 5 and “predict” signal to a con- troller that the decoding procedure is completed and the symbol

address is found. On the other hand, the controller can deter-
mine the codeword boundary when the “CodelLength & Pre-
dict” are received. Since the codeword lengths are variable, the

{dMDR, T,}. latter codeword in the bit stream can be decoded earlier than the

1.2) {R[2], Tr[2]} are loaded intdpMDR, T, }. former long codeword. Th_e controller ha'_s to rearrange the de-

2.1) The branch model set 00 of LOC[5] in dMDR is use(ioded gymbol addresses in order of the input codeyvorq before
for decoding the bit_stream [2 - 3] which is not the ter_.ccgss,mg t'he symbol memory. Because th_e decoding informa-
minal- node. The codeword Iéngth needs not be prtlgn isidentical for.every processor, the multl—regd-port memory
dicted si .'t has b K in th . | fodules are applied to save the memory requirement. As a re-

icted since it has been known in the previous cyc e'sult, the overhead of the parallel-processor VLC decoder is ac-

troller.
Iteration 2, the second cycle:

1.1) {LOCI[5], T[5]} in{pMDR, T,} are shifted into

Iteration 3, the third cycle-: _ ceptable since only decoding processor needs to be duplicated.
1.1) {R[2], Tr[2]} are shifted into {dMDR, T}. The number of processors determines the system perfor-
2.1) The terminal of the codeword is detected by the setiRance and hardware efficiency of the parallel-processor VLC

of R[2] in dMDR. decoder. If the valid bit stream is not available consecutively, the

2.2) The decoded symbol address isz[d] = 12) + hardware efficiency will be degraded due to idle operations. On
(OFST= 3)-1 = 14 where OFST is the number of the other hand, the system performance will not be enhanced if
terminal nodes before the set 10 of R[2]. Besides, thRe VVLC decoder has no available processor to decode the valid
“finish” signal is enabled. bit stream continuously. Based on the coding table given by

3) Return the symbol_address 14 and “finish” signal to MPEG and JPEG, simulation results show that the triple-pro-

the controller. cessor VLC decoder has the highest performance because the

1520 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

Dual-processor decoder()

{
/! Determine the valid bit stream:
if (predict[X]) /I Xislor2;
{ receive the codeword length; determine the codeword boundary and the valid bit stream; }

/I Assess the symbol memory:
if (finish{X]) //Xislor?2
{ free the processor[X]; rearrange the decoded symbol address; access the symbol memory; }

/I Assign the bit stream to the processor:
if (bit stream is available)

{
if (processor[1] is free) { start{1] = 1; transmit the bit stream and set busy to processor[1]; }
else if (processor[2] is free) { start/2] = 1; transmit the bit stream and set busy to processor[2]; }

else { queue the bit stream and wait for free processor; }

Fig. 7. The dual-processor decoding process.

bit stream can be decoded continuously. Nevertheless, several [Il. CONCLUSION
stalls are detected in the allocated processors. Compared to the))
triple-processor, the decoding throughput of the dual-processot" this paper, we present a VLC decompression scheme with
becomes degraded a little bit, but the hardware efficiency §9deword boundary prediction to break the iteration bound of a
improved significantly. Therefore, the dual-processor decod@idle bit stream. The required prediction messages are added
structure is selected for multimedia applications. to the coding table information by the proposed branch models.
The dual-processor decoding process is presented in FigB#seéd on an efficient memory-mapping scheme, the informa-
The controller will determine the codeword boundary antPn isloaded into memory modules for both decoding and pre-
the valid bit stream when the “CodeLength & Predict’ ar@iction operations. Hence, the codeword length can be deter-
received. When processor transmits “Sym_address & Finisiined before the decoding procedure is completed. To enhance
the controller frees the busy processor and rearranges fig¢ompression throughput, a parallel-processor VLC decoder
decoded symbol address. Then, the symbol can be accessdd fifveloped for bit stream decoding. Simulation results show
order of the input codeword. Besides, the controller assight the dual-processor decoder structure is the optimal solution
“Bit_Stream & Start” to the free processor. If there is no frefor video films and images applications. Therefore, the VLC

processor, the controller will queue the bit stream and wait fecoder with codeword boundary prediction scheme is suitable
available processor. for current and advanced multimedia systems, such as MPEG-2,

H.263, and MPEG-4.

E. Performance Estimation
ACKNOWLEDGMENT

Based on codeword boundary prediction, performance OfThe authors would like to thank their CO”eagues within the
the parallel-processor VLC decoder depends on whether $i group of NCTU for many fruitful discussions, especially
branch models can predict the lengths of the codewords infaY- Hsu and J.-J. Jong. The MPC support from NSC/CIC is
given bit stream efficiently. Therefore, random codeword blso acknowledged.
streams are generated to evaluate the performance, where the
frequency of each codeword coincides with the probability
of the related symbol. Performance comparisons of different REFERENCES
VLC decompression schemes are given in Table Il. It is found . . -
hat the dual- processor VLC decoder achieves the average d&] D. A. Huffman, “A method for the construction of minimum-redundancy
tha Jal-p _ g codes,’Proc. IRE vol. 40, pp. 1098-1101, Sept. 1952.
compression rate of 72.5 Msymbol/s operating at 100 MHz. In[2] K. K. Parhi, “High-speed Huffman decoder architecturegoc. 25th
other words, the decoding throughput of this decoder can be up "i\gg‘imar Conf. Signals, Systems and Compuytees. 1, pp. 64-68,
to 81.0 Mbps for MPE_G'2 DCT coefﬁmerﬂ tabl_e 15 co_ntammg [3] A Mljkherjee, H. Bheda, and T. Acharya, “Multibit decoding/encoding
11-bit symbols and with 60% compression ratio. Besides, with of binary codes using memory-based architectureg?tat. Data Com-
the same clock rate, the average decoding throughput of the Pression Conf.Snowbird, UT, Apr. 1991, pp. 352-361.

. . . ?4] S.-F. Chang and D. G. Messerschmitt, “Designing a high-throughput
proposal is about 1.5 times of a single-processor VLC decoder, v ¢ decoder Part —Concurrent VLS architecturd&EE Trans. Cir-
3.4 times of [9], and 8.2 times of [8]. cuits Syst. Video Technptol. 2, pp. 187-196, June 1992.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1521

[5] H.-D.Linand D. G. Messerschmitt, “Designing a high-throughput VLC [10] L.-Y. Liu, J.-F. Wang, and J.-Y. Lee, “Cam-based VLSI architecture for

decoder Part Il—Parallel decoding methodEEE Trans. Circuits Syst. daynamic Huffman coding,lEEE Trans. Consumer Electrgrvol. 40,
Video Techno].vol. 2, pp. 197-206, June 1992. no. 3, pp. 282-289, Aug./Sept. 1994.

[6] K.K.Parhi,“High-speed VLSI architecture for Huffman and Viterbi de- [11] Y.-S. Lee and C.-Y. Lee, “A memory-based architecture for very-high-
coders,”IEEE Trans. Circuits Syst. Ivol. 39, pp. 385-391, June 1992. throughput variable length codec system,”Rroc. ISCAS'97vol. 3,

[7] A.Mukherjee, N. Ranganathan, and M. Bassiouni, “Efficient VLSI de- June 1997, pp. 2096—-2099.
sign for data transformations of tree-based cod&EE Trans. Circuits ~ [12] M. K. Rudberg and L. Wanhammar, “Implementation of a fast
Syst, vol. 38, pp. 306-314, Mar. 1991. MPEG-2 compliant Huffman decodeProc. EUSIPCO’96vol. 3, pp.

[8] A. Mukherjee, N. Ranganathan, J. W. Flieder, and T. Acharya, 1467-1470, Sept. 1996.
“MARVLE : A VLSI chip for data compression using tree-based [13] J.-Y. Wu and L.-G. Chen, “A variable length decoder for MPEG-2,"
codes,”|IEEE Trans. VLSI Systvol. 1, pp. 203—-213, June 1993. Proc. 1996 HD-Media Technology and Applications Workshmap A5,
[9] H. Park and V. K. Prasanna, “Area efficient VLSI architectures for pp. 3/13-3/18.
Huffman coding,”|IEEE Trans. Circuits Systvol. 40, pp. 568-575,
Sept. 1993.

