

Scripta mater. 43 (2000) 1083-1088

www.elsevier.com/locate/scriptamat

AS-QUENCHED MICROSTRUCTURES OF Cu-14.2Al-xNi ALLOYS

J. Tan and T.F. Liu

Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

> (Received April 12, 2000) (Accepted June 8, 2000)

Keywords: Cu-Al-Ni alloy; D0₃ phase; L-J phase; a/4<111> anti-phase boundaries

Introduction

The as-quenched microstructure of the Cu-Al-Ni alloy has been studied by other workers [1–4]. Several investigators reported that when an alloy with a chemical composition in the range of Cu-(14–15.1) wt% Al-(3.1–4.3) wt% Ni was solution heat-treated at a point in the single β phase (disordered body-centered cubic) region and then quenched into room-temperature water, the microstructure was single D0₃ phase [1–3]. However, Otsuka et al. [4] reported that a high density of extremely fine particles with a mottled structure could be observed within the D0₃ matrix in a Cu-14.2 wt% Al-4.3 wt% Ni alloy. By using electron diffraction, the crystal structure of the extremely fine particles was determined to be of the 2H-type [4].

In order to clarify the discrepancy between these observations, a transmission electron microscopy study was performed to investigate the as-quenched microstructure of the Cu-14.2Al-4.3Ni alloy. To date, most examinations were focused on Cu-Al-Ni alloys with Ni \leq 4.3 wt%, another purpose of this work is thus to investigate the as-quenched microstructure of Cu-Al-Ni alloys with a higher nickel content.

Experimental Procedure

Three alloys, Cu-14.2 wt% Al-4.3 wt% Ni (Alloy A), Cu-14.2 wt% Al-6.0 wt% Ni (Alloy B) and Cu-14.2 wt% Al-10.0 wt% Ni (Alloy C), were prepared by using 99.99% copper, 99.99% aluminum and 99.9% nickel. The melts were chill cast into $30\times50\times200$ -mm-copper molds. After being homogenized at 1000° C for 72 hours, the ingots were sectioned into 2-mm-thick slices. These slices were subsequently heat-treated at 1000° C (in the single β -phase state) for 1 hour and then quenched into room-temperature water.

Electron microscopy specimens were prepared by means of a double-jet electropolisher with an electrolyte of 67% methanol and 33% nitric acid. The polishing temperature was kept in the range from -20° C to -10° C and the current density was kept in the range from 3.0×10^{4} to 4.0×10^{4} A/m². Electron microscopy was performed on a JEOL 2000FX scanning transmission electron microscope operating at 200 kV.

1359-6462/00/\$-see front matter. © 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved. PII: S1359-6462(00)00537-6

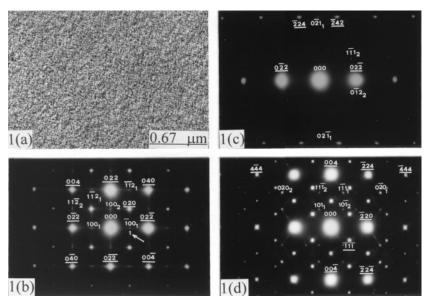


Figure 1. Electron micrographs of the as-quenched alloy A. (a) BF, and (b) through (i) eight SADPs. The zone axes of the D0₃ phase are (b) [100], (c) [311], (d) [211], (e) [110], (f) [331], (g) [111], (h) [321] and (i) [331], respectively ($hkl = D0_3$ phase, $hkl_{1, \text{ or } 2} = \text{L-J phase}$, 1: variant 1; 2: variant 2). (j)-(k) g = [200] and g = [111] DF micrographs. (l) DF micrograph, which was taken with the reflection spot marked as 1 in (b).

Results and Discussion

Figure 1(a) is a bright-field (BF) electron micrograph of the alloy A in the as-quenched condition, exhibiting that a high density of extremely fine particles with a mottled structure was formed within the matrix. Figures 1(b) through (i) show eight different selected-area diffraction patterns (SADPs) of the as-quenched alloy. In these SADPs, it is seen that in addition to the reflection spots corresponding to the D0₃ phase [4–7], the diffraction patterns also consist of extra spots caused by the presence of the extremely fine particles. Compared to our previous study in a Cu_{2.2}Mn_{0.8}Al alloy [8], it is found that the positions and streak behaviors of the extra spots are the same as those of the L-J phase with two variants. The L-J phase has an orthorhombic structure with lattice parameters a = 0.413 nm, b = 0.254nm and c = 0.728 nm. Figure 1(j) is a g = [200] dark-field (DF) electron micrograph of the as-quenched alloy, indicating that no a/4<111> anti-phase boundaries (APBs) could be observed. This feature is similar to that observed by other workers in an as-quenched Cu-14Al-4Ni alloy [2]. Figure 1(k), a g =[111] DF electron micrograph of the same area as Figure 1(j), reveals the presence of the DO₃ domains with a/2<100> APBs. In this figure, it is also seen that a high density of the extremely fine L-J particles (dark contrast) was present within the D0₃ domains. Figure 1(1), a DF electron micrograph taken with the reflection spot marked as 1 in Figure 1(b), exhibits the presence of the extremely fine L-J particles. Accordingly, it is concluded that the microstructure of the alloy A in the as-quenched condition was D03 phase containing extremely fine L-J particles.

Transmission electron microscopy examinations of thin foils indicated that the as-quenched microstructure of the both alloy B and alloy C was also D0₃ phase containing extremely fine L-J particles, which is similar to that observed in the alloy A. The examples are shown in Figures 2 and 3, respectively. By comparing Figures 1 through 3, three important experimental results are given below. (I) The amount of the extremely fine L-J particles was increased with increasing the nickel content. Correspondingly, the intensity of the reflection spots and streaks of the L-J particles was also increased

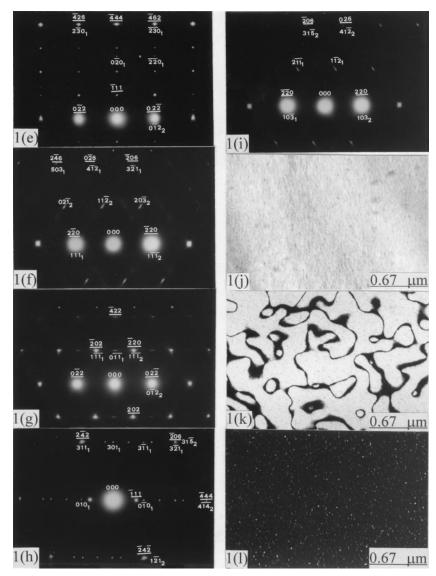


Figure 1. (Continued)

with increasing the nickel content. (II) The size of the $D0_3$ domains was decreased with increasing the nickel content. (III) In the g=[200] DF electron micrographs, it is seen that no evidence of the a/4<111> APBs could be detected in the both alloy A and alloy B. However, the a/4<111> APBs were clearly present in the alloy C.

On the basis of the preceding results, some discussion is appropriate. In the previous study [4], it was reported that the as-quenched microstructure of the Cu-14.2Al-4.3Ni alloy was DO_3 phase containing extremely fine particles. The crystal structure of the extremely fine particles was determined to be of the 2H-type, which was analyzed by using four different SADPs. The 2H phase has an orthorhombic structure with lattice parameters a = 0.4274 nm, b = 0.5393 nm and c = 0.4127 nm. Compared the previous study and the present work, it is seen that the positions and streak behaviors of the extra spots

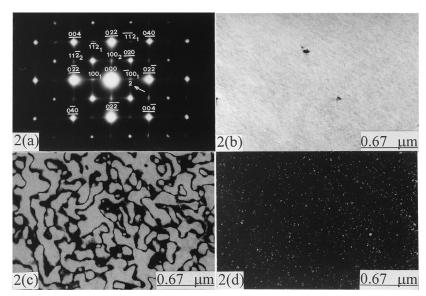


Figure 2. Electron micrographs of the as-quenched alloy B. (a) an SADP. The zone axis of the $D0_3$ phase is [100]. (b)-(c) g = [200] and g = [111] DF micrographs. (d) DF micrograph, which was taken with the reflection spot marked as 2 in (a).

in their four SADPs are the same as those in Figures 1(b) through (e), respectively. However, a further analysis indicated that the extra spots in Figures 1(f) through (i) could not be indexed completely in terms of the lattice parameters of the 2H phase; whereas, compared to our previous study in the Cu_{2.2}Mn_{0.8}Al alloy [8], it is found that all of the positions and the streak behaviors of the extra spots in Figures 1(b) through (i) are the same as those of the L-J phase. Therefore, it is proposed that the

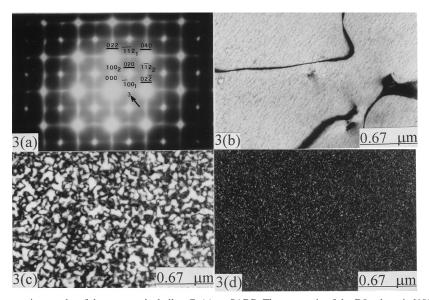


Figure 3. Electron micrographs of the as-quenched alloy C. (a) an SADP. The zone axis of the $D0_3$ phase is [100]. (b)-(c) g = [200] and g = [111] DF micrographs. (d) DF micrograph, which was taken with the reflection spot marked as 3 in (a).

extremely fine particles formed in the present alloys should belong to the L-J phase, rather than 2H phase.

In the Cu-Al, Cu-Al-Mn, Fe-Al and Fe-Al-Mn alloys [9-14], it is well-known that if the $D0_3$ phase was formed by continuous ordering transition during quenching, it was always occurred through an A2 (disordered bcc) \rightarrow B2 \rightarrow D0₃ transition. The A2 \rightarrow B2 transition produced a/4<111> APBs and the B2 \rightarrow D0₃ transition produced a/2<100> APBs [9-10]. However, to date, no a/4<111> APBs could be observed by other workers in the Cu-Al-Ni alloys [2]. In the present study, it is indeed found that no evidence of the a/4<111> APBs could be observed in the both alloy A and alloy B, which contain 4.3 wt% and 6.0 wt% nickel, respectively. However, when the nickel content was increased to 10.0 wt% (alloy C), the a/4<111> APBs could clearly be observed. This result seems to imply that in the Cu-Al-Ni alloys with Ni \leq 6.0 wt%, the size of the B2 domains could be equivalent to the grain size. However, the increase of the nickel content could decrease the B2 domain size significantly. Therefore, the a/4<111> APBs became visible, as observed in Figure 3(b).

Finally, it is worthwhile to point out that although the effects of nickel addition on the microstructure of the Cu-Al binary alloy have been extensively studied by many workers [1–4,15–17], no information concerning this addition on the ordering transition temperature of the Cu-Al binary alloy has been provided. In the present study, it is obviously seen that the size of the $D0_3$ domains was decreased with increasing the nickel content. The result implies that the increase of the nickel content would lower the $B2 \rightarrow D0_3$ ordering transition temperature. This feature is similar to that found by the present workers in an Fe-23.2Al-4.1Ni alloy [18]. In the previous study, we have shown that the addition of nickel to the Fe-Al alloy could lower the $B2 \rightarrow D0_3$ ordering transition temperature.

Conclusions

- 1. In the as-quenched condition, the microstructure of the alloys A, B and C was D0₃ phase containing extremely fine particles. The extremely fine particles should belong to the L-J phase, rather than 2H phase. The amount of the L-J particles was increased with increasing the nickel content. On the contrary, the size of the D0₃ domains was decreased with increasing the nickel content.
- 2. No evidence of the a/4<111> APBs could be detected in the both alloy A and alloy B. However, the a/4<111> APBs were clearly observed in the alloy C. This result seems to imply that the increase of the nickel content in the Cu-Al-Ni alloys could decrease the B2 domain size.

Acknowledgments

The author is pleased to acknowledge the financial support of this research by the National Science Council, Republic of China under Grant NSC89–2216-E009-014. He is also grateful to M. H. Lin for typing.

References

- 1. M. A. Dvorack, N. Kuwano, S. Polat, H. Chen, and C. M. Wayman, Scripta Metall. 17, 1333 (1983).
- 2. N. Kuwano and C. M. Wayman, Metall. Trans. A. 15A, 621 (1984).
- 3. N. F. Kennon, D. P. Dunne, and L. Middleton, Metall. Trans. A. 13A, 551 (1982).
- 4. K. Otsuka, H. Sakamoto, and K. Shimizu, Trans. JIM. 20, 244 (1979).
- 5. C. C. Wu, J. S. Chou, and T. F. Liu, Metall. Trans. A. 22A, 2265 (1991).
- 6. K. C. Chu, S. C. Jeng, and T. F. Liu, Scripta Metall. 34, 83 (1996).
- 7. T. F. Liu, J. S. Chou, and C. C. Wu, Metall. Trans. A. 21A, 1891 (1990).

- 8. J. S. Jeng and T. F. Liu, Metall. Trans. A. 26A, 1353 (1995).
- 9. S. M. Allen and J. W. Cahn, Acta Metall. 24, 425 (1976).
- 10. P. R. Swann, W. R. Duff, and R. M. Fisher, Metall. Trans. A. 3, 409 (1972).
- 11. T. F. Liu, G. C. Uen, C. Y. Chao, Y. L. Lin, and C. C. Wu, Metall. Trans. A. 22A, 1407 (1991).
- 12. C. Y. Chao, C. N. Hwang, and T. F. Liu, Scripta Metall. 34, 75 (1996).
- 13. R. Kainuma, N. Satoh, X. J. Liu, I. Ohnuma, and K. Ishida, J. Alloys Comp. 266, 191 (1998).
- 14. M. Bouchard and G. Thomas, Acta Metall. 23, 1485 (1975).
- 15. K. Otsuka, C. M. Wayman, and H. Kubo, Metall. Trans. A. 9A, 1075 (1978).
- 16. M. J. Duggin and W. A. Rachinger, Acta Metall. 12, 529 (1964).
- 17. I. M. Robertson and C. M. Wayman, Metall. Trans. A. 15A, 269 (1984).
- 18. T. F. Liu, S. C. Jeng, and C. C. Wu, Metall. Trans. A. 23A, 1395 (1992).