
Available online at www.sciencedirect.com
www.elsevier.com/locate/physc

Physica C 468 (2008) 362–367
Elastic properties of the Abrikosov lattice near the upper critical
field and peak effect in the critical current

B. Rosenstein *, V. Zhuravlev

National Center for Theoretical Studies and Electrophysics Department, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC

Accepted 16 November 2007
Available online 23 November 2007
Abstract

Abrikosov vortices in type II superconductors under magnetic field form highly correlated configurations with well defined elasticity,
like regular atomic solids. While in the London limit vortices can be considered as line-like objects, when the field approaches the upper
critical field Hc2(T) the core structure becomes important for elastic properties. Taking into account the deformation of the shape of the
current distribution leads to significant increase in the shear modulus of the vortex lattice compared to previous estimates. The elastic
properties determine the response to vortex matter pinning. The modified value of the elastic modulus is used to support a recent theory
of the discontinuous ‘‘peak effect” in the critical current. It is argued that the critical current of the vortex lattice decreases monotonously
as a function of the magnetic field, jumping to a high value in the homogeneous amorphous phase.
� 2007 Published by Elsevier B.V.
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Physics of the Abrikosov vortex systems in type II
superconductors under magnetic field has attracted great
attention over the years [1]. In addition to the general sig-
nificance of this system, it offers a unique testing ground for
a great variety of theoretical concepts, ranging from elastic
manifolds to glass dynamics. Repulsive interactions
between the flux lines result in stable flux line lattice config-
urations, considered as an elastic medium. Elastic proper-
ties of the vortex matter are crucial in understanding
such important phenomena as flux pinning and thermody-
namics of the vortex matter [2–4]. For example, elastic
moduli of the vortex matter determine the critical current
of superconductors in magnetic field. A detailed knowledge
of the elasticity of the vortex lattice is required for recent
experiments [5–7] in Nb on the ‘‘peak effect,” generally
observed in the region close to the mean field transition
line. Recently, interest focused on a particular case of
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strongly type II superconductors for which the ratio
j = k/n of the magnetic penetration depth and coherence
length is very large, j� 1 (for high Tc cuprates and most
of the widely used and studied low Tc type II superconduc-
tors j ranges between 10 and 100). To describe the super-
conductors on the mesoscopic scale, one generally uses
the phenomenological Ginzburg–Landau (GL) description
rather than a microscopic theory.

Using the GL theory under the assumption that the sys-
tem always stays on the lowest Landau level (LLL), Brandt
derived [8] the following expressions for the softest modu-
lus, the shear, of the vortex lattice. At large j and near the
mean field line, c66 is proportional to a2

h

c66 ’ 0:24b�2
A j�2a2

h; ð1Þ

where ah = (1 � t � h)/2 is a small parameter and bA =
1.16 for the Abrikosov hexagonal lattice. Temperature is
in units of Tc, t = T/Tc, and the magnetic field h =
(0,0,h) in units of the upper critical field H c2ðT ¼ 0Þ ¼

U0

2pn2ðT¼0Þ, U0 ¼ pc�h
e , whereas the moduli are given in units of
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Fig. 1. Superfluid density and current distribution for LLL hexagonal
lattice (a) and for the state with the first LL added (b). In (c) the
diamagnetic component of the current is subtracted.
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H2
c2
ð0Þ

p . The modulus is consistent with the thermodynamic
derivation in which lattice energies of different symmetries
were compared. The expressions for shear modulus and
other moduli are used in numerous theoretical descriptions
of phenomena as diverse as vortex lattice melting [9] and
critical current [1,2] of the pinned lattice.

Superconductivity is generally lost in magnetic field due
to flux flow leading to dissipation. However, if the vortices
are pinned, one recovers the basic property of a supercon-
ductor: finite net current in the absence of electric field. The
pinning force Fpin due to impurities or artificial defects bal-
ances the Lorentz force c�1

R
B � J. The assumption that

perturbed vortex matter near Hc2(T) is confined to LLL
looks reasonable due to the energy gap at high fields; how-
ever there is a general argument that in any pinned vortex
configuration carrying a net supercurrent, the system is
necessarily excited to higher Landau levels. Indeed, for
an arbitrary LLL configuration of the order parameter
field w(r), the local supercurrent, J(r), is proportional to
the curl of the superfluid density q(r) = jw(r)j2:

JðrÞ / ½ẑ�r�qðrÞ; ð2Þ

shown for the Abrikosov lattice configuration in symmetric
gauge Aa ¼ 1

2
eabrb,

/0 ¼ 31=8h�1=2
X1

l¼�1
exp ihxy½

þ ipl
l
2
þ 2h1=2x=a

� �
� 1

2
ðh1=2y � 2pl=aÞ2

�
; ð3Þ

in Fig. 1a (normalized to unit superfluid density). a =
2p1/2/31/4 is the lattice spacing at Hc2 in units of the
coherence length. Therefore, the total supercurrent is equal
to zero, despite the existence of strong circular diamagnetic
currents. For higher LLs, relation Eq. (2) is violated,
leading to the coexistence of effective pinning and electric
current. An example of such a configuration is shown in
Fig. 1b, in which an admixture of lattice on the first
Landau level, 0.1 /1, is added to /0. In Fig. 1c the diamag-
netic currents are subtracted, demonstrating the overall
persistent current component. Due to this fact it is unlikely
that the elasticity of the vortex lattice responsible for
pinning is mainly due to the LLL excitations near Hc2(T);
see quantitative discussion below.

We therefore revisit the calculation of elastic moduli
near Hc2(T) and extend the theory beyond LLL. Expansion
in both j�2 and ah is explicitly performed using a field the-
oretical method. Our main result is that the shear modulus
is much larger than that in Eq. (1), namely,

c66 ’
1

2
hb�1

A j�2ah; ð4Þ

which originates from rerouting of supercurrents by exter-
nal force in the strained state correlated with the shape
change of distorted vortices. Mathematically, it is due to
the higher Landau level excitations. Then we point out
what went wrong with the ‘‘thermodynamic” argument
and why pinning generally leads to supercurrents on the
mesoscopic scale.

The GL Gibbs energy density of a superconductor is

g ¼ 1

vol

1

j2

�
Z

r

1

2
jDiwj2 � ah �

h
2

� �
qþ 1

2
q2 þ j2

4
ðb� hÞ2

� �
;

ð5Þ

where Di = oi � iAi, i = 1, 2, 3 are covariant derivatives
with respect to coordinates r = (ra, z), a = 1, 2, with vector
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potential Ai generating the local induction b(r) = rot(A).
For strongly type II superconductors and not very far from
the normal-superconductor transition, the mean field con-
figuration minimizing the functional Eq. (5) is given by a
well defined expansion in two small parameters j�2 and
ah [10]:

wmf ðrÞ ’
ffiffiffiffiffiffi
ah

bA

r
½/0 þ ah/c þOða2

hÞ� þOðj�2Þ;

bmf ðrÞ ’ hþ j�2bc þOðj�4Þ:
ð6Þ

The correction /c = c0/0 + c6/6 + . . . with c0 = 0.0134/h is
composed of the LLL contribution, /0, and the higher
Landau level ones (the next to the lowest level contribution
being the sixth due to hexagonal symmetry), while
bc ¼ �h ah

hbA
j/0j

2 þOða3
hÞ.

Generally, elastic moduli describe the properties of the
body (in our case magnetic and the order parameter fields)
under local translations with a displacement of the fields in
the plane perpendicular to the external magnetic field,
u(r) = (ua, 0):

w0ðrÞ ¼ wðrþ uÞ;
A0iðrÞ ¼ Aiðrþ uÞ þ @iubAbðrþ uÞ:

ð7Þ

Expanding to second order in displacement,

g ¼ g0 þ Uð1Þ þ 1

2
Uð2Þ;

Uð1Þ ¼ 1

vol

Z
r

g0AdAi þ g0wdwþ g0w�dw�;

Uð2Þ ¼ 1

vol

Z
r;r0

g00AAdAkdAl þ g00ww�dwdw� þ 2g00Aw�dAkdw�

þ g00w�w�dw�dw� þ c:c:

ð8Þ

where

g0A ¼
dg

dAaðrÞ
; g0w ¼

dg
dwðrÞ ; g0w� ¼

dg
dw�ðrÞ

g00AA ¼
d2g

dAbðr0ÞdAaðrÞ
; g00ww� ¼

d2g
dwðr0Þdw�ðrÞ ;

g00Aw� ¼
d2g

dAbðr0Þdw�ðrÞ ; g00w�w� ¼
d2g

dw�ðr0Þdw�ðrÞ

are functional derivatives. Since the mean field configura-
tion is determined by the order parameter and magnetic
field satisfying the equations of motion, g0w ¼ g0A ¼ 0, U(1)

vanishes, while U(2) is quadratic in dw and dAi and, there-
fore, one needs variations of fields up to the first order in
displacement,

A0aðrÞ ¼ AaðrÞ þ dAa; dAa ¼ ubAa;b þ ub
;aAb;

A0zðrÞ ¼ AzðrÞ þ dAz; dAz ¼ ub
;zAb: ð9Þ

Defining a displacement wave-vector by obua = vakb and
expanding U(2) in powers of k, one observes that the order
k0 contributions cancel. This is just the Goldstone theorem,
which asserts that a continuous symmetry (global transla-
tions in the present case) is spontaneously broken and there
appears a ‘‘soft” mode. Terms linear in k vanish due to
reflection symmetry of the Abrikosov lattice configuration,
while the terms quadratic in k determine the elastic moduli.

Calculating explicitly the second functional derivatives,
one obtains a simple expression:

Uð2Þ ¼ 1

vol
vavbkikj

Z
r
½j2ðdij@aAl@bAl

þ @jAa@bAiÞ;þdijðD�bw
�Dawþ DbwD�aw

�Þ�; ð10Þ

which should be compared with the equation that defines
the elastic moduli of continuous media:

Uð2Þ ¼ c11ðkxvx þ kyvyÞ2 þ c66ðkxvy þ kyvxÞ2 þ c44k2
z ðv2

x þ v2
yÞ:

The contribution to the leading order in j�2 comes
solely from the magnetic energy term. Substituting the
mean field solution, Eq. (6), into Eq. (10), one notes that
the j0 – contributions to the compression and the tilt mod-
uli are

c0
11 ¼ c0

44 ¼
h2

4
; ð11Þ

while the shear modulus in this order is equal to zero. The
contribution to the integral in U(2) of order j�2 comes both
from magnetic terms in Eq. (10), which to order a2

h is

1

vol

Z
r
ðdij@aA0

l@bAc
l þ @jA

c
a@bA0

i þ ða$ bÞÞ

¼ � hah

2bA

ð1þ 2ahc0Þdaidbj; ð12Þ

with Ac
a;b ¼ � 1

2
eab

ah
bA
j/0j

2ð1þ 2ahc0Þ þOða3
hÞ, and from the

order parameter terms in Eq. (10):

1

vol

Z
r
ðD�bw

�Dawþ DbwD�aw
�Þ ¼ dab

hah

2bA

ð1þ 2ahc0Þ: ð13Þ

Therefore, one has the following contributions to the elas-
tic moduli:

c1
11 ¼ c0

a2
hh

j2bA

;

c1
44 ¼ c1

66 ¼
hah

2j2bA

ð1þ 2ahc0Þ:
ð14Þ

This has an order ah correction to the tilt modulus, repro-
ducing the value c44 ¼ hb

4
, in accordance with the ‘‘thermo-

dynamic” derivation [1].
The leading term in the shear modulus is larger by a fac-

tor h/ah compared to that obtained thermodynamically in
Eq. (1), so let us discuss why, while the thermodynamic
argument certainly works well in the London limit, it
breaks down near Hc2(T). If one considers, for example a
system of interacting point-like particles forming a hexago-
nal lattice, a (global) shear deformation transforms it
uniquely into an oblique lattice with opening angle h. Then
the second derivative of the lowest energy state with respect



Fig. 2. The superfluid density of the hexagonal lattice (a) sheared by
moving zeros (b) within LLL according to Eq. (18) and by transformation,
Eq. (9) (c).
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to h is related to the shear modulus. If however the particles
have an internal degrees of freedom, the deformation gen-
erally leads to excitation of internal degrees of freedom.
The deformed state is no longer the ground state of the sys-
tem with given symmetry. In the London limit the vortex
structure is ignored and as a result the deformed state is
still unique. However, far from Hc1(T) the core structure
becomes important and there are many states with the
same oblique symmetry and various vortex shapes. This
is illustrated in Fig. 2a, where the superfluid density of
the hexagonal vortex lattice is subjected to global shear.
A similar phenomenon was noted long ago in the density
functional theory [11] of atomic lattice. Our method is
quite analogous to theirs.

Next, we explicitly construct a transformation of the
order parameter w(x) under linear local translations in
the coordinate space. Uniform magnetic field is assumed
and is described in arbitrary linear gauge by the vector
potential Aa ¼ Babrb. The matrix,

Bab ¼
h
2

0 1

0 0

� �
;

in the Landau gauge and Bab ¼ h
2
eab in the symmetric

gauge. Writing down a global linear transformation in
the coordinate space as

ra ! ra þ uaðrÞ;

ua ¼ ðurLab
r þ usqLab

sq þ ushLab
sh Þrb;

ð15Þ

where ui = (ur, usq, ush) and Lab
i ¼ ðLab

r ; L
ab
sq ; L

ab
sh Þ are param-

eters and generators of rotation, squash, and shear trans-
formations correspondingly:

Lr ¼
0 1

�1 0

� �
; Lsq ¼

1 0

0 �1

� �
; Lsh ¼

0 1

1 0

� �
;

ð16Þ
one obtains

/0ðrÞ ! e�
i
2uiðLac

i BcbþBacLbc
i Þrarb/0ðrþ uÞ

¼ expðiui
bLiÞ/0ðrÞ: ð17Þ

The infinitesimal operators:

bLi ¼ �iraLab
i @b �

1

2
ðLac

i Bcb þBacL
bc
i Þrarb;
form a representation of the group defined by Eq. (15). It
can be easily checked that the operator bLr commutes with
the kinetic part,

gH ¼
1

vol

1

j2

Z
r

1

2
jDiwj2 þ

h
2
q

� �
;

of the GL functional, Eq. (5), in agreement with the invari-
ance of the system under global rotations. In contrast to
rotations, the operator of global shears has a non vanishing
commutator due to relations:

½bLsh;Db� ¼ iLba
sh Da

½bLsh;D2� ¼ �2iLab
sh DaDb

The calculation of the energy, gH, variation under shear
transformation yields the same shear modulus, Eq. (14),
in the leading order in j�2. In symmetric gauge there is
no additional (regauging) phase factor, which generally
accompanies geometrical transformation in a gauge theory.

It is important to note that the sheared state is not a
ground state of the Abrikosov lattice with the same symme-
try shown in Fig. 2b. The later is explicitly constructed in
the symmetric gauge by Brandt [8]:

/0ðrÞ ! /0ðrÞ
Y

a

x� xa � iðy � yaÞ � ua
x � iua

y

x� xa � iðy � yaÞ ; ð18Þ

where ra are positions of zeros of the order parameter in the
hexagonal lattice. Restricting the shear transformations to
LLL, he effectively retained the notion of a single state for
a given lattice symmetry. Physically, it is equivalent to the
assumption that the degrees of freedom related to the shape
of the vortices can ‘‘relax” to their positions with minimal
energy. It would mean that the system returns to an LLL
state upon this relaxation. There is a popular belief that
all degrees of freedom can be divided into two sets: ‘‘slow”

and ‘‘fast”. ‘‘Slow” variables are the locations of vortices
determined, for example, by the vortex center positions
(where w = 0), and ‘‘fast” variables that contain all the
other degrees of freedom related to the shape of the vorti-
ces. While near Hc1 one can argue that the internal degrees
of freedom are energetically very costly, near Hc2 this is not
correct. To our knowledge, there are no works which estab-
lish in what field range the separation between two set of
degrees of freedom becomes possible. The GL energy does
not contain an evident small parameter or ‘‘energy gap”

that allows such a separation. Correspondingly, in dynam-
ics based on the time-dependent GL equation, there is no
separation of time relaxation of different degrees of
freedom.

Mathematically, the shear transformation Eqs. (15) and
(17) takes the ground state /0 out of the LLL sector since it
does not commute with the ‘‘Hamiltonian” � 1

2
D2 þ h

2
.

Although in our calculation magnetic induction deviates
slightly from the external field h, the reason for a significant
increase of the shear modulus compared to earlier estimates
is not related to this. One can fix the field and calculate the
modulus from the energy variation due to the shear
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distortion, Eq. (17), and obtain as it was pointed out the
same result, Eq. (4), to the leading order in j�2.

Physically, external forces leading to deformation of the
vortex matter (‘‘stress”) originate due to pinning by inho-
mogeneities. Let us consider pinning due to inhomogeneity
of the critical temperature Tc, described by an ‘‘electric”
pinning potential U that varies on a scale larger than the
intervortex spacing a: gpin ¼ 1

j2

R
r
UðrÞqðrÞ. To first order

in U the correction to the wave function can be expanded
in LL basis: w =

P
NwN with

w1 ¼ �b�1a1=2
h b�1=2

A U 10/1; U 10 ¼
Z

r

/1UðrÞ/0:

The correction to the current is dI ¼
R

r
dJðrÞ, where

dJ x ¼
i
2

ffiffiffiffiffiffi
ah

bA

r
ið2bÞ�1=2ðw�1/1 þ w1/

�
1Þ þ cc

¼ ah

bAb
ð2bÞ�1=2

X
k

½ð/�1kU/0Þ þ cc�;

dJ y ¼
i
2

ffiffiffiffiffiffi
ah

bA

r
ð2bÞ�1=2ðw�1/1 � w1/

�
1Þ þ cc

¼ iah

bAb
ð2bÞ�1=2

X
k

½ð/�1kU/0Þ
� � cc�:

The Lorentz force, FL = c�1 [d I � b], is

�F Ly þ iF Lx ¼ ahb
�1
A ðb=2Þ�1=2U 10:

Only w1 contributes, since the covariant derivatives in J(r)
contain one ‘‘raising” operator. The Lorentz force is bal-
anced by the ‘‘electric” pinning force, Fpin ¼

R
r
q$U , which,

after integrating by parts and using �iDx/0 = Dy/0 =
(2b)�1/2/1, is given by the same expression. The above con-
sideration demonstrates that an equilibrium state in the
presence of the pinning force inevitably has mesoscopic
supercurrents and in view of Eq. (2) cannot be treated in
the framework of LLL only.

The shear modulus softening just below Hc2(T) may
play a crucial role in explaining the ‘‘peak effect” in the crit-
ical current [12]. The peak generally appears just before the
‘‘melting” of the Abrikosov lattice due to thermal fluctua-
tions. Within the collective pinning theory [1], the critical
current is estimated from the balance of the pining force
on Larkin domain fp ¼ f0nR2

cLc and the Lorentz force
JcB, where n is pinning density, f0 – pinning strength pro-
portional to ah near Hc2 and Lc, Rc are Larkin lengths
along the field and in perpendicular direction, respectively.
Larkin lengths in turn can be expressed via relevant elastic
moduli leading to

J c / ðf0nÞ2=ðbc44c2
66Þ: ð19Þ

Using c66 of Eq. (1) one obtains a gradual increase in Jc as
a�2

h approaching Hc2(T) since ‘‘softening” of the vortex lat-
tice overcomes decrease of the pinning force. This corre-
sponds to an ‘‘old” view of the ‘‘peak effect,” when this
increase was thought to be followed by an abrupt jumps
of the critical current to zero at the melting point (in prac-
tice might be smeared out by sample inhomogeneities). The
recent view, supported by experiments in which Corbino
geometry or width dependence were used to minimize or
subtract the edge effects [5,6], attributes the peak to the
amorphous homogeneous state. The critical current actu-
ally decreases monotonically with the field and then jumps
from a relatively low value in the crystalline state to a very
high value in the vortex glass (this was already noticed in
[13]). Qualitatively, this is due to the fact that it is easier
to pin a disordered homogeneous state than a rigid crystal-
line one. The continuous rise of the critical current ob-
served in numerous earlier experiments was caused by
poor resolution due to overheating of the solid and overco-
oling of the homogeneous states. The critical current in the
amorphous phase rapidly drops as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � T g
p

when temper-
ature approaches the glass temperature [14] Tg. Thus, the
traditional picture predicts a gradual increase with subse-
quent drop of the critical current, while a modern view pre-
dicts a sudden increase followed by a fast but continuous
decrease. If one uses the larger value of the shear modulus
obtained here, Eq. (4), one indeed obtains a monotonic de-
crease to a constant value, since both pinning force and
softening drop with similar rate in Eq. (19).

To summarize, we considered elastic response of the
vortex lattice near the second critical field Hc2(T) and
showed that in the pinned state the system is necessarily
excited to states outside of the lowest Landau level. This
reflects the deformation of the current distribution profile
under stress. As a result, the shear modulus is much larger
(of order 1 � T/Tc � H/Hc2) than that found by consider-
ing minimal energies of configurations with symmetries
corresponding to sheared lattice, leading to (1 �
T/Tc � H/Hc2)2. The obtained shear modulus leads to a
monotonic decrease of the bulk contribution to the critical
current in the crystalline phase before it discontinuously
jumps to a much higher value in the vortex glass. Such
behavior was recently obtained experimentally when edge
contributions were minimized.
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