
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 I . NO. 5, JUNE 1993 745

Managing Secure Communications With Multilevel
Security and Restricted Character Set Translation

Chyan Yang and Chien-Chao Tsai, Senior Member, IEEE

Abstract-Naval message traffic is transmitted with restricted
character set, the files of which are optionally compressed. Often
in this type of transmission, both character set translation and
data compression can be used as add-on data encryption. In
supporting the multilevel security management of access control
in communication, this paper presents a possible implementation
of master keys. The underlying basis of this key management
scheme allows a set of keys to be maintained in either a floating or
connected fashion, thus making the system tolerant to expansion.
In doing this, it is discovered that a direct implementation for
master keys is not possible as modulo arithmetic is required
whereby only the arithmetic operations of addition and multi-
plication follow the commutative property-not division, where
the results of modulo division are irreversible. As a solution to
this problem, a recursive procedure of modulo exponentiation is
employed via software which utilizes indexes. Along with this
research, an algorithm has been implemented with restricted
character set translation scheme and incorporated into a data
compression program for military applications. The restricted
character set translation algorithms investigated for the U.S.
Navy are discussed in this paper. The application of character
set translation will defer hardware changes, and the software
implementation alleviates the need for expensive hardware.

I. INTRODUCTION
ULTILEVEL security is a familiar scheme of classifica- M tion in the national security hierarchy. It may partition

subjects in levels of clearance, and divide objects into levels
of classification. Examples of these levels are top secret,
secret, confidential, and unclassified. This paper reports one
implementation that supports multilevel security with master
keys, and is suitable for naval message traffic by character set
translation and data compression [11. An obvious application
of this scheme is file transmission or storage. When users
require shared access to secure data and files, it is convenient
to partition the files into several classes and encrypt each
class individually enforcing the security classification. A key
management problem can be avoided by providing a master
key to permit access to the required classes.

A shore-based system includes a large database which
consists of relational tables of ASCII data in a commercial
RDBMS (Relational Database Management System) as well
as associated ASCII text and binary (graphic) files. Packages
of data are prepared from the database for subsequent delivery

Manuscript received May 1992.
C. Yang is with the Institute of Management Science & Institute of

Information Management, National Chiao Tung University, Hsinchu, Taiwan,
Republic of China.

C. Tsai is with the Military Integrated Communications Agency, Ministry
of Defense, Taipei, Taiwan, Republic of China.

IEEE Log Number 9206687.

' 4 i
I HOST REMOTE l

Fig. 1. Scenario of information transmission on naval message traffic.

to remote systems via floppy disks, electronic network, or via
standard naval message traffic. Each prepared data package
consists of a combination of ASCII and binary files grouped
together in the standard hierarchical file storage structure of
the host system. After either physical or electronic delivery
of the data package, it resides within the file storage of the
remote system.

The process of data compression is followed by data en-
cryption prior to passing the processed file on to the character
translation process. The entire scenario is then repeated in the
reverse direction at the remote site as shown in Fig. 1. Data
encryption is an optional requirement that allows different
encryption schemes to be chosen. Without a hardware encryp-
tion chip available to us, DES (Data Encryption Standard) [2]
has been implemented by software to incorporate the master
key routines. As an unclassified research, this paper uses the
encryption routine in UNIX.

Although designed for a different purpose, all three methods
used in this research contribute to data security: data com-
pression, data encryption, and character translation. When all
methods are employed, the overall data security is greatly en-
hanced, since the probability of decoding by adversaries is the
product of probabilities in breaking each process individually.

Based on number theory, the master key ideas proposed
by Chick and Tavares [3] are straightforward. However, the
implementation on a finite word length computer presents
problems since most commercially available computers do not
support extremely long digits, say, 70 digits. Additionally, to
compound the implementation problems, if the local service
keys and master keys are provided after taking the modulus,
the proposed master key scheme [3] cannot work! This is

0733-8716/93$03.00 0 1993 IEEE

746 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 5, JUNE 1993

because a result from modulus operations is irreversible. The
restricted character set translation algorithms investigated for
the U.S. Navy are discussed in this paper. The application
of character set translation will defer hardware changes, and
the software implementation alleviates the need for expensive
hardware.

Section I1 discusses the incorporation of master keys for
supporting multilevel security systems and data encryption.
Section I11 shows some examples. Section IV explains the
software implementation of master keys. Section V introduces
the basic algorithms for character set translation. Section VI
gives the improved version of the translation algorithm known
to achieve less than 50% expansion ratio. The concluding
remarks are given in Section VI.

11. THE MASTER KEY SCHEME

A . Master Key System

Whether compressed or in original form, when a data
package is transmitted to remote systems, and if encryption
is additionally requested by a user, the access control of the
encrypted package poses some reasonable concerns. In this
section, a master key scheme is introduced to address the
concerns.

A group of objects such as data packages may form a
hierarchy or levels of security. These levels may relate to the
objects as classification or to subject as clearance. The brief
overview of master keys in this section is based on the work
of Chick and Tavares [3] which is an improvement of [4].

In the following discussion, service is a file or a directory.
For each service, there is a key (service key) controlling
the access to the service. The 5 indicates a partial order
subordinating relation. It is assumed that within a master key
system, we have a total number of N services reserved; N
is the largest number of services allowed in the system. In
our implementation, N is set to a number larger than the
current system size so that the system is allowed to grow up
to N without changing the keys. Each service S; is assigned
a service key SKi. If S; 5 Sj, then service (an object) Si
is subordinated to Sj and access to Sj guarantees access to
Si. Furthermore, each service is assigned a small prime pi,
but no primes are assigned to the Central Authority (CA) or
master keys user. Let

N

n=l

For each service, a number ui is defined as

and the service key is defined as

SKi = K,T/ul

where KO is a random key number
Authority.

chosen by the Central

The master keys can be made by the following mechanism.
First, uj is computed as n pn "j =

S K , S M K ,

where the set {SK; 5 M K j } consists of all the keys for
services accessible with master key M Kj . The master key is
defined as MKj = KOT/v'.

The computation of a service key from a master key is then

(1) SKi = Kr/ut = (Ki/vJ)vj/ut = MKv3/"~

which is valid if and only if SK; 5 MKj .

B. Flexibility of Master Key Scheme

1) The Notation of Master Key: A master key is a compact
representation for a subset of the service keys; it can be
assigned to authoritative users are needed. For any master key
M K , S K ; 5 M K for one or more SK;. A trivial case is
M K = SKi. To provide a master key for each of N services,
the master key space may contain up to 2N - 1 members.

2) Prohibition of Nonmaster Key Intrusion: Computation
of a service key is feasible if and only if SKi 5 MKj . If
SK; 5 M K j , then, by definition, all primes in U ; must be
included in wj ; thus, U ; divides v j . (MKj)"3/". is easily
computed as in (1) since u j /u i results an integer. When
SK; 5 M K j , the access is denied as follows. Let ui = api.

MK"-I/"Z = [(MK,)"j/Pz]'/". (2)

Where pi does not divide wj, and the p i h root of MKj must
be computed, the computation of the rth roots mod M for
T > 1 is believed to be as difficult as factoring M [3]. So
when pi does not divide wj, MKY'" cannot be computed if
the factors of the modulus are unknown. This prohibits the
unauthorized access by making M as large as possible.

3) Prohibition of Grouped Intrusion: The master key is
also secure against illicit cooperation where a group of
lesser privileged users may have sufficient information to
accomplish tasks that none is capable of individually. A
sufficient condition is that no group of master keys can be
used to gain access to additional services. That is, from a
group of master keys, one cannot create a key M K such that
SKi 5 M K if none of the keys in the group has access of
service S;. This has been proven in [3] since p; is not a factor
of v j in any master key of the group.

4) Expansion Capability: Chick and Tavares also proved
that it is possible to add services to the system without
affecting existing keys, provided that a new addition is not
subordinate to any existing service. This addition chooses a
new prime p N + l which is relative to M and not previously
assigned to a service. Hence, a newly added service will
introduce an equation to compute SKi as

S K N + ~ = (KA)T'/uN+l (3)

where

KA = (K O) ~ / ~ ~ + ' , T ' = T x p N + ~ , u N + ~ = n pn
s n < S N + 1

and S K N + ~ is the new service added.

YANG AND TSAI: MANAGING SECURE COMMUNICATIONS

Although the keys are unchanged by the substitution of T'
and K;, a new problem arises in that the number of services
to be added is constrained by the primes relative to M. For
instance, if M = p l x pz , then the maximum number of service
keys that can be expanded is 2. In addition, since the new
prime p ~ + 1 is not a factor of wj for any of the existing master
keys, new master keys have to be redistributed by the CA to
accommodate the 5 relationships.

Notice that the T value is the product of all primes, thereby
making system expansion inflexible. Either T must be fixed
or all key numbers have to change accordingly since T / u ~ or
T J v j provides the power of SKi, MKj . In our experiment,
we introduce another method for master key system expansion.
Numbers of individual services are assigned in the beginning
when a system was built, asscming the future expansion is
reserved. These services can originally be either 5 or not be
5 to any service, but primes are still assigned to them as
usual. Thus, the T value will not be affected when anyone on
these services is assigned to be a new service key, and the
new service key can be inserted (or activated) in between two
existing service keys or under any master key as required. The
only values which must be modified are the ui and wj that were
affected when insertion occurred. In this respect, no master key
has to be redistributed when the system is expanded. Examples
of system expansion are provided in the next section.

111. EXAMPLES

A. System Setup
To implement the concept of the master key scheme on

compressed and/or encrypted data packages, we constructed
a multilevel hierarchy of 20 services as illustrated in Fig. 2.
These 20 assigned services are indicated as numbered circles
in Fig. 2. Examples in breadth-first order are services 52, 48,
49, 51, 34, . a. A node with a darker boundary in Fig. 2 is
an empty or reserved service that is preconnected for system
expansion needs. Examples of preconnected services are 53,
50, 42-47, 2433, 00-1 1. Additionally, there are ten floating
or independent services (s.54-s63) reserved for file system
expansion. The floating services can be added freely, whereas
the preconnected services are confined by their neighboring
services. Notice that since modulus operation is performed
during arithmetic computation, more empty services are con-
sidered tolerable. The number of empty services preconnected
or independently prepared can be chosen according to future
system expansion needs. The multilevel hierarchical in Fig. 2
shows a simplified example.

The assignment of primes in [3] uses the following rules.
1. If Sj f Si and Si f Sj, then pi # p j .

2. If S; 5 Sj, then pi = p j is allowable and does not

3. pi is the smallest allowable prime.
The purpose of the above rules is to constrain the value

of vj or U, as small as possible. This will not be necessary
if modulus operation can limit all product value within M.
Besides, a product of small primes may generate a value
less than M. For this case, the modulus operation becomes

conflict with rule (1).

Fig. 2. A multilevel services hierarchical model.

TABLE I
ASSIGNMENTS OF PRIME NUMBERS

0 1
0 307 241
1 73 277
1 293 383
:3 173 211
4 163 283
5 319 239
6 263 157
7 389 107
8 397 151
9 331 71

2
223
s3

131
16"
379
199
103
269
271

59

- 3
251

79
97

179
409
257
181
313
61

317

- 4 5 6
89 227 353

281 359 229
127 367 137
373 193 191
197 311
233 67
101 347
139 109
149 401
113 337

useless and service can be easily invaded. Because of this, we
generated 64 different prime numbers beginning from 59, and
randomly distributed them to each service as shown in Table
I. Notice that p i j is the prime in column i and row j. For
example, p36 = 181.

Because T contains all primes in Table I, whenever services
are added, the value of T remains unchanged. With a table of
prime numbers, one can use the indexes to represent the primes
instead of using actual primes. By doing so, one can avoid the
finite word size of a computer in many operations (see Section
IV). The expansion example will be discussed in Section 111-D.
As mentioned in Section 11, the maximum master key numbers
can be assigned up to 219 - 1 = 524,287. The three master
keys MK1, MK2, and MK3 shown as white arrows in Fig.
2 are simply examples to accommodate the implementation.
Each master key superior to services can be indicated by a line.
For example, MK2 has lines going through ,917, S1gl S23 and,
therefore, SKI7 5 MK2, SKI9 5 MK2, SK23 5 MK2.
Each service can be treated as an encrypted data package, and
its U ; is encrypted in its file header. To access (decrypt) an
encrypted package S; from Sj or by M K j , the subordinating
relationship of either Si 5 Sj or Si 5 MKj must be satisfied,
respectively.

In Fig. 2, the 5 relationships among services are shown by
arrows or lines (master key). For example, SIZ < S34, S52 <
S53 . . . , etc. The partial ordering 5 relationship is assumed

748 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 5, JUNE 1993

to have a transitive property. Therefore, a master key that
can access a service Si can also access all the services
inferior to Si. For instance, if the master key MK1 2 SK34,
then the MK1 can access SK12,SK13,... as well, since
SK12, SK13,. . . are connected and are SSK34.

Note that, in this section, the arithmetic is performed in
modulo M for some integer M. Values are operated in
the ring of integers (0, M - 1) [3], and M is defined by
M = pl x pl x pz for some large but not-assigned primes
pl and p2 to meet the expansion needs. Since we implement a
different approach for system expansion, we are free to choose
M. Let us arbitrarily choose a 6-digit M = 524287 and
KO = 1992 to accomplish key number computation. All large
key number computations in the following subsections were
done by a password verification program to be discussed in
Section IV-A-2. In the following discussion, we use mod(x)
as a shorthand for x mod M, so that mod(mod(p x q) x r)
actually means (((p x q)modM) x r)modM.

B. Example of Access Control

As an instructive example, let us arbitrarily pick s 3 6 as
an encrypted data package to access. Fig. 2 shows SK36 5

etc. Hence, there are four master keys that can access
s36: (MK1, MK52, MK48, MK36). Let this set be named
S M K .

The number '1136 is computed as 'U36 = &pi, where i =

MK1,SK36 < SK48 < SK52, and SK36 > SK16, . . . ,

03,04,15,16,27,36, Or 'U36 = 173 X 163 X 239 X 157 X 269 X

181.
Now the service key for s 3 6 is

sK36 = Kr/u36 = m0d(1992n6,3,~p,)

where TZ # i or
SK36 = mod(1gg2307X73X293X349X.. .X~37X191) = 50 199.

We now show how the master key MK1 can access s 3 6

by making sK36 from MK1. The value of v1 has to be
computed first. w1 = I I j p j for j = 00-04, 12-16, 24-27,
34, 36, or 211 = 307 x 73 x 293 x 173 x 383 x 211 x
283 x 239 x 157 x 379 x 199 x 103 x 269 x 409 x 181.
Therefore, M K ~ = ~ r / ~ ~ = m0d(1992~~!-~p,) for n # j ,
or MK1 = mod(1992349x263~.~137x191) = 172955. With
MK1 one can derive SKs6:

1 MK,"1/"36 = mod(172 ~ ~ ~ ~ O O P O l P O 2 ~ l z P 1 3 ~ 1 4 ~ 2 4 P z 5 ~ z 6 P 3 4

or

In other words, MK1 can access service S36.

C . Example of Intrusive Prevention

On the other hand, let us examine whether MK3 (it is
not in set S M K) can access s 3 6 . Since v3 = n j p j for

j = 05-11, 17-23, 28-33, 3741, 44-47, 49, 51 or 213 =
349 x 263 x 389 x . . . x 113 x 359, and for n # j we have

63

MK3 = K:Iv3 = mod

or
M K ~ = mod(1992307x73~ 2 9 3 ~ 173... ~ 2 2 7 x 3 6 7 ~ 191) = 270 495.

To make the service key SK36 from MK3, one may try the
following:

MKP/"36 - - mod(270 495v3/u36)

or
~ ~ ; 3 / " 3 6

1. - - mod(270 495PO5~~~PllP17~"P49P51 /P03PO4P15PlBP27P36

Although MK3 is a master key which can access more than
ten services, none of the primes in 213 includes p36. Since p36
does not divide v3,MK3 cannot access 536. Similarly, one
can show that all master keys in set S M K can access S36, but
none of the others can. Additionally, it is shown that a master
key formed from any group of master keys not in set SMK
will also be unable to access S36, since p36 does not divide
into any v of them. This outcome prevents grouped intrusion.

D. Example of System Expansion

I) Adding Single Service: One possible example of adding
single service is a new service s which is needed between s 3 6

and s 1 6 , such that s 1 6 < s < 5 3 6 . Examining the dashed box
in Fig. 2, we see that this task can be done by simply letting
S27 be the new added service. By definition,

2127 =PO3 x PO4 x p15 x p16 x p27
= 173 x 163 x 239 x 157 x 269.

The service key SK27 can be formed as
63

SK27 = Kr/v27 = mod 1992 n p n (n=O)
where n # 03,04,15,16,27.

SK27 = mOd(1gg2307x73x293X349...137Xlgl) = 347497.

All master keys and service keys in the system will not be
affected by this expansion, and MK1, MK36, . . . can access
5 2 7 as desired.

2) Adding Multiple Services: This subsection explores the
case when more than one service expansion is required. For
example, two services are added between s36 and SI6 such
that s 1 6 < sa < s 3 6 and Sb < Sa. The first additional
service Sa (S 2 7) is achieved in the same manner as the previous
example. Since no empty remaining service is related to
S27, the second service S b can be constructed from those
independent empty services, say, S54. The relationship of new
services is shown in Fig. 3. In this example, for all services that
< S27, the service keys will remain the same. The only key
numbers that have to be changed are MK1, sK36, SK48, and

1-

YANG AND TSAI: MANAGING SECURE COMMUNICATIONS 149

P

X n

Fig. 3. Example of service key expansion.

SK52 (see Fig. 3). This modification is easily done by adding
p27 and p54 to their respective w and U values; these values are
in turn redistributed by CA. Consequently, to remove one or
more existing services from the system, one can reassign them
to be empty services without influencing the whole system.
Overall, system expansion is simple and flexible.

In other words, when wj and ui are not of their true values but
rather the values after modulo exponentiation, the result may
include a noninteger wj/u, value (it should be an integer). For
this reason, we have chosen the modulus operation to be in
MKj or SK; (to be discussed in the next subsection). The
value of M K j will be in [0, 524 2861, and the wj's will be
represented by a set of indexes to Table I. Table I is available
in the executable program and can be coded in any encryption
scheme.

Password generation can be done in many ways. We present
here one method that can be easily implemented. Each pass-
word has 10 printable characters, and each character is formed
by one row of Table I. First, the ID number is the decimal
complement value of M K j . For example, if M K j = 524 287,
then the ID number is 586 823. Second, a password is formed
by examining the inclusion of primes in wj of a service key.
For example, V I is the product of poo -po4,p12-p16,p24-
p27,p34 and p36 (see Table I). For q, the primes in row 0,
only poo is used so that the first row can be thought of as
1OOOOO if the last column is not used. The bit pattern 1OOOOO
can be arbitrarily assigned a printable character0 f. Similarly,
the 10-character password of master key user number 1 can
be constructed as 'ffvv8XbH//' ('/' means no primes related
in that column). When accessing an encrypted package, a user
will be asked to provide the ID number first and then the

IV. SOFTWARE IMPLEMENTATION password.
At the host system, before encryption, a user's password

(private key) is validated to avoid the data package being
encrypted or scrambled by an invalid key which cannot be
decrypted later. Verified passwords and an ID number of length
l6 bytes are

received file header will be examined to see if it is an encrypted
file. If it is encrypted, the 16 bytes starting at the fourth byte in

Recall the scenario of the Naval message traffic described in
Section I. If data encryption is required, it must be done at the
host system, after data compression and before characters set
translation. In software implementation, a user may provide the
password (key) for encryption after data compression (at host

key, the program will encrypt or decrypt the file; otherwise,
it assumes no data encrvdion.

encrypted and embedded in the
system) or data recovery (at remote system). Given a Correct header at the fourth At the remote system* the

.1

In the next two subsections, we will discuss how passwords
are verified in the master key access control environment, and
low data encryption is implemented.

A. Master Key Access Control

Access control is divided into two steps: password gen-
eration and password verification. Password generation is
performed at the CA and distributed to individual services or
master key users. When accessing a director or file, password
verification is performed for authorization check.

I) Password Generation: To facilitate the friendly use of
keys, passwords are used as keys. Printable characters are used
as passwords instead of numerical values. Central Authority
generates passwords by certain hashing methods or any trans-
lation scheme. From the examples in Section 111, we need
two parameters from the user for key number computation: vj
and M K j . This signifies that a user's password is formed by
these two values. For better security, the users of master keys
receive ID numbers instead of MK,'s. The ID numbers can be
any hashing function of M K , . Theoretically, the computation
SK; = MK?'"' is straightforward, but the finite length of a
computer calls for modulo exponentiation whenever possible.

the file header will be used for service key number conversion.
To access a service, a user must provide the ID number and
password for key computation.

2) Password Verifrcation: In using the master key, it is
assumed that there is no password distributed electronically,
and the access is done by key number computation. The master
key numbers are not necessary to be the same as service key
numbers before computation. Therefore, different master key
numbers may result in the same service key number based on
a unique vj.

Recall the discussions in Section 111-the modulus operation
was taken in each arithmetic operation. While implementing in
software, special care must be taken that a modulus operation
will be performed as often as possible because if it is necessary
to take a modulus on an overflowed number, i.e., larger
than the largest mantissa in the floating number system, the
operation is done too late and is therefore incorrect. Without
concatenation of memory words, the product result will be
truncated and become useless before the modulus process
because the Floating Point Number System allows only limited
digits (Mantissa, or significant) representation, (e.g., IEEE
double precision only has 53 bits [5]) . An example here is

750 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 5, JUNE 1993

the T value by definition:

63

T = n pn = 307 x 73 x 293.. . x 137 x 191.
n=O

The result is a number that has more than 70 digits and
thus cannot be easily represented. Moreover, since the product
of primes will be used as the exponent of KO, the existing
Floating Point Number System cannot support such a large
value. To solve this problem, a recursive procedure of modulo
exponentiation is implemented in software. Modulus operation
begins at first K:, and it repeats in each multiplication
until done. The operation restricts each result in the range
[0,524 2861. Now (1) becomes

SK; = mod(KT/"')

)
- - mod(K ~ ~ ~ O P n / n s n <s,Pn

- - mOd(K:aPb"'Pn 1
where Sa, Sg, . . . , S, $ Si. That is,

SK; = mod(mod((... mod((mod(K;a))pb) . . .)pn)) .

Furthermore, to prevent a large prime number exponent, any
inner factor above can be computed as

mod(mp) = mod(-. . mod(mod(m)lm)z . . . m)p

In other words, the computation of mod(K;") needs p a times
modulo exponentiation, and the total of modulo exponentiation
in computing SKi would be p a + pb + . . . p,.

Key number computation is implemented only at the remote
system immediately after password conversion. If the service
key computed from the master key equals the service key in
the file header, the program will allow access using the header
password. The algorithm for password verification and key
number computation is shown below.

loop: request user to enter password;
i f (user password == header password)

do decryption; I* for encrypted user *I
else{ if (length of password != 10)

{

1

if(third entry) recover original file and exit;
else display error message and go to loop;

1
else

covert user password to master key number;
covert header password to service key number;
key computation intialization;
if (Master Key user)

{compute v using modular exponentiation;
compute service key from master key;

else I* the case of superior service keys */
1
{compute v using modular exponentiation;
compute service key from superior service key;

1

if (computed serivce key == service key number)
do encryption;

{ if(third try) receover original file and exit;
else display error message and go to loop;

else

1
Note that each encrypted file has a header which contains the

encrypted password. The encrypted password is converted to
a service key number and will be used to match the computed
service key. If it matches, the access is allowed. The computed
service key is based on the modulo exponentiation [6] such that
SKi = K;Iu', where ui is encrypted in the file header.

B. Data Encryption

Encryption on a compressed data package is an option to
the user who may specify in the command line when executing
the software at the host system. If requested, the program will
process after the password is verified. At the remote system,
the program will automatically get the first 3 bytes in the
file header to check if it is an encrypted file and verify the
key. Notice that encryption algorithms are varied from user
to user and so are the password encryption of a file header
and key number conversion. They can be implemented in
different schemes to meet the data security requirements of,
for example, the DES system. After all, regardless of the
encryption method, a master key scheme must be able to
properly drive the access control.

In this experiment, the encryption routine in UNIX is used
(the key generation part from "Makekey" has been modified
to master key password conversion). It is a one-rotor machine
encryption algorithm designed along the lines of Enigma, but
is considerably trivialized: encryption and decryption use the
same keyword. Each encrypted package has an extra 19 bytes
of encryption header, which includes 3 bytes for encryption
and 16 bytes for password (it is the keyword to encrypt, too).
The encrypted data package must be decrypted before it can be
decompressed. To decrypt a package, a shift operation is used
to decrypt the 16-byte keyword for the encryption key which
in turn decrypts the compressed data stream if the password
has been verified.

v. RESTRICT CHARACTER SET TRANSLATION

Since Naval message traffic uses the restricted character set
listed in "3 Annex C [7], the compressed and/or encrypted
package has to be translated using this restricted character set.
Character set translation can be used as an add-on encryption
scheme. Besides, many reliable telecommunication systems,
e.g., those which use the Morse code restricted character set,
can continue to be used when supported by a good translational
scheme. Therefore, the character set translation is not limited
to military applications.

A restricted character set of N symbols can be represented
as

YANG AND TSAI: MANAGING SECURE COMMUNICATIONS 75 1

TABLE II
ASSIGNM~T OF 45 RESTRICTED CHARACIERS

where N 5 256. The Naval message traffic allows only 45
restricted characters. Apparently, there must be some data
expansion in the character translation process. However, the
electrical update to the fleet via existing communications chan-
nels makes this a must. Note that if the character translation
algorithm is unknown, the translation itself can serve as an
additional encryption. In the following subsections, we will
analyze the expansion ratios as well as the software imple-
mentation regarding the restricted character set translation.

Without loss of generality, it is assumed that the restricted
45 characters are in the contiguous decimal value range [46,
901 (ASCII "." to "Z). Actually, the characters < and >
are not used in NTP3; instead, the characters { and } are
used. Table I1 shows the character assignment. In a source
package, without character set translation, each input byte of
8 bits can assume 28 = 256 various bit patterns, and all
patterns are equally likely to occur. When mapping a byte
of 8-bit to one of the 45 restricted characters, one may let 40
bit patterns uniquely map to the 40 corresponding characters;
consequently, the mappings of the other 216 patterns have
to use two characters each. In other words, five characters
are reserved and used as leading characters for mapping bit
patterns to two-character pairs; these five leading characters
can accommodate 5 x 44 = 220 bit patterns. On the average,
in using this method, the translated file is expanded to 185%
of the original file since

40 216
256 256
- x 1 + - x 2 = 1.84375 + 184.37%.

The Navy requires expansion ratios not larger than 50% [9].
The expansion ratio of 85% is unacceptably high; therefore,
a source file must be translated in blocks of bits smaller
than 8 when data storage efficiency is concerned. Similarly,
one can verify that if the translation is performed in 7-bit
blocks by assigning 43 bit patterns to single characters and
85(27 - 43) bit patterns to pairs of two characters, one would
get an expansion ratio of 90% = (8 - 7)/7 x (43/128) + (16 -
7)/7 x 85/128.

Note that 5 < log2(45) < 6. Thus, the bit pattern to be
translated could be blocks of either 5 or 6 bits, depending
on the efficiency of expansion ratio to be discussed below.
Namely, a translated character (8 bits) can represent a block
of either 5 or 6 bits of input bit stream. This implies that an

output byte (character) always starts with a 0 bit and the other
7 bits vary in 45 patterns. Therefore, a shift operation on input
string is needed to output a byte in the desired range. Three
basic translation methods are discussed as follows.

1. Method A: Scan an input stream in 6-bit blocks. Since a
6-bit block may form 64 different patterns, with only 45
characters to map, there are 44 lucky 6-bit patterns that
can map to a single character in the restricted character
set (say, a1 , a2 . . . ~ 4 4) ~ whereas the rest of the 20
patterns have to be translated in two combined characters
Q45Qi,i = l , . . . ,20.

2. Method B: Scan an input stream in 5-bit blocks. Since
a 5-bit block may span 32 different patterns, with 45
characters to map, there are 13 characters in the restricted
character set unused.

3. Method C: This is an improvement to the second method
and will translate 6-bit block whenever possible. How-
ever, it scans the input stream in 6-bit blocks before
committing to a translation. We may assign 32 restricted
characters to integer values [0, 311 for 5-bit blocks and
the other unused 13 characters to [32, 441 for 6-bit
blocks. If the value of the 6-bit block is in the range of
[32,44], then the block is translated to the corresponding
chatacter. When the value of a 6-bit block is not in the
range of [32,44], then it is either in [O, 311 or in [45,63].
The algorithm shifts one bit backward (unget), leaving
the value in [0, 311, and translates the 5-bit block. In the
following discussion, let S denote the integer interval
[32, 441.

A. Expansion Ratios

It can be shown that Methods A and B are not as efficient as
Method C. Without prior knowledge of the source stream, it is
reasonable to assume that all bit patterns are equally likely to
occur in the following discussions. Let bl , b2 be the number
of bits used to encode a translated character (byte), and let
Pal, Pa2 be the corresponding probabilities of occurrences in
translation. The expansion ratio 7 of Method A is then

7 = (8 - bl)Pbl/bl + (8 X 2 - b 2) / b z = 0.75 + 75%

where

bl = 6, Pbl = 44/64 = 0.688, b2 = 6, Pa2 = 1 -Pal = 0.312.

In the above computation, the second term indicates that we
expand from 6 bits to 2 bytes for the 20 unlucky 6-bit patterns.
Similarly, we can compute the expansion ratio for Method B
as 7 = (8 - 5)/5 = 0.6, or 60%.

For Method C,

b l = 6, b2 = 5.

Thus,

7 (8 - 6) / 6 ~ (13/64)+(8-5) /5~ (51/64) = 0.546 =+ 54.6%.

Method C provides the best of all three translation methods
and is very close to the set Naval requirement of 50 percent.

Variants of Method C can increase the probability of 6-
bit block pattern translation, but they are not efficient. For

152 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 5 , JUNE 1993

example, when N = 45, one may assign 16 characters for
4-bit and 29 characters for 6-bit. Two other variants are: 1)
8 characters for 3-bit and 37 characters for 6-bit, and 2) 4
characters for 2-bit and 41 characters for 6-bit. We calculate
the corresponding expansion ratios for each case as follows.

1) 29 characters for 6-bit with 35 (=45-29) others for 4-bit:

77 = (8 - 6)/6 x (29/64) + (8 - 4)/4 x (35/64)
= 0.698 + 69.8%

2) 37 characters for 6-bit with others for 3-bit:

77 = (8 - 6)/6 x (37/64) + (8 - 3)/3 x (27/64)
= 0.896 + 89.6%

3) 41 characters for 6-bit with others for 2-bit:

77 (8 - 6)/6 x (41/64) + (8 - 2)/2 x (23/64)
= 1.292 + 129.2%

All three of these results are worse than Method C because
the second term in each calculation grows faster than the
reduction of the corresponding probabilities. Moreover, it is
impossible to translate more than 6 bits in each decision when
N < 64. To generalize the 77 computation of Method C for a
restricted character set of size N in the range [2, 2561, q can
be calculated as follows:

where

and

The equation here is similar to the computations used in
the previous paragraph except that it is now parameterized
with N . Practical operation environment dictates the choice
of N . For example, in order to accommodate a set of Morse
code communication, the choice of N = 45 seems reasonable
regardless of the expansion ratio. When N < 16, it is not
practical to perfom character translation since the expansion
ratio can be as high as 700%. On the other hand, when N
approaches 256, there is no need for character translation since
the source character set and the target character set are equal
in size. In software implementation, the bit-shift manipulation
may improve the expansion ratio as will be explained in the
next subsection.

B. Sofbvare Implementation

A C program based on Method C was implemented [l].
We now describe the algorithm that has been incorporated
in a compressed/encrypted data package. The character set
translation algorithm has two separate parts: translation (at
host system) and recovery (at remote system).

I) Translation Algorithm: The translation algorithm scans
the input stream in 6-bit blocks before committing to a
translation. We may assign 32 restricted characters (. through
M) to decimal values interval [0, 311 for 5-bit blocks and the
other 13 characters (N through Z) to the interval [32,44] for 6-
bit blocks. If the value of the 6-bit block is in the interval [32,
441, then the block is translated to the corresponding character.
When the value is not in the range of [32, 441, then it is
either in [0, 311 or in [45, 631. The algorithm shifts one bit
backward (unget), making the value reside in interval [0, 311,
and translates the 5-bit block.

The translation algorithm scans the input stream from en-
coded and/or encrypted buffer into 6-bit blocks. It converts
a 6-bit or 5-bit pattern into a unique character according to
the integer value of the input block. Refer to the bit pattern
dissection of a translation example below. When the input
string is coming from right to left, we observe (see below).

Bit pattern 1 (100110, the LSB is 0): Decimal value =
38 E S translates the 6-bit block and output 38 + 46 (T).
Here, the 6-bit block of 1001 10 has a binary value of 38,
which can also be seen in Table 11.

S translates
a 5-bit block of 001 10 (shift the pointer 1 bit backward,
i.e., to the left), and output 6 + 46 (4). Note that 00110
has a binary value of 6.
Bit pattern 3 (1 11 101): Decimal value = 61 6 S translates
a 5-bit block of 11110, and output 30 + 46 (L).
Bit pattern 4 (100100): Decimal value = 36 E S, output
36 + 46 (R).

The displacement of 46 above maps decimal values into the
desired ASCII code range [., Z]. The output characters will be
T4LR . . . , and leave the last two bits to be the more significant
bits of the next 6-bit block. When the EOF or last byte of the
buffer is encountered, the remaining bits will be padded with
0's in LSB to form the last pattern. For the above example,
if 1001OOO1 is the last input byte, then the last 6-bit pattern
will be OlooOO and is translated to 01OOO + 46 (6); the output
is then T4LR6.

2) Recovery Algorithm: The displacement of 46 made in
translation has to be reset for each input character in re-
covery at the receiving hosts. If the value after reset is in
S , an original 6-bit translated pattern is assumed and a 6-

Bit pattern 2 (001 101): Decimal value = 13

YANG AND TSAI: MANAGING SECURE COMMUNICATIONS 153

bit block is recovered; otherwise, it maps to a 5-bit block.
The output characters T4LR6 in the previous example will be
recovered to the original bit string. The process is explained
now. First, the bit pattern of T4LR6 can be represented as
hexadecimal string 54 34 4C 52 36. After a 46 offset is
taken on each byte, the binary value corresponding to these
five bytes becomes 38 6 30 36 8. In other words, the input
to the inner loop of the recovery routine is now 00100110
000001 10 0001 11 10 00100100 00001OOO. This bit string will
be recovered as 10011000 1101 11 10 10010001. Because the
file before translation is byte-oriented, the recovery of the
last input character should complete the last byte of original
compressed/encrypted package.

Translation and recovery algorithms are two separate
functions in the implementation. In the host system, character
set translation is the final step before transmission. The
program takes each byte from the temporary file built
by compressionJencryption, and adds a 3-byte header in
the output file. Each of the 3-byte headers, of course, is
also within 146, 911 to guarantee the use of the restricted
character set I., Z]. Moreover, the inner loop of translation
function can be designed to incorporate the output buffer
size of compressionJencryption for various compression
algorithms. For instance, the variable buffer size in an
LZW algorithm requires a variable loop index [l]. At
the receiving system, similar to the encryption operation,
recovery operation is proceeded first by examining the file
header.

VI. I W R O V E M E N T BY PATTERN REASSIGNMENT

In this section, each bit pattern corresponding to an output
character will be examined. It will be shown that one can
further reduce the translation expansion ratio by suitable
reassignment of bit patterns.

A. Unused Patterns in Translation
The translation algorithm discussed in previous sections

examines an input 6-bit block and translates either 5 or 6 bits
of the input blocks. Theoretically, when each input pattern
is assumed to be equally likely to occur, having been com-
pressed and/or encrypted as discussed in Section V, Method
C with expansion ratio 54.6% seems to be an optimized
algorithm. Having enumerated all patterns, however, one can
further reduce the expansion ratio to less than 50%-the Navy
requirement 191.

The clue is that certain 5-bit patterns do not appear in
practical translation procedure due to the 1 -bit shift operation
(unget) when the 6-bit value is not in S or interval [32, 441.
Table I11 lists all 6-bit patterns with corresponding decimal
values and output characters. Notice that, in Table 111, the 5-bit
blocks in sets SL and Su exhibit redundancies and six patterns
do not occur (values in interval [16,211). For instance, the first
two 5-bit blocks in SL are both ooOo0. Note that, of the 6-bit
patterns in SL and Scr, only 5-bit values are actually translated
while each of the rightmost bits is restored back to input
stream. Let z denote a don't-care bit. The six missing patterns

TABLE Ill
LIST OF BIT PATTERNS AND THEIR OUTPUT CHARACTERS ;* WHEN

UNGET 1 BIT ,** TOTAL 39 CHARACTERS,*** = 32 + 46
\et G 1h1 Pattern. 5 Int \n lw ' 6 hit \ a l w Outpul"

0oowo 0
OOWOI U
000010 1 I '

I111101 14 <
l j
15

. .
I-.

011110
011111
100000 y2 """
100001 I? '0'

<

I O l O l l 13 '1''
101100 44 'z'
IOllOl 12 'D
101110 73 'E'
101111 23 'E
110000 '4 'F'
llO0Ol 14 'F'
IlWlO 5 'G'
ll0Oll ,5 'G'
I10100 >6 "'
l l 0 lOI G "'
110110 27 I'
110111 27 I'
l l I 0 0 0 >R 'J'
I I1001 28 'J'

\,

111101 30 'L'
l I l l l 0 31 'M'
Illlll 31 'AI'

are 10000z, 10001z, 10010z, 10011~ , 10100z, and 10101z,
with corresponding characters >, ?, @, A, B, C, respectively
(see Table 11). In other words, when Method C in Section
V is used to translate 64 6-bit patterns, only 39 (45 - 6)
characters are actually assigned with 25 of them appearing
twice and leaving six characters unused. The effort now
is to translate patterns in SL or Su in 6-bit blocks by
assigning unused characters to them. Reexamining Method C
in Section V, one can verify that these missing characters
in fact did not appear! That is, what we have done in
the previous section is restricted to 39 characters instead of
45. This observation could improve or reduce the expansion
ratio.

B . Characters Reassignment

Using the six unused characters can improve the expansion
ratio. These six unused characters may be assigned to the first
six unique 6-bit blocks of SC (from 101101 to 110010; see
Table 111). That is, we can assign these six characters to values
in [45, 501. By doing this, the characters originally assigned
to interval 145, 501 (four characters: D, E, F, and G) become
unused. These four characters can be used to substitute another
four 6-bit patterns, say, [51, 541 (from 110011 to 110110).
Furthermore, the characters H and I correspond to 151, 541
and are reassigned to 155, 561. This recursive characters
reassignment may continue until value 57 is assigned and
there are no more unused characters. 6 + 4 + 2 + 1 = 13
characters have been reassigned. As shown in Table V through
appropriate displacement of +46 (within SA) , +30 (within S ') ,
or +59 (within SB) . we can rearrange all output characters to
be contiguous similar to that in ASCII code. The 6-bit patterns
100OOO through 11 1001 (interval [32, 571) are now assigned
to characters > through W. All other 6-bit blocks (in SA or
S B) still have to be translated in 5-bit blocks.

r--

154

File SIZE IMPROVED TRANSLATION
SIZE 11

Text 24969 37243 19.16%

C Source 17325 25864 49.29%
19.19%

WordPerfect 25195 37570 49.12%

49.56%
PAKl 39024 58327 49.46%

Binary 24630 36745
PAK 56644 114625

49.60% PAR2 104622 156516
P.4K3 174226 260362 49.44%

TABLE IV
LIST OF 6-BIT PATERNS WITH NEW ASSIGNMENTS

Set 6-hi1 PntWms 5-bil \klur (i-l>il valrlr Outpllt '
,s, 0

......
011111 15 J1 '='
1ooooo .1' >'
inoooi .I'l ' I '

9'

101011 I .I I'
101 100 I 4 ' .I'

Compress& Translate
SIZE %ORG
13853 55.48%
15082 59.86%
6703 38.69%

19695 79.90%
44626 58.23%
23327 59.78%
61662 58.94%
95402 54.76% 101101

101110
101111
110000
I10001
110010
110011
110100
110101
110110
ll0lll
Ill000

4.j 'K'
46 'L'
17 'M'
48 'N'
49 '0'
50 'P'
31 '4'
52 'R'
53 'S'
54 'T'
55 'U'
56 'V'

II1010 .Si 'W'
ss 111010 29 'X'

111011 29 'X'
1 Ill00 30 'Y'
111101 30 'Y'
I l l l l O 31 'Z'
1 1 1 1 1 1 11 '2'

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 5, JUNE 1993

C . Expansion Ratio Improvement
The expansion ratio is improved because we increase the

probability of tramlating 6-bit blocks and reduce that of 5-bit
blocks. For all 64 possible 6-bit patterns, we now have 26 that
can be translated and 38 that have to be translated in 5-bit
blocks. The overall expansion ratio is then

17 = (8 - 6)/6 x (26/64) + (8 - 5)/5 x (38/64)
= 0.4917 49.17%.

This expansion ratio shows a 5.43% (=54.6 - 49.17%) im-
provement over that of Method C and achieves the expectation
set by the Navy Security Group. Modification of the translation
program from that of Method C to accommodate the observa-
tion in this section is made straightforward by adjusting the
partitions for Su, S, SL (Table 111) to SA, S', SB (Table IV).
For all 64 possible 6-bit patterns, we now have 26 that can be
translated and 38 that have to be translated in 5-bit blocks.

D. Experiments
The text reproduced below shows a short ASCII file that

is to be processed through data compression, data encryption,
and character set translation (phone numbers are not real).

I was very pleased to receive your draft
data compression research proposal dated
February 27th. A s requested, I am enclosing
a detailed list of our projected require-
ments to further assist you in smoothing
your proposal and formalizing thesis work
on this subject. Please feel free to contact
LT Frank at (Comm) (202) 452-6313 or (AV)
911-1313 if additional clarification will
be helpful. Thank you for your professional
interest in our data compression needs.
Sincerely,

The compressed and encrypted file after character set trans-
lation is shown below; all characters appeared within . and
Z as desired. Note that there is neither CR (carriage return)
nor LF (line feed). The file is displayed in multiple lines for
readability. Because the original file is small and therefore
resistant to compression, translated file size is larger than that
of the original file (see below).

An extensive performance analysis on data compression
software found that an average of 39.3% compression ratio
is achievable [8]. The theoretical compressed and translated
file size can be reduced to 39.3% x (1 + 49.17%) = 58.62%.
This improved algorithm has been applied to a set of testing
files. Let PAK represent the file types used by the Naval data
package which consists of 90% ASCII text and 10% binary or
image data. The results are listed in Table V and are consistent
with the larger variance among testing results. However, this
is shown in the last column-when both compression and

B2C8/3 > :O.F4./C6:B./55XW;CP.2/A > 2N63/24160.27043.H;A < R6D;;
JY.8/?22R7@Z3M < > N74.P;TO < 7.XJK3:T3P6L9:PPALJT6 > X4Z.88;MT
@P;4F4Z290MX=3.8BHQ < 90Q < B8 < X:9G?6455U;@T < YRYS:UXHU;NRSB.=
ZP9 1 J9.UZ7;YO;U;LW:5:OB=ZWLK3;94W < D 160XWBTX4? < N64 11 lXEASDO
MXM5Y3LV < TR < Z:LXAD82XZRXR= < E=56 < VPT7SD=YQ7FlMBl=A80PM2/ < W
H > ;;:Y7EDD2LNUY8; < N=SY8UD==6K;98LZ=OZ6N6ZTS:456554UXZ, l=H
YG:Y=Y/ < F < HN;YOTLO;U3KClLKIU < Y==ZKUZXQ8IGM749LXIXWQX < 34
B9K2UO?. 1 =YOW;BQZDX/ST92?008KY/T 1 M8/48CNIZ 17 .L < XT3=J6R7282
< ZKF8VPR7RR:VBTQGJP91:QVRWVSE > ; < 8FOJGY;l.Q:T9155D:4H6 < 7 < 94
0; lGJUIZS3ZZNHHBMSRU > X80B84/ > U62X=P < < < J/MH?:: 1.7W@I05M3TKE
C:BC@F2J. > 63 > .3N.:H12 > .7QYY9:L6. > : < .6/ > 0/20?24F2JO > N62.100
7 > 2 z v

YANG AND TSAI: MANAGING SECURE COMMUNICATIONS 755

translation are performed. This is due to the different file types
benefiting from different compression ratios. The PAK files in
the last column are reduced to 58.23%, 59.78%, 58.94%, or
54.76% of their original file sizes; these are very close to the
theoretical value 58.62! This meets the requirement set by the
Naval Security Group Detachment (NSGD) [9]: a compression
ratio of 50% and an expansion ratio of 50% with the combining
effect of reducing file size to 75% of original size when the
file is compressed and translated.

The discussion in this section assumed that the occurrences
of all bit patterns are equally likely in the input to the
translation algorithm. This is a reasonable assumption since
the input bit patterns are dictated by the pointer values
in unknown compression/encryption algorithms. When bit
patterns are not equally likely, the translation algorithm may be
more sophisticated but may achieve a better expansion ratio.
For example, if a text file to be processed does not require
compression or encryption, the expansion ratio of the character
set translation should be smaller than the theoretical 49.17%
because the first and/or second 0 bit of each input byte may
be skipped in the translation process.

VII. CONCLUSION
It has been shown that a source file can be translated using

a restricted character set. Naval message traffic is transmitted
with a restricted character set, and the files are optionally
compressed. Both character translation and data compression
can be used as add-on data encryption. Various schemes
of restricted character set translation have been investigated
and their implementations on computers are discussed. The
translation algorithms that use a restricted character set have
been implemented with multilevel security access control
using the master key scheme and have been incorporated in a
data compression program for military applications.

Although the key management scheme discussed in this
paper is perfectly feasible, it is by no means the single or
best possibility. The method employed here allows only for
the availability of different keys for different links and hosts,
but does not differentiate the different functions or activities
for which the keys are used. The functions stressed in this
study are data compression and character translation; however,
the host system is most likely more versatile. Moreover, the
transmissions between hosts, remotes and hosts, remotes and
remotes, if independent of each other in encryption, may
provide much better protection. These important issues could
be solved by a key management scheme based on the popular
private-key algorithm, DES. This, however, is beyond the
scope of this paper. Nevertheless, its possibilities introduce
worthwhile followup research.

Finally, to make all algorithms and source code completely
transportable among hardware/operating system environments,
the work of error detection and correction becomes an absolute
necessity. It is possible to use checksum or CRC techniques
to detect transmission errors by attaching d characters to each
block of b characters. These d checking characters (D) are
computed from the b information characters (B) . Traditional
checksum is not capable of locating which byte in B is in error

since characters in B may have b! permutations, and some
permutations may result in the same D. To facilitate the error
correction, we may have to use some noncommutative opera-
tions in the construction of D from B. For instance, characters
in B are arranged in two matrices and their product is used as
D. Because matrix multiplication is noncommutative, it may
be a starting point for character-oriented error detection and
correction. Other powerful error correction codes such as R-S
(Reed-Solomon codes) are also available for further study.

ACKNOWLEDGMENT
This research has benefited tremendously from the Naval

Security Group Detachment, Pensacola, FL. The authors are
grateful to Capt. Engel and his staff for the initiation of the
research subject. The authors are indebted to Lt. P. Nguyen
and anonymous referees for helpful comments on the working
draft. The research was started while the authors were at the
U.S. Naval Postgraduate School, and the final revisions were
done while the authors were in Taiwan, Republic of China.

REFERENCES

C. C. Tsai, “Multilevel security with master key and restricted character
set translation in data compression.” Naval Postgrad. School, Masters
thesis, Mar. 1992.
FE’S. “Data encrvption standard.” Fed. Inform. Process. Stand. Pub.
46-1, NBS, Jan. i988.
G.C. Chick and S.E. Tavares, “Flexible access control with master
keys,” in Crypto ‘89.
S. G. Akl and P. D. Taylor, “Cryptographic solution to a multilevel
security problem,” in Crypro 82. New York: Springer-Verlag, pp.
237-249.
IEEE, “IEEE Standard for binary floating-point arithmetic,” ANSI/IEEE
Standard 754-1985.
P. A. Findlay and B. A. Johnson, “Modular exponentiation using recur-
sive sums of residues,” in Advances in Cryptologq-Crypto ‘89. New
York: Springer-Verlag, pp. 371-386.
Commander, Naval Computer Telecommun. Command NTP3, Annex C,
4401 Mass. Ave. NW, Washington, DC 20394-5000. (Unclassified but
need-to-know basis.)
Y. J. Jung, C. Yang, and G. A. Myers, “Performance analysis of data
compression and archiving software for U.S. Navy,” presented at the
9th Ann. Decision Aids Conf., June 1992.
Commander, Naval Security Group Detachment, Cony Station, Datu
Compression Project Specification, Mar. 1991.

New York Springer-Verlag, pp. 3 16322.

Chyan Yang (S’86-M’87-SM’90) received the
M.S. degree in information and computer science
from the Georgia Institute of Technology and
the Ph.D. degree in computer science from the
University of Washington.

He is currently an Associate Professor in the
Institute of Management Science and the Institute
of Information Management, National Chiao Tung
University, Hsinchu, Taiwan, Republic of China.
His current teaching and research interests are
distributed operating systems, office automation,

and network security. From 1987 to 1992, he was an Assistant Professor of
Electrical and Computer Engineering at the U.S. Naval Postgraduate School
where he carried out research in computer networks, parallel processing,
information management, and microelectronic systems.

Dr. Yang is a member of ACM.

156 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 5, JUNE 1993

Chien-Chao Tsai received the B.S. degree from
the Chinese Military Academy in 1978, and the
M.S.E.E. degree from the U.S. Naval Postgraduate
School in June 1992.

Since 1978, he has worked at MICA (Military In-
tegrated Communications Agency), Taiwan, Repub-
lic of China. His research interests include computer
systems, communications, and software engineer-
ing. He is now a Squadron Leader in MICA and is
planning to continue his research toward a doctoral
degree.

