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Terminal Guidance
Variable Structure Control (VSC) technique is applied to the design of robust hom
missile guidance laws. In the design procedure, the target’s maneuver is assumed
unpredictable and is considered as disturbances. Guidance laws are then propos
achieve the interception performance for both cases of longitude-axis control being a
able and unavailable. The proposed guidance laws are continuous which alleviate
tering drawback by classic VSC design. Results are obtained and compared with tho
realistic true proportional navigation design to illustrate the benefits of the propo
design.@S0022-0434~00!00604-3#
m
c

r
n
r

m

w

i

t

f
s

f
h

h

l

ing
ob-

uate
not
av-

ish-
er-
trol

of

ob-
f
he
ec-
with

lly,

ing
its
the
1,
in

the
atics
n is

t,

ts of
ned

the

to be
ign.

t

c

1 Introduction
In recent years, the study of the design of guidance law

interception has attracted much attention. Proportional naviga
~PN! has been widely used as the guidance scheme in the ho
phase of flight for most missile systems because of its simpli
and easy implementation. These include quasi-optimal PN~Axel-
band and Hardy@1#!, augmenting PN~Arbenz @2#!, predicted PN
~Kim et al. @3#!, general PN~Yang and Yeh@4#!, pure PN~Becker
@5#!, ideal PN ~Yuan and Chern@6#!, and true PN~Yuan and
Chern @7#!. Among them, two generic classes of PN laws ex
depending on whether the control acceleration of the pursue
referenced relative to the pursuer velocity vector~e.g., pure PN
and ideal PN! or the target-pursuer line-of-sight~e.g., general PN
and true PN!. Moreover, in those existing studies, th
longitudinal-axis control force was assumed to be available~gen-
eral PN and ideal PN! or unavailable~true PN and pure PN!.
However, from the practical point of view, the longitudinal-ax
control is generally not available during the terminal guidan
process since the missile is not mounted with an extra thruste
this process. It is known that PN can provide better performa
against the nonmaneuvering target or the low-maneuvering ta
However, along with the development the modern weapon s
tems, the classical PN guidance laws and its generalization
not be adequate against the high-maneuvering target. As the
neuverability of the target increases, the performance of PN
become worse and lack of robustness~Zarchan@8#!. To provide
sufficient robustness of control law, Variable Structure Cont
~VSC! technique is applied in this paper to homing missile gu
ance design. The acceleration of the weaving target is treate
the external disturbance and the nonlinear characteristic o
missile-target interception process is also taken into accoun
the design.

It is known that VSC scheme possesses the advantages o
response and less sensitivity to system uncertainties or di
bances than those by other methods. However, traditional V
technique often results in a chattering behavior because o
discontinuous switching control law. The chattering behavior
some drawbacks including damage to mechanisms, excitatio
unmodeled dynamics and waste of too much energy for reac
the sliding surface~see e.g., Slotine and Li@9#!. Although the
traditional boundary layer method with fixed boundary layer
VSC design can attenuate the degree of high-frequency beha
its asymptotic stability performance cannot be guaranteed. Ow
to these disadvantages of traditional variable structure contro
this paper, we employ VSC design technique to synthesize c
tinuous control laws to reduce the control effort in both magnitu
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and frequency while ensuring asymptotically vanishing track
error. Related research using VSC for an air-air interception pr
lem can be found in Brierley and Longchamp@10# and Zhou et al.
@11#. In those studies, they used fixed boundary layer to atten
the chattering of high-frequency behavior. In this paper, we
only propose continuous VSC’s to alleviate the chattering beh
ior by classic designs while guaranteeing asymptotically van
ing tracking error but also consider minimizing a quadratic p
formance index for reducing energy consumption of the con
efforts in reduced-order dynamics with a prescribed degree
stability ~Anderson and Moore@12#!.

The organization of the paper is as follows. In Section 2, pr
lem formulation is first given. It is followed by the design o
continuous-type VSC control laws for the two cases of t
longitudinal-axis control being available and unavailable. In S
tion 4, numerical simulations are presented and compared
those by Realistic True Proportional Navigation design~Yang and
Yang @13#! to illustrate the use of the proposed scheme. Fina
Section 5 summarizes the main results.

2 Problem Formulation
This paper considers the design of guidance law for hom

missile interception. The relative motion between a missile and
target is described by the spherical coordinate system with
origin fixed on the location of the missile as depicted in Fig.
whereer , eu , andef denote the three unit coordinate vectors
the spherical coordinate system, respectively.

For the design of the guidance law, we assume that both
missile and target are point masses and only system kinem
are considered. The governing equations for the relative motio
given by ~Yang and Yang@13#!

r̈ 2r ḟ22r u̇2 cos2 f5aTr2aMr , (1)

r u̇ cosf12ṙ u̇ cosf22r ḟu̇ sinf5aTu2aMu (2)

and

r f̈12ṙ ḟ1r u̇2 cosf sinf5aTf2aMf . (3)

Here, r is the relative distance between the missile and targeu
andf are the azimuth and pitch angles, respectively,aMr , aMu ,
andaMf denote the three commanded acceleration componen
the missile in the spherical coordinates, which are to be desig
to achieve the interception mission. In addition,aTr , aTu , and
aTf are the associated target’s acceleration components in
spherical coordinates. Dynamical behavior of the system~1!–~3!
has been studied~see e.g., Yang and Yang@13#; Meriam @14#!. In
this paper, the associated target’s accelerations are assumed
unpredictable and will be treated as disturbances in the des
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The goal of the paper then becomes to design a guidance law
achieving the interception mission. That is, to accomplish the p
formance ofr→0.

3 Design of the Guidance Law
To achieve the main goal of the paper as stated in Section

this section we employ the Variable Structure Control~VSC!
technique to fulfill the design task. In general, VSC design pro
dure consists of three major steps~see e.g., DeCarlo@15#; Slotine
and Li @9#!. The first step is to choose a sliding surface, which
a function of system state. It is followed by the design of t
controller for governing the motion on the sliding surface su
that the reduced-order dynamics possesses desired stability p
mance. The final step is to construct an extra control for gua
teeing that the system state will reach the sliding surface in a fi
time and forcing the system state to stay near the sliding surf
For the interception problem, we have the design as given be

Let x5(x1
T ,x2

T)T, where x15(x1 ,x2 ,x3)T5(r ,u,f)T and x2

5(x4 ,x5 ,x6)T5( ṙ ,u̇,ḟ)T. The system equations~1!–~3! then
become

ẋ15x2 (4)

and

ẋ25f~x!1G~x!~u1d!, (5)

where

f~x!5S f 1~x!

f 2~x!

f 3~x!
D 5S x1x6

21x1x5
2 cos2 x3

2x5x6 tanx32
2x4x5

x1

2
2x4x6

x1
2x5

2 cosx3 sinx3

D , (6)

G~x!5S 1 0 0

0
1

x1 cosx3
0

0 0
1

x1

D , (7)

u5~u1 ,u2 ,u3!T5~2aMr ,2aMu ,2aMf!T (8)

and

d5~d1 ,d2 ,d3!T5~aTr ,aTu ,aTf!T. (9)

Note that, the dynamical system~4!–~5! is already in regular form
~for definition, see e.g., DeCarlo et al.@15#!.

In the following, we consider two cases for the design. One
to assume that the longitude-axis control forceu1 is available. The

Fig. 1 Geometry of interception process
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study of such a case without VSC design can be found, for
stance, in Vathsal and Ros@16# and Yang and Yang@13#. The
other case is that the applicable control forces containu2 andu3
only since, in general, during the terminal guidance process,
missile is not mounted with a thruster in its longitude-axis.

3.1 Case for Longitude-Axis Control u1 Being Avail-
able. First, we consider the case of longitude-axis controlu1
being available. Recall that the objective of the interception is
design a control law that makes the system statex1 approaches
zero ~i.e., r→0!. To fulfill this purpose and follow the VSC de
sign procedure, we choose the sliding surface as

s5~s1 ,s2 ,s3!T5x21Mx150, (10)

where MPR333 is a positive-definite matrix to be determine
later. It is noted that, if the state lies on the sliding surface,
reduced model will have the form

ẋ11Mx150. (11)

This implies that the performancex1→0 exponentially, which
achieves the main goal of the paper. In addition, the m
positive-definiteness the matrixM as given in~10! is, the faster
the speed of convergence the system state is. However, is m
require more control energy. It is hence important to selec
suitable matrixM to meet practical consideration. Suppose w
now require that the motion on the sliding surface has a con
gence speed close toe2at and the system motion on the slidin
surface is optimal in the sense of minimizing the following co
function:

E
0

`

e2at~x1
TQx11x2

Tx2!dt, (12)

whereQ5QT>0 is a constant matrix. Following the design pr
cedure of Anderson and Moore@@12#, pp. 60–62# by treatingx2 as
a virtual control input, the optimal control of Eq.~1! with cost
function ~12! is then obtained asx252Mx1 , whereM satisfies
the algebraic Riccati equation~ARE!:

M ~aI !1~aI !M2M21Q50. (13)

Here,I denotes the identity matrix.
The second step for VSC design is to synthesize the first pa

control that governs system motion on the sliding surface, wh
will make the sliding surface an invariant manifold, i.e.,ṡ50, in
the absence of disturbances. From Eqs.~4!–~5! and~10!, we have

ṡ5Mx21f~x!1G~x!~u1d!. (14)

Thus, the control force can then be obtained as

ueq5~u1
eq ,u2

eq ,u3
eq!T5G21~x!@2f~x!2Mx2#. (15)

The final step is to construct an extra controlure

5(u1
re ,u2

re ,u3
re)T that can compensate for the effect of distu

bances and guarantee the reaching condition. That is, to guara
the system state reach the sliding surface in a finite time and
near there hereafter even in the presence of disturbances. Fo
purpose, we impose the following assumption on t
disturbanced.

Assumption 3.1. There exist non-negative scalar functionsr i(x)
such thatudi u<r i(x) for i 51,2,3.

To guarantee the reaching condition, we might select the c
troller from two classical VSC designs as given in~16!–~17! be-
low ~see e.g., Slotine and Li@9#, DeCarlo et al.@15#, Brierley and
Longchamp@10#!:

ui
re52~r i~x!1h i !sgn~si ! for i 51,2,3, (16)

and

ui
re52~r i~x!1h i !sat~si /d i ! for i 51,2,3. (17)
Transactions of the ASME
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In Eqs.~16!–~17!, h i andd i are positive constants, and sgn(•) and
sat (•) denote the sign and saturation functions, respectively.
constantsd i are referred to as the boundary layer widths of t
sliding surfaces for saturation-type control. The overall control
VSC design is then constructed asu5ueq1ure. Though these two
types of controls might attain the desired performance, howe
they inherit some drawbacks. First, the discontinuity of sign-ty
control as given in~16! leads to the chattering of system dynam
ics. In practical applications, chattering is generally undesira
since it involves extremely high control activity and might furth
excite high-frequency dynamics neglected in the course of m
eling. Second, though the saturation-type controller as given
~17! is a continuous one, it has a constant width of boundary la
and the magnitude ofure, as given in~16!, reduces to zero as th
system state approaches the sliding surface. This might resu
the magnitude of control effort smaller than those of disturban
when system states lie within the boundary layer. Thus,
saturation-type control can only guarantee the system state e
ing the boundary layer but not providing the asymptotic stabi
in the presence of disturbances.

In the following, instead of using the control designs as
~16!–~17!, a continuous control law is proposed below to allevia
the chattering behavior while retaining the system performanc
exponential stability. The proposed control is modified from t
saturation-type controller. To this end, we define the followi
functions

gi~si !5
2si

usi u1e ie
2g i t

, i 51,2,3 (18)

with e i.0 andg i.0, which will be selected by the designer. Th
overall control lawu5(u1 ,u2 ,u3)T for guidance can then be
modified as

ui5ui
eq2~r i~x!1h i !gi~si ! for i 51,2,3 (19)

with ui
eq as given in~15!. Note that, the modified control law in

~19! above is defined and continuous everywhere including
sliding surface.

The idea behind the modified guidance law is to construc
time-varying regionFb(x,t) of the sliding surface as defined b

Fb~x,t !5$xuusi~x!u<b•e ie
2g i t for i 51, 2, 3 withb>1%.

(20)

By defining the width of the region Fb(x,t) to be
mini51,2,3$be ie

2g i t%, it is clear that the width ofFb(x,t) expo-
nentially converges to zero.

Now, we will show that, under the modified guidance law~19!,
the performance of the design can be achieved. First, conside
case when the system state is outside the regionF1(x,t)
(5Fb(x,t)ub51). That is, usi(x)u>1•e ie

2g i t for some i 51,2,3.
During the interception process, it is reasonable to assume
x1.0, ufu,p/2 and the relative distancer between the target an
missile is smaller than the initial relative distancer 0 . This implies
Journal of Dynamic Systems, Measurement, and Control
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that Gii (x).0 for all i 51,2,3 and uGii (x)u>1/r 0 for i 51,2,
whereGii (x) denotes the~i, i!-entry of the matrixG(x). From
Eqs.~7!, ~14!, ~19!, and Assumption 3.1, we have

si ṡi5si•@Gii ~x!~ui
re1di !#

<2Gii ~x!~r i~x!1h i !•
2si

2

2usi u
1Gii ~x!r i~x!•usi u

<2h iGii ~x!•usi u. (21)

Thus, the system state will reach the time-varying regionF1(x,t)
in a finite time. In fact, the reaching timet reachcan be calculated
and satisfies the relationship:t reach<max1<i<3$usi(x0)u•r 0 /h i%,
wherex0 denotes the initial state and the initial time is assumed
be t50. Moreover, for any givenb.1, it is noted from~21! that
1/2(d/dt)si

25 ṡisi,0 for all the system state within the se
Fb(x,t)\F1(x,t). It implies that, forb.1, the time-varying re-
gion Fb(x,t) is an attractive and invariant set for the closed-lo
dynamics. That is, the system state will reach the regionFb(x,t)
and it will stay inside there hereafter once it enters this region.
then have the next result.

Theorem 3.1. Suppose the disturbancesd satisfy Assumption
3.1. Then the interception performance for system~4!–~5! can be
achieved at an exponential rate by the VSC control law as in~19!
if g i.lmax(M)2lmin(M) for all i 51,2,3, wherelmin(•) and
lmax(•), respectively, denote the smallest and largest eigenva
andM satisfies Eq.~13!.

Proof: From the discussions above forb.1, we know that the
system state will enter the regionFb(x,t) in a finite time and
remain inside there hereafter. It remains to show thatx1→0 ast
→` for any xPFb(x,t). By the definition ofs(x)5 ẋ11Mx1 ,
we then have

x1~ t !5e2Mtx1~0!1E
0

t

e2M ~ t2t!s~x~t!!dt. (22)

Since M.0, this implies thate2Mtx1(0)→0 exponentially ast
→`. Moreover, since xPFb(x,t), we have is(x)i
<S i 51

3 ube ie
2g i tu, wherei•i denotes the Euclidean norm and

I E
0

t

e2M ~ t2t!s~x~t!!dtI
<ie2Mti•E

0

t

ieMti•is~x~t!!idt

<(
i 51

3

be i S e2lmin~M !t
•E

0

t

elmax~M !t
•e2g itdt D

<(
i 51

3

be ihi~ t ! (23)

with
hi~ t !5H te2lmin~M !t if g i5lmax~M !,

e2lmin~M !tF 1

lmax~M !2g i
~e~lmax~M !2g i !t21!G if g iÞlmax~M !.

(24)
By L’Hospital rule ~see e.g., Buck@17#!, if g i.lmax(M)
2lmin(M), thenhi(t)→0 as t→`. From ~22!–~23!, we havex1
→0 exponentially ast→` if g i.lmax(M)2lmin(M) for all i
51,2,3. This completes the proof. j

Remark 3.1. The control law as provided in Theorem 3.1
continuous and alleviates the chattering behavior, which impro
the drawbacks inherited from those derived from sign function
is
ves
.

3.2 Case for Longitude-Axis Controlu1 Being Unavailable.
Next, we consider the case ofu1 being unavailable. That is, the
controlu in ~19! is reduced asu5(0,u2 ,u3)T. It is observed from
Eq. ~6! that f(x) becomes a null vector whenx1Þ0 andx55x6
50. Then, from ~4!–~5!, x5(t)>0, x6(t)>0 for all t>t0 and
x4(t) approaches a finite value ifx5(t0)50, x6(t0)50 and the
disturbancesd is suitably compensated by the controlu. As mo-
DECEMBER 2000, Vol. 122 Õ 665
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tivated by such observation, we can choosex550 andx650 as
new sliding surface for VSC guidance design. Instead of c
structing a tracking control law as proposed in Section 3.1 to s
xi to zero for all i 51, . . . ,6, in thefollowing, we only need to
check whetherx1 approaches zero without the controlu1 while x5
andx6 reaching the sliding surface:x550 andx650. Details are
given below.

Choose the sliding surfaces5(s1 ,s2)T5(x5 ,x6)T5(0,0)T.
Following the same procedure as discussed in Section 3.1
guidance law can then be selected as

ui5ui
eq1ui

re for i 52,3, (25)

where

ui
eq52Gii

21~x! f i~x! (26)

and

ui
re52~r i~x!1h i !gi~si 21!. (27)

Here,r i(x), h i andgi(•) are as defined in Section 3.1. Similarl
under the above guidance law, we have

si 21ṡi 21<2h iGii ~x!•usi 21u for i 52,3. (28)

Thus, the system states will reach the sliding surface in a fi
time and the reaching time t reach<max$us2(x0)u•r 0 /h2 ,
us3~x0!u•r0 /h3%.In addition, similar to the discussions in Sectio
3.1, we can show that the setFb(x,t)5$xuusi(x)u<b•e ie

2g i t, i
52,3% is attractive and invariant for the closed-loop dynamics
any b.1.

Now, we will check the condition to guaranteex1→0 during
the interception withu150. Denotet f the time of interception
such thatx1(t f)50. From~5! and Assumption 3.1, we have

x4~ t !2x4~0!<E
0

t

$x1@x5
2 cos2 x31x6

2#1r1~x!%dt

<E
0

t f

$x1@x5
2 cos2 x31x6

2#1r1~x!%dt (29)

for all 0<t<t f . To guarantee the interception, we require tha

x4~ t !<2k for some k.0 (30)

during the interception process. From~29!, this can be achieved i

x4~0!<2k2E
0

t f

$x1@x5
2 cos2 x31x6

2#1r1~x!%dt. (31)

We then have the next result.
Theorem 3.2. Suppose the disturbancesd satisfy Assumption

3.1 and the longitudinal-axis control is unavailable~i.e., u150!.
Then, the interception performance for system~4!–~5! can be
achieved by the control laws as given in~25! if there exists ak
.0 such that condition~31! holds.

To further estimate the initial relative velocityx4(0) for guar-
anteeing the success of interception, suppose that the relativ
locity satisfies~30!. Then by integrating the first equation of~4!
with x1(t f)50, we have

2x1~0!5E
0

t f

x4~ t !dt<E
0

t f

2kdt<2ktf . (32)

This implies that

t f<r 0 /k. (33)

Sincex1(0)5r 0 and ẋ1(t)<2k for all t during the interception
process, we have

x1~ t !<r 02kt for 0<t<t f . (34)

Denotet5 and t6 the first time that the statex5 and x6 enter the
regionF1(x,t). It follows from ~33!–~34! that
666 Õ Vol. 122, DECEMBER 2000
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E
0

t f

x1x5
2 cos2 x3dt

<E
0

t5
x1x5

2dt1E
t5

t f

x1x5
2dt

<E
0

t5
~r 02kt!x5

2~0!dt1E
t5

r 0 /k

~r 02kt!~e2e2g2t!2dt

5x5
2~0!F r 0t52

kt5
2

2 G1S r 0e2
2

2g2
1

ke2
2

4g2
22t5

ke2
2

2g2
D e22g2t5

2
ke2

2

4g2
2 e22g2r 0 /k. (35)

Here, we have used the fact that, afterx5 enter the region
F1(x,t), ux5u<e2e2g2t. Similarly, it can be shown that

E
0

t f

x1x6
2dt<x6

2~0!F r 0t62
kt6

2

2 G1S r 0e3
2

2g3
1

ke3
2

4g3
22t6

ke3
2

2g3
D e22g3t6

2
ke3

2

4g3
2 e22g3r 0 /k. (36)

Combining ~35!, ~36!, and ~31!, we thus have the next resu
which is independent oft f .

Corollary 3.1. Suppose the disturbancesd satisfy Assumption
3.1 and the longitudinal-axis control is unavailable~i.e., u150!.
Then, the interception performance for system~4!–~5! can be
achieved by the control laws as given in~25! if there exists ak
.0 such that the initial relative velocity satisfies the followin
condition:

x4~0!<2k2(
j 52

3 H xj 13
2 ~0!F r 0t j 132

ktj 13
2

2 G1S r 0e j
2

2g j
1

ke j
2

4g j
2

2t j 13

ke j
2

2g j
D e22g j t j 132

ke j
2

4g j
2 e22g j r 0 /kJ 2E

0

r 0 /k

r1~x!dt.

(37)

For the case oft55t650, that is, the initial state lies within the
regionF1(x,t), we have the next result.

Corollary 3.2. Suppose thatux5(0)u<e2 and ux6(0)u<e3 .
Then, the results of Theorem 3.2 hold if there exists ak.0 such
that the initial relative velocity satisfies the following condition

x4~0!<2k2(
j 52

3 H r 0e j
2

2g j
1

ke j
2

4g j
2 ~12e22g j r 0 /k!J 2E

0

r 0 /k

r1~x!dt.

(38)

Note that, if d150, then r1(x) may be chosen as the zer
function. The condition as in~38! might be simplified. Denote

F~k!52k2(
j 52

3 H r 0e j
2

2g j
1

ke j
2

4g j
2 ~12e22g j r 0 /k!J . (39)

By calculation, we have the derivative

dF~k!

dk
512(

j 52

3 H e j
2

4g j
2 S 12e22r 0g j /k2

2r 0g j

k
e22r 0g j /kD J .

(40)

This implies thatdF(k)/dk,0 if

(
j 52

3 H e j
2

4g j
2 S 11

2r 0g j

k De22r 0g j /kJ ,11(
j 52

3
e j

2

4g j
2 . (41)

By L’Hospital rule, we have (112r 0g j /k)e22r 0g j /k→0 as k
→0. It follows that condition~41! holds in a neighborhood ofk
Transactions of the ASME
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50. That is,F(k) is a decreasing function ofk in a neighborhood
of k50. Define F(0)5 limk→0F(k). It is clear thatF(k) is a
continuous function. Thus, ifx4(0),F(0)52S j 52

3 r 0e j
2/2g j ,

then there exists ak.0 such thatx4(0),F(k). The next result
follows readily from Corollary 3.2.

Corollary 3.3. Suppose thatux5(0)u<e2 , ux6(0)u<e3 and d1
50. Then, the results of Theorem 3.2 hold ifx4(0) satisfies the
following estimation:

x4~0!,2(
j 52

3
r 0e j

2

2g j
. (42)

4 Simulation Results
In this section, we present an example to demonstrate the u

the main results. The target in this example is considered for b
maneuvering and nonmaneuvering cases. For the maneuv
case, the target’s acceleration is assumed to be in the dire
orthogonal to the line of sight~LOS! and has the form

aT5sin~0.1t !eu1cos~0.1t !ef . (43)

In 1996, Yang and Yang proposed a realistic true proportio
navigation~RTPN! guidance law, which has the form

aM52l ṙ ~ u̇ cosfeu1ḟef!. (44)

It was shown~Yang and Yang@13#! that the target can be suc
cessfully intercepted if the following condition is satisfied:

u ṙ 0u
h0 /r 0

.
1

Al21
, (45)

whereh05r 0
2Aḟ0

21 u̇0
2 cos2 f0. To fulfill the requirement of~45!,

in this example,l53 and the initial state is chosen asr 0

55 km, u0520.2 rad, f050.1 rad, ṙ 0520.51 km/hr, u̇0

520.01 rad/hr andḟ050.05 rad/hr.
In addition to the initial condition in the proposed design, t

convergence ratea and the matrixQ in ~12! are, respectively,
selected asa51 and the identity matrix. The solution matrixM of
the algebraic Riccati equation~13! is then calculated to be

M5diag$2.414, 2.414, 2.414%. (46)

Moreover, the parameters are chosen to bee150.2, e25e3
50.1,g15g25g350.1,h151, h25h350.1, and the three non
negative functions in Assumption 3.1 have the formr1(x)50,
r2(x)51 andr3(x)51. Note that, under the selection of param
eters, the criterion~42! in Corollary 3.3 is satisfied. This mean
that the interception performance can be achieved by the prop
VSC designs as given in Section 3.

Numerical simulations are given in Figs. 2–5. Among the
Fig. 2 displays the time responses of the system states for

Fig. 2 Responses for nonmaneuver target case with VSC and
RTPN controls
Journal of Dynamic Systems, Measurement, and Control
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nonmaneuvering case by VSC and RTPN designs. The associ
control efforts are depicted in Fig. 3 and the relative trajectori
during interception are given in Fig. 4. Figure 5 shows the tim
responses of the system states for maneuvering case with targ
acceleration being given by~43!. In these figures, dotted line~la-
beled by VSC1!, dash-dotted line~labeled by VSC0! and solid
line ~labeled by RTPN! denote the response curves resulted fro
the use of VSC control withu1 being available, VSC control with
u1 being unavailable and RTPN control, respectively. It is o
served from Fig. 2 that the interception performance can
achieved for the nonmaneuvering case by all of the three con
designs. The VSC1 curve exhibits exponential convergence r
which agrees with the results of the paper, while VSC0 and RTP
display linear decay. Moreover, as observed from Fig. 2, all t

Fig. 3 Norm of controls for nonmaneuvering case with VSC
and RTPN case

Fig. 4 Relative interception trajectories for nonmaneuvering
target case with VSC and RTPN controls

Fig. 5 Responses for maneuvering target case with VSC and
RTPN controls
DECEMBER 2000, Vol. 122 Õ 667

4 Terms of Use: http://asme.org/terms



r

e
d

n

t

n

S

l

vi-

E

r

ng

,’’

id.

iga-
n.,

id.

n-
t.,

-

-
.,

re

ws

Downloaded F
six states approach zero by VSC1 design, whilexi→0 for i
53,¯ ,6 by VSC0 design. These agree with the designs propo
in Section 3. Although the interception time of VSC1 curve
shorter than those by VSC0 and RTPN designs, however, as
picted in Fig. 3, more energy consumption is required. The sec
peak of the curve VSC1 at aroundt56.2 in Fig. 3 results from
bringing the statesx4 , x5 , and x6 to zero value. It is observed
from Fig. 3 that the scale of the interception time and ene
consumption is very close by both RTPN and VSC0 desig
However, for maneuvering case as depicted in Fig. 5, the targ
intercepted by two VSC guidance laws but not by the RTPN
sign. From this example, it can be concluded that the propo
VSC guidance law is more robust than that of RTPN guida
law, especially, for maneuvering case.

5 Conclusions
VSC type of guidance laws have been proposed in this pape

study terminal guidance problem for the cases of longitudinal-a
control being available and unavailable. By the use of VSC te
nique and the optimal control strategy with respect to the mo
on sliding surface, the proposed guidance laws have been sh
to be able to achieve the interception performance and allev
the chattering drawback. An illustrative example was also give
demonstrate the use of the main results and compare system
formances with those by RTPN design. It is shown that V
design is more robust than the RTPN scheme, especially, for
neuvering case.
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