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Abstract

Airline network design encompasses decisions on an airline network shape and route ¯ight frequencies. Related

investigations handle the trade-o� between enhancing passengersÕ service levels and lowering the airlineÕs operating

costs by applying deterministic optimization methods. In contrast with other conventional methods, Grey theory is a

feasible mathematical device capable of forecasting airline tra�c with minimum data and resolving problems containing

uncertainty and indetermination. In the light of these developments, this study develops a series of models capable of

forecasting airline city-pair passenger tra�c, designing a network of airline routes and determining ¯ight frequencies on

individual routes by applying Grey theory and multiobjective programming. A case study demonstrates the feasibility

of applying the proposed models. Results in this study not only con®rm the practical nature of the proposed models,

but also their ability to provide high ¯exibility in decision making for airlines. Ó 2000 Elsevier Science B.V. All rights

reserved.
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1. Introduction

1.1. The airline network design problem

Airline network design, including how to de-
termine a networkÕs shape, ¯ight frequencies and
aircraft types on individual routes, is a prerequi-
site for an air carrierÕs operational planning such

as ¯ight scheduling and crew assignment. Net-
work design is heavily emphasized since the
chosen network shape, ¯ight frequency and air-
craft type on individual routes directly in¯uence
the operating e�ectiveness of the air carrier and
the quality of service provided to passengers.
Designing an airline network is an extremely
complex task, largely owing to the fact that
transportation facilities must adhere to passenger
demand. Thus, accurately forecasting the future
passenger tra�c on each route is of priority
concern in the planning and design of an airline
network. The extent to which the economic cycle
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in¯uences air transportation demand is quite ap-
parent. For instance, an economic recession ob-
viously impacts air tra�c and, under such a
circumstance, the airline industry more slowly
recovers than other manufacturing or service in-
dustries. Thus, the ¯uctuations surrounding air
tra�c may a�ect the accuracy of forecasted re-
sults. Actually, the number of available tra�c
observations has in general not been large due to
a short accumulation time, particularly city-pair
data (Horonje� and McKelvey, 1994; Hsu and
Wen, 1998). Therefore, accumulating a large
number of data points with good statistical dis-
tribution to develop conventional statistical
forecasting models is a challenging task. In ad-
dition to city-pairÕs tra�c, the uncertainty sur-
rounding other input data also complicates the
design of the airline network. For instance, a
situation frequently arises in which only approx-
imate costs are known for certain routes.

Airline network design as an optimization of
the network system originates from the perspective
of either the air carrier or the passenger. Airlines
strive to generate the lowest possible operating
costs and achieve a higher load factor; while pas-
sengers concern themselves primarily with areas
such as ¯ight frequencies, nonstop ¯ights, and
minimum layover time (Teodorovic, 1988; Teod-
orovic et al., 1994). A tradeo�, although existing
between satisfying the concerns of the airlines and
those of the passengers, should be considered
when designing the airline network and determin-
ing ¯ight frequencies on speci®c routes.

Studies on designing the airline network and
determining ¯ight frequencies are in nature, fo-
cusing on di�erent aspects such as the airline net-
work structure or the airline hubbing problem
(e.g., Kanafani, 1981; Kanafani and Ghobrial,
1985; Hall, 1989; Chou, 1990; Jaillet et al., 1996;
etc.). Pertinent literature focuses largely on aircraft
choice or ¯ight frequency determination by deter-
ministic programming (e.g., Kanafani and Ghob-
rial, 1982; Teodorovic, 1983; Teodorovic, 1986;
Teodorovic and Krcmar-Nozic, 1989; etc.). Teod-
orovic et al. (1994) applied fuzzy set theory to
design an airline network and determine ¯ight
frequencies on routes. Fuzzy set theory has been
extensively applied to solve problems containing

uncertainty, subjective, ambiguity and indetermi-
nation. While assuming that airlines ¯y with a
single type of aircraft, Teodorovic et al. (1994)
addressed this problem using fuzzy logic and sin-
gle-objective programming; however, they did not
develop a model to forecast passenger tra�c on
individual city-pairs. In contrast to their applied
methodologies, this study applies grey clustering
on network shape design and grey time-series
model to forecast airline city-pairÕs tra�c. Multi-
objective programming is also applied to deter-
mine ¯ight frequency.

Similar to fuzzy theory, Grey theory is an ef-
fective mathematical means of resolving problems
containing uncertainty and indetermination.
Deng developed Grey theory in 1982. Although a
majority of pertinent literature is in Chinese
(owing to its origin), Deng (1988, 1989) discussed
its principles and application areas. Related
models have also been recently used in many
applications (e.g., Deng et al., 1988; Sun, 1991;
Chen and Tien, 1996; 1997; Tien and Chen, 1997,
1998; Huang and Moore, 1993; Huang et al.,
1995; Hsu and Wen, 1998). This multidisciplinary
and generic theory deals with systems character-
ized by poor information and/or for which in-
formation is lacking. Fields covered by Grey
theory include systems analysis, data processing,
modeling, prediction, as well as decision making
and control.

In contrast to fuzzy logic, the steps of evalua-
tion procedure for grey clustering are markedly
less than those for fuzzy logic in cases involving a
larger number of basic evaluated parameters. On
the other hand, grey forecasting is an e�cient
means of forecasting airline tra�c with a small
amount of data. In addition, the fact that airlines
are more interested in both enhancing passengersÕ
service levels and lowering airlinesÕ operating costs
accounts for why multiobjective programming is
preferred over single objective programming for-
mulation in a network design problem. This study
develops a series of models to design a network of
airline routes and to determine ¯ight frequencies
and routing of individual routes by applying grey
clustering and multiobjective programming. While
not radically departing from the developments in
previous studies on airline network design, the
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basic goal of this paper is to show how to apply
Grey theory and multiobjective programming to-
wards a generic airline network problem. In the
light of the above discussion, this study applies
grey forecasting to forecast passenger tra�c ¯ows.
These forecasted tra�c ¯ows for all origin±desti-
nation (O±D) are used as input parameters for
network shape design and frequency determina-
tion. In addition, airline network shape is designed
and formed into a network structure by applying
Floyd algorithm and grey clustering. On the basis
of the designed network shape (structure), this
study also constructs multiobjective mathematical
programming models to determine the optimal
frequencies for ¯ights on all of the routes forming
the designed network.

1.2. Some basic concepts of Grey theory

In Grey theory, random variables are regarded
as grey numbers, and a stochastic process is re-
ferred to as a grey process. A grey system is de®ned
as a system containing information presented as
grey numbers; and a grey decision is de®ned as a
decision made within a grey system (Deng, 1985;
Deng et al., 1988; Huang et al., 1995). Moreover, a
grey system can often be characterized by a (time)
series; and a stochastic process (i.e., grey process)
is de®ned as a family of time series random vari-
ables (i.e., grey numbers) (Deng et al., 1988). Deng
considers most of the existing systems to be a
``generalized energy system,'' and he emphasizes
that nonnegative smooth discrete functions can be
transformed into a sequence with the so-called
grey exponential law (Deng, 1985; Deng et al.,
1988) which is an approximate exponential law. In
grey forecasting, accumulated generating opera-
tion (AGO) and inverse accumulated generating
operation (IAGO) are the main methods which
provide a manageable approach to treating disor-
ganized evidence (Deng et al., 1988). The gener-
ated series can be used to build a grey forecasting
model, which is developed by applying the grey
exponential law (Deng et al., 1988). The following
sections further de®ne grey number and the whit-
ening function; and brie¯y introduce the concepts
and methods of grey clustering.

De®nition 1.2.1. Let x denote a closed and
bounded set of real numbers. A grey number, 
x,
is de®ned as an interval with known upper and
lower bounds but unknown distribution informa-
tion for x (Deng, 1985; Deng et al., 1988; Huang
and Moore, 1993; Huang et al., 1995):


x � �
x; 
x� � �x0 2 x 
x
�� 6 x06
x�;

where 
x and 
x are the lower and upper bounds
of 
x, respectively.

De®nition 1.2.2. The whitened value ~
x of a grey
number 
x, is de®ned as a deterministic value with
its value lying between the lower and upper
bounds of 
x (Deng, 1985; Deng et al., 1988). It
can be marked by:

~
x � x0; x0 2 �
x; 
x�:
Whitening a grey number means specifying for it a
deterministic value in its de®ned interval. Since the
status of the given values of x0, which belong to a
certain grey number 
x, is varied, a whitening
function is used for describing the status of x0 in

x. The whitening function is the weight function
which can be used to obtain the weight value (in
the interval [0, 1]) of x0 in 
x.

Grey clustering is based on whitening func-
tions; and it is an approach applicable to decision
making on uncertain decision rules. In a decision
space, it involves a set of decision criteria (indices)
1 �1 � 1; 2; . . . ;m1), a set of decision categories
j �j � 1; 2; . . . ;mj) and a set of decision units
i �i � 1; 2; . . . ;mi); where m1; mj and mi are, re-
spectively, the number of elements of these three
sets. The following procedure describes how to
perform grey clustering:

Step 1. Calculate index values for each of the
indices for all decision units. Let xi1 denote certain
calculated values of indices 1 for decision units i,
such that there are mi � m1 calculated values as-
sociated with indices 1 and units i. Grey clustering
is an approach which determines the category of
the ith decision unit. When the rules for judging
the decision category for a decision index are un-
certain, we can use the whitening functions to de-
scribe these decision rules.
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Step 2. Formulate the whitening functions. In
grey clustering, the whitening function describing
the level of the decision category j for the index 1
denoted by f j

1 �x�ÿ is said to be a grey clustering
function (Deng et al., 1988). This grey clustering
function f j

1 �xi1� serves as a criterion for judging the
category level among the calculated values xi1.

Step 3. Compute the decision weight parameters.
For decision making, we set the weights of the
indices, x1, to establish the relative importance of
the decision indices, where

Pm1

1�1x1 � 1. Let
rj

i denote the decision weight parameter of grey
clustering associated with category j and
decision unit i. The decision weight parameter can
be calculated by the weighted summation of
whitening function values for all indices, i.e.,
rj

i �
P

1f
j
1 �xi1� x1.

Step 4. Classify and cluster. Grey clustering
classi®es the decision unit i into a certain category,
by ranking the weight parameters of unit i and
selecting the highest among all categories j; i.e., if
rj�

i � maxj rj
i

� 	
, then classifying i into j�.

To summarize, Grey theory deals with systems
characterized by poor information, uncertainty,
multi-input and discrete data (grey systems). In
grey systems, grey forecasting is applied for pre-
dicting the grey series. Grey clustering is used to
treat the uncertain decision rules for grey deci-
sions.

The rest of this paper is organized as follows.
Section 2 de®nes the route length index, the total
number of intermediate stops and the concentra-
tion index of tra�c ¯ow. These three indices are
then used to determine the route candidates and
select a set of routes to form the designed shape of
network by applying grey clustering. Section 3
presents the grey forecasting models proposed
herein to forecast an airlineÕs city-pair tra�c and
estimate the upper and lower limits to re¯ect the
extents of variations in future trends. These fore-
casted tra�c values of individual routes are em-
ployed as input data of network shape design and
¯ight frequency determination. Grey clustering
and multiobjective programming approach are
then employed to obtain a group of designed
networks coordinated with di�erent forecasted
values. Next, in Section 4, we determine ¯ight
frequencies and assign the aircraft on routes by

minimizing the total airline costs and the total
passenger travel costs based on multiobjective
programming. Section 5 presents a case study
which demonstrates the proposed modelÕs e�ec-
tiveness. Concluding remarks are ®nally made in
Section 6.

2. Designing the shape of an airline network

Trips between two cities can be made by non-
stop ones or by ¯ights with one or more interme-
diate stops. With the latter, passengers usually
incur extra travel time and inconvenience, thereby
preferring the former. On the other hand, airlines
tend to consolidate passenger ¯ows from several
city-pair routes and combine these individual
routes into a hub-and-spoke network and, in doing
so, realize economies of ¯ow concentration and
achieve the lowest possible operating cost. Both
passengers and carriers are interested in the
shortest possible routes which reduce operating
costs for carriers and enhance the service level for
passengers. Based on these considerations, assume
herein that the route length index, the total num-
ber of intermediate stops and the concentration
index of tra�c ¯ow are the basic parameters for
designing the shape of an airline network. The ®rst
two indices are considered as indices to evaluate
the structural characteristics of all potential routes
(Teodorovic et al., 1994). Moreover, the concen-
tration index of tra�c ¯ow is an important mea-
sure widely applied to evaluate the economic
e�ciency of air service for an airline network
(Abrahams, 1983; Chou, 1993; Bania et al., 1998).
We believe that these three indices should cover
overall consideration for selecting the optimal
network shape.

Swan (1979) stated that ``both stops and
extra miles have signi®cant costs, so practical
options for a route neither stop too often nor go
too far around''. However, when designing the
airline network, the future routing plan and
schedule are unknown. Restated, in this initial
phase, we do not proceed with planning the airline
schedule and routing. Therefore, the exact number
of passengers who will transfer to another plane in
an intermediate stop and the total travel time of
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individual routes are di�cult to estimate. Thus,
the vague and uncertain characteristics of the
®rst two indices persist when evaluating route
candidates. In addition, the concentration
index of tra�c ¯ows is also not precise enough, as
attributed to the impossibility of accurately esti-
mating these tra�c ¯ows with enough precision.
To resolve the above di�culties, in this study, we
apply grey clustering to evaluate routes with un-
certain and vague parameters. Moreover, although
these three indices are independently de®ned and
measured, grey clustering can provide a mecha-
nism to transfer calculated index values into the
strength of decision preferences and combine all
indices for an overall evaluation (Deng et al.,
1988).

The scale of designing the shape of an airline
network connecting a large number of cities may
become quite large. Teodorovic et al. (1994) made
a two-step choice by applying the generalized
Floyd algorithm and fuzzy logic to decrease the
task complexity. Herein, we adhere to the initial
step of that selection process using the Floyd al-
gorithm to choose route candidates among a very
large number of possible routes (Teodorovic et al.,
1994). However, instead of fuzzy logic, we apply
grey clustering in the second step for the ®nal
choice. Grey clustering closely resembles fuzzy
logic in that it is also a highly e�ective means of
determining route candidates contain uncertainty,
ambiguity, vagueness and indetermination indices.
However, grey clustering does not require mandate
that the approximate reasoning algorithm contain
the number of rules (fuzzy phrase) which increases
with the number of the basic parameters that in-
¯uence the route choice preference by an increas-
ing rate. Thus, the steps of the evaluation
procedure for grey clustering are substantially less
than those for fuzzy logic in cases involving a
larger number of basic evaluated parameters. This
study adopts the two-step choice procedure to
design an airline network shape. The ®rst step
applies the Floyd algorithm to construct a feasible
network set with k shortest paths for any pair of
cities as route candidates. Next, the route index
and the total number of intermediate stops is used
to evaluate the structural characteristics of all
potential routes. Moreover, the concentration in-

dex of tra�c ¯ow is used to measure the e�ciency
of service for all routes. The second step, based on
grey clustering, determines the optimal route can-
didates.

Herein, an attempt is made to decrease the
complexity of airline network shape design. Ini-
tially, we apply the Floyd algorithm to determine
the route candidates between any two cities. The
Floyd algorithm labels the route candidates by
determining the k shortest paths for any pair of
cities with transport demand between them. Let n�

denote the total number of route candidates. Then,
the route candidates, n�, include direct nonstop
¯ights and ¯ights with one or more intermediate
stops.

Next, those route candidates obtained from the
Floyd algorithm are ranked on the basis of three
parameters: total length, total number of inter-
mediate stops and concentration index of tra�c
¯ow. Teodorovic et al. (1994) de®ned the ®rst two
indices. Herein, the de®nition of route length in-
dex, Crsc, made by Teodorovic et al., is adopted,
i.e.

Crsc � drs

Drsc
; �1�

where drs denotes the length from city r to city s for
a direct nonstop ¯ight, and Drsc represents the
actual length of the route candidate c from city r to
city s, for all route candidates c � 1; 2; 3; . . . ; n�

8�r; s�.
In Eq. (1), the actual length Drsc is obviously

longer than drs, i.e. Drsc P drs, and then Crsc6 1. In
addition, shorter route candidates correspond to
larger values of route length index, and vice versa.
Denote the total number of intermediate stops
along route candidate c from city r to city s by
mrsc; c � 1; 2; 3; . . . ; n�; 8�r; s�. If mrsc � 0, then
route candidate c is a direct nonstop route; other-
wise, if mrsc P 1. Under this circumstance, candi-
date c is a route with one or more intermediate
stops.

In addition to these two indices, the travel de-
mand distribution on route candidates is also of
relevant concern. Airlines are interested in
achieving economies of ¯ow concentrations
by combining passengers from several city-pair
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markets. From this perspective, we formulate the
concentration index of tra�c ¯ow. Chou (1993)
de®ned an index for measuring the spatial con-
centration of airline travel demand. Chou initially
de®ned Wij as a relative measure of the ratio of the
one direction trip volume between i and j to the
systemÕs total tra�c. That is,

Wij � fijP
i

P
j

fij
; �2�

where fij denotes the forecasted passenger tra�c
volume between city i and city j. In the next sec-
tion, we present the forecasting method for city-
pair tra�c volumes.

For each intermediate airport node ` along
route c from city r to city s, Chou also de®ned -`

as the proportion of total tra�c directly linked to
this node. In addition, -` is de®ned as

-` �
X

i

Wi` �
X

j

W`j: �3�

By applying the same de®nition, we denote -r

and -s, respectively, as the proportions of total
tra�c for original city r and destination city s.

Herein, we de®ne the concentration index of
tra�c ¯ow for route candidate c from city r to city
s, hrsc, as the sum of the concentration proportion
of the original, intermediate and destination nodes
along the route candidate c. For those with two or
more intermediate stops, we select the one with the
maximum proportional value among those of all
intermediate points to represent the intermediate
node for these route candidates. In sum, the con-
centration index of tra�c ¯ow for route candidate
c from city r to city s, hrsc, can be de®ned as

hrsc �
-r � -s; if mrsc � 0;
-r � -s �max

`
-`; if mrsc P 1:

(
�4�

Eq. (4) indicates that when route candidate c is
direct nonstop route, then mrsc � 0, and the tra�c
concentration index hrsc is the sum of the propor-
tional concentration of the original and destina-
tion nodes along the route. Route candidates with
a higher concentration index value imply that a
tremendous amount of tra�c ¯ow is concentrated

in one of the intermediate nodes along these
routes. Restated, these routes achieve higher
economies of ¯ow concentration and reduce op-
erating costs for airlines.

The objectives of designing an airline network
shape are assumed herein to decrease airline
operating costs and passenger travel costs.
Therefore, the decision preferences for selecting
route candidates should be a high route length
index Crsc, large tra�c concentration index hrsc

and small number of intermediate stops mrsc.
Herein, we denote B as a set of decision cate-
gories,

B � flow �j � 1�; medium �j � 2�; high �j � 3�g:

As mentioned earlier, these decision categories are
referred to as the decision preference for selecting
route candidates. However, the statement for
decision preferences is vague while grey cluster-
ing could be applied to deal with this vagueness.
Doing so allows us to evaluate and select routes
based on the values of route length index, the
number of intermediate stops and tra�c concen-
tration index.

Let xi1 denote certain calculated values of in-
dices 1, e.g., mrsc �1 � 1�; Crsc �1 � 2�; and
hrsc �1 � 3�, for route candidate i �i � 1; 2; . . . ; n�).
In addition, each route candidate has certain cal-
culated values, respectively, for indices 1. Grey
clustering is an approach given to assess what the
ith route candidateÕs decision category is. Let
f j
1 �x� denote the whitening function associated

with the decision category j and index 1. The
whitening function is the weight function which
can be used to describe the decision level of cate-
gory, and serves as a criterion for assessing the
category level. The whitening function in grey
clustering is a mechanism to transfer calculated
index values into the strength of decision prefer-
ences. The shape of the whitening function, when
constructed of linear lines, is generally assumed to
be a typical function. Herein, we adopt the typical
function as whitening function to simplify our
analysis. The whitening functions generally repre-
sent three types of meaning, e.g., ``smaller than a
certain number'', ``approximate a certain number''
and ``larger than a certain number''. Fig. 1 plots the
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typical shape for these types of whitening func-
tions, and is given by

1. ``Smaller than a certain number kj
1 '':

f j
1 �x� �

1; 06 x6 kj
1 ;

1
��kj

1ÿkj
1 � ��kj

1 ÿ x�; kj
1 6 x < �kj

1 ;

0; x P � kj
1 :

8<: �5�

2. ``Approximate a certain number kj
1 '':

f j
1 �x� �

1
kj
1
x ; 06 x6 kj

1 ;
1

��kj
1ÿkj

1 � ��kj
1 ÿ x�; kj

1 6 x6 � kj
1 ;

0; x > �kj
1 :

8><>: �6�

3. ``Larger than a certain number kj
1 '':

f j
1 �x� �

1
kj
1
x; 06 x6 kj

1 ;

1; x P kj
1 ;

(
�7�

where kj
1 and �kj

1 denote the critical values and the
upper limits of the values xi1, respectively. The
upper limits of the whitening functions, �kj

1 , are
the maximum values of xi1, such that
�kj

1 � max
i

xi1 81. The critical values kj
1 of whit-

ening functions could be arbitrarily set by decision
makers either for ful®lling some objectives of
network design, or from statistical distribution of
empirical, investigated data. The values of whit-
ening functions are maintained within the close
interval [0, 1] for all f j

1 �x�. That is, 06 f j
1 �xi1�

6 1 8xi1; 1; j.
The weights of the index, x1, are set to establish

the relative importance of the indices (i.e., mrsc;Crsc

and hrsc), and the sum of all weights is equal to 1,
i.e.,

P3
1�1x1 � 1. Two fundamentally di�erent

ways of eliciting weights of index importance are
direct elicitation and indirect elicitation. Direct
elicitation can be achieved through interviews,
questionnaires, preference or trade-o� interroga-
tion. Indirect elicitation, in which the decision
maker performs a series of overall evaluations of
indices, is achieved through the multiple regression
approach to obtain the weights. Many function-
ally methods are available to elicit weights of
index importance, such as rating method, entropy
method, analytic hierarchy process (AHP),
least-square method, logarithmic least-square
method, etc. (e.g., Zeleny, 1974; Nijkamp, 1977;
Saaty, 1980; Krovak, 1987; Cook and Kress,
1980).

Let rj
i denote the decision weight parameter of

grey clustering associated to category j and route
candidate i, then

rj
i �

X3

1�1

f j
1 �xi1� x1: �8�

Fig. 1. Three types of whitening functions of the typical shape,

(a) ``smaller than a certain number kj
1 '', (b) ``approximate a

certain number kj
1 '', and (c) ``larger than a certain number kj

1 ''.
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For j � 1; 2; 3 (e.g., low (j � 1), medium (j � 2),
high (j � 3)), we have

ri � �r1
i ; r2

i ; r3
i � 8i: �9�

The decision weight parameter of grey cluster-
ing suggests the level to be subordinate to the
category j for candidate i in accordance with the
parameter. In addition, a route candidate i can be
classi®ed into the category j by ranking the weight
parameters and selecting the highest. That is,

if rj�
i � max

j
rj

i

� 	
� max �r1

i ; r2
i ; r3

i �; classify i into j�:

�10�
The route candidates determined as ``high de-

cision category (j� 3)'' are chosen and to be in-
cluded in the airline network to form the shape.

3. Grey time-series model for tra�c forecasting of

city-pairs

The input data of airline network design are the
forecasted passenger tra�c ¯ows. These forecasted
¯ows for all origin±destination (O±D) pairs are
input parameters for evaluating route candidates
(i.e., calculating index hrsc) and determining the
¯ight frequencies on individual routes. However,
the number of available observed tra�c ¯ows is
generally not large. Therefore, in this study, we
apply grey models, which require a small amount
of data for forecasting city-pair tra�c.

The grey models (GM) encompass a group of
di�erential equations adapted for parameter vari-
ance. In grey models, there is a group of di�erence
equations with variations in the structure along
with time rather than being general di�erence
equations. A GM series is de®ned as a time series
in which the number of data points of the series
must be more than or equal to four (Deng et al.,
1988). Although applying the data from the orig-
inal series to construct GM models would be un-
necessary, the data must be taken at equal
intervals and in consecutive order without by-
passing any data (Deng et al., 1988). A condition
which should be satis®ed to establish a GM is that

the potency of the series must be more than four.
Furthermore, assumptions regarding statistical
distribution of data are unnecessary when apply-
ing the Grey theory. Accumulated generating op-
eration (AGO), an important feature of grey
models, focuses largely on reducing the random-
ness of data. In fact, functions derived from AGO
formulations of original series are always well-®t-
ted to exponential functions (Deng, 1985). As
mentioned in Section 1.2, Deng emphasized that
nonnegative smooth discrete functions can be
transformed into a sequence with the approximate
exponential law. A detailed derivation of the grey
exponential law can be found in Deng et al. (1988).
Grey forecasting models have been recently used in
many applications (e.g., Deng et al., 1988; Sun,
1991; Chen and Tien, 1996; 1997; Tien and Chen,
1997; 1998; Hsu and Wen, 1997; 1998).

For generalization, we ®rstly introduce the
general form of the grey model, GM(h, N), where h
stands for the hth order derivative of AGO-series
of dependent variables, and N stands for N vari-
ables (i.e., one dependent variable and N)1 inde-
pendent variables) in the di�erential equation in
the model. GM(h, N) is de®ned as a linear di�er-
ential equation (Deng, 1986; Chen and Tien, 1996;
Tien and Chen, 1998):

dhY �1��k�
dkh

� a1

dhÿ1Y �1��k�
dkhÿ1

� � � � � ahY �1��k�
� b1X �1�1 �k� � b2X �1�2 �k� � � � � � bNÿ1X �1�Nÿ1�k�;

�11�

where Y is the dependent variable; X1;X2; . . . ;XNÿ1

are independent variables; Y �1��k�; X1
�1��k�; . . . ;

X �1�Nÿ1�k� are their AGO-series, respectively (we will
show AGO formulation later, see Eq. (14)), and
a1; a2; . . . ; ah and b1; b2; . . . ; bNÿ1 are parameters.
Grey models are commonly represented in the
form of ®rst-order derivatives or as polynomial
expressions (i.e., h� 0), e.g., GM(1, 1), GM(1, N)
or GM(0, N); where GM(1, 1) is a time-series
forecasting model, GM(1, N) is a polyfactor sys-
tem forecasting model and GM(0, N) is a
smoothed polynomial interpolation (Deng, 1986).
Furthermore, the h-order di�erential equation can
be used to represent continuous dynamic systems
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(Chen and Tien, 1996). Chen and Tien (1996) and
Tien and Chen (1998) extended GM(2, 2) to be a
deterministic grey dynamic model DGDM(2, 2, 1)
for forecasting series in dynamic and changeable
systems.

Herein, we develop time series GM(1, 1) models
to predict all city-pairsÕ tra�c of the airline net-
work. Hsu and Wen (1997, 1998) presented time-
series GM(1, 1) models for forecasting total pas-
senger tra�c and country-pair passenger tra�c in
the Trans-Paci®c market. Herein, routes ¯ow
forecasts are predicted by using the models pro-
posed by Hsu and Wen (1998). The formulation of
the time series GM(1, 1) model is brie¯y described
as follows.

Assume an original series of a given city-pair
annual tra�c f �0�rs to be

f �0�rs � �f �0�rs �1�; f �0�rs �2�; . . . ; f �0�rs �n��; �12�
where n denotes the number of years observed.
The AGO formation of f �0�rs is

f �1�rs � �f �1�rs �1�; f �1�rs �2�; . . . ; f �1�rs �n��; �13�
where f �1�rs �1� � f �0�rs �1�,

f �1�rs �k� �
Xk

t�1

f �0�rs �t�; k � 1; 2; . . . ; n: �14�

The GM(1, 1) model can be constructed by es-
tablishing a di�erential equation for f �1�rs . That is,

df �1�rs

dk
� u1 f �1�rs � u2: �15�

The ®rst-order di�erential equation, �df �1�rs =dk�,
is represented as

�df �1�rs =dk� � lim
Dk!0
�f �1�rs �k � Dk� ÿ f �1�rs �k��=�Dk�:

Since the tra�c is time-series data (i.e., Dk � 1),
the derivative can be transformed into a forward
di�erence equation, such as

�Df �1�rs =Dk� � f �1�rs �k � 1� ÿ f �1�rs �k�:
As mentioned above, GM(1, 1) is a group of dif-
ference equations with variations in the structure
along with time. The di�erential equation (Eq.

(15)) can be seen as a transformation (i.e., whit-
ening process) which approximates to the grey
di�erence equations.

The solution of Eq. (15) can be obtained using
the least-square method to estimate the parameters
u1, u2. That is

û1

û2

� �
� �BTB�ÿ1BTyN �16�

and

B �

ÿ 1
2
�f �1�rs �1� � f �1�rs �2��; 1

ÿ 1
2
�f �1�rs �2� � f �1�rs �3��; 1

: :
: :
: :

ÿ 1
2
�f �1�rs �nÿ 1� � f �1�rs �n��; 1

26666664

37777775; �17�

yN � f �0�rs �2�; f �0�rs �3�; . . . ; f �0�rs �n�
� �T

: �18�
For the feasiblility to solve Eq. (15) by the least-

square method to obtain the parameters û1; û2,
e.g., û1; û2� �T � �BTB�ÿ1BTyN , the potency, n,
should be de®ned to be more than or equal to four.

Applying the inverse accumulated generating
function (IAGO) to reduce generating equations
leads to

f̂ �1�rs �k� � f �0�rs �1�
 

ÿ û2

û1

!
�1ÿ eû1�eÿû1�kÿ1�;

k � 2; 3; . . . �19�
when k� 1,

f̂ �0�rs �1� � f �0�rs �1�;

f̂ �0�rs � �f̂ �0�rs �1�; f̂ �0�rs �2�; . . . ; f̂ �0�rs �n�; f̂ �0�rs �n� 1�; . . .�

is the ®tted and forecast series. GM di�ers from
conventional statistical models in not demanding a
large amount of data with a good statistical dis-
tribution. In other words, GM(1, 1) is useful for
modeling when there is only a small amount of
data available, with poor statistical distribution.
Moreover, GM(1, 1) may be a good model when
the time series does exhibit exponential growth.
However, GM(1, 1) is inappropriate for forecast-
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ing future tra�c over an extended period of time
owing to its exponential feature. Forecasters
should regularly use new data to update the model,
to enhance forecasting accuracy. In GM(1, 1)
modeling, the least-square solution for solving
parameters û1; û2 may be asymptotically biased in
the presence of intensive noises in the system, and
may a�ect the accuracy of GM (Deng, 1996; Tien
and Chen, 1998).

The upper and lower limits of original and
forecast series capture the extents of variations in
annual air passenger tra�c evolution trends. The
upper and lower series limits can be separately
estimated by applying GM(1, 1) modeling; i.e. Eqs.
(12)±(19) using, respectively, the upper and lower
points and other appropriately selected points
along the boundaries of the original series.

Moreover, the grey number is de®ned as fol-
lows to describe the variations of forecasted tra�c
between the upper and lower limits. That is,

~
frs � 
frs � a � �
frs ÿ
frs�; �20�

where ~
frs denotes the grey number relationship,
and a 2 0; 1� �; �
frs and 
frs represent the upper
and lower limits, respectively. These forecasted
grey numbers of all city-pair tra�c are used as
input data to design network shape and determine
¯ight frequencies on individual routes. In doing so,
a group of designed networks coordinating is ob-
tained in correspondence with these di�erent
forecasted values. According to the results of Hsu
and Wen (1998), the accuracy of forecasted results
by applying grey models yields more precise fore-
casts than conventional statistical models such as
the ARIMA and multiple regression models.

4. Determining ¯ight frequencies on airline network

routes

Teodorovic et al. (1994) determined ¯ight
frequencies on the routes by considering the in-
terests of airlines and passengers. Their approach
is adopted herein to de®ne cost functions related
to airlines and passengers. The set of chosen
route candidates described in Section 2 is used
to comprise and form the shape of the airline

network. Consider the chosen airline network
G(N, A), where N and A represent the set of
nodes and set of links of graph G, respectively.
Let R (R � N) denote the set of origin cities,
and S represent the set of destination cities
(S � N), where R \ S 6� ;. Next, any given O±D
city-pair r)s is connected by a set of routes (the
chosen route candidates) Prs �r 2 R; s 2 S�
through the network. A carrierÕs ¯eet serving its
international routes normally contain many air-
craft with various sizes. The decision makers
should decide how to allocate all of their air-
crafts on individual routes pro®tably. Airlines
may either select a strategy of using larger air-
craft and fewer ¯ights or one of using smaller
aircraft and more ¯ights to ful®ll the given de-
mand. The former strategy, although lowering
the airlineÕs unit operating cost and average fare,
raises the passenger schedule delay costs; the
latter would raise the fare, but reduce the delay.
Notably, both schedule delay and fare prices
in¯uence the airlineÕs ability to attract passen-
gers. Therefore, a tradeo� arises between these
two strategies. Such a tradeo� should be con-
sidered when determining ¯ight frequencies on
routes.

Let grspq denote the load factor of aircraft q
¯ying from r to s along route p, and grspq is

grspq �
frspq

nqNrspq
; �21�

where frspq represents the weekly number of pas-
sengers carried by aircraft q from r to s along route
p, Nrspq is weekly ¯ight frequency and nq denotes
the number of available seats of the aircraft type q.
When determining the phase of ¯ight frequency,
the decision maker could specify a pro®table load
factor, g�rspq. Then, the average number of passen-
gers served can be obtained as g�rspqnqNrspq.

Let fa and Na represent the weekly number of
passengers and the ¯ight frequency, respectively,
on link a (a 2 A). Furthermore, the link ¯ow is the
sum of the ¯ows on all routes going through that
link and can be expressed as a function of the
route ¯ows. That is,

fa �
X

r

X
s

X
p

X
q

dr;s
a;pfrspq; �22�
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where dr;s
a;p is the indicator variable, and if dr;s

a;p� 1,
then link a is a part connecting O±D pair r)s;
otherwise, dr;s

a;p � 0. By using the same indicator
variable, the relationship between the link fre-
quency and the route frequency is

Na �
X

r

X
s

X
p

X
q

dr;s
a;pNrspq: �23�

4.1. Air carrier and passenger costs

Air carrier costs can be classi®ed into operating
costs and nonoperating costs. Nonoperating costs
include those expenses not directly related to the
operation of an air carrier. Therefore, while con-
sidering the air carrier costs, we simply take op-
erating costs into account. Kanafani and Ghobrial
(1982) systematized air carrier costs and passenger
costs. Herein, we follow the formulation of these
costs.

Air carrier operating costs are normally divided
into direct operating cost and indirect operating
costs. Direct operating costs are all those expenses
associated with the type of operated aircraft, in-
cluding all ¯ying costs, all maintenance, and all
aircraft depreciation expenses. According to
Kanafani and Ghobrial (1982), the direct operat-
ing costs are considered to be a linear function of
stage length. The direct operating cost of aircraft q
for a ¯ight over link a (a 2 A) with stage length da

is denoted by doc0aq. That is,

doc0aq � aq � bq da; �24�

where aq and bq are constant parameters speci®c
to aircraft type q. Then the total direct operating
cost for ¯ights on link a of the air carrier, TDOCa,
is

TDOCa �
X

q

doc0aq Na; �25�

where Na denotes the weekly ¯ight frequencies.
Indirect operating costs are those expenses re-

lated to passengers rather than related to aircrafts.
Kanafani and Ghobrial (1982) noted that the unit
indirect operating cost per passenger can be con-
sidered as a constant. Then, the total indirect op-
erating cost on link a, TIOCa, is

TIOCa � chfa; �26�
where ch represents the unit handling cost per
passenger in dollars.

Airline network design problem is generally
addressed from a long-run perspective. Therefore,
assume that all carriers have approximately the
same average tari� on same routes in the long run,
and neglect whatever pricing strategies the carrier
uses. Teodorovic et al. (1994) also assumed that
the travel demand is inelastic and the average tari�
between any link a is independent of the route
gone through. This assumption is made herein.
Moreover, the generic network design problem is
usually stated as a design involving a single air-
lineÕs network and a routing policy which satisfy
the demand and minimize the total cost (Jaillet
et al., 1996). Similar assumption on constant average
fare of individual route was made by Teodorovic
and Krcmar-Nozic (1989). Numerous studies
considered related airline network design problems
as cost-minimization problems (e.g., OÕKelly,
1987; Aykin, 1995; Jaillet et al., 1996). Conse-
quently, the total revenue of the air carrier on link
a can be considered as a constant. In doing so, the
problem of maximizing air carrier pro®t becomes
the problem of minimizing costs.

In sum, the total operating costs of the air
carrier on link a, TCc

a, can be expressed as

TCc
a � TDOCa � TIOCa: �27�

Kanafani and Ghobrial (1982) also formulated
the costs of passenger travel time, and divided
those costs into two components. The ®rst com-
ponent is the total passenger line-haul travel cost
on link a, TTa, which could be expressed by

TTa �
X

r

X
s

X
p

X
q

dr;s
a;p ct �cq � qqdrsp � Drsp� frspq;

�28�
where cq; qq are travel time function parameters
and depend on the speed of aircraft type q; drsp

denotes the stage length of route p; Drsp represents
the airport time including ground time in the
nonstop route, stopover time, or transfer time in
the multilink route; ct is the average time value, a
unit time-cost transformation re¯ecting the per-
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ceived money cost of line-haul travel time. Denote
Dg and Dl as the ground time for the origin airport
and the destination airport, respectively. For a
¯ight consisting of several intermediate stops, the
airport time is represented by stopover or transfer
time. However, in this phase of planning ¯ight
frequencies, the future routing plan and schedule
are not yet known. In addition, whether or not
passengers physically transfer planes or remain on
the planes at some intermediate airport is un-
known. Let Dm denote the average intermediate
airport time, regardless of whether or not the
passengers remained in the same plane or physi-
cally changed plane before ¯ying that node. Thus,
the component of travel time referring to airport
time along route p from r to s, Drsp, is

Drsp � Dg � mrsp Dm � Dl; �29�
where mrsp denotes the total number of interme-
diate stops along route p from r to s.

The second component is schedule delay cost
and stochastic delay cost. The schedule delay is the
time di�erence between the time that the passenger
desires to travel and the time that it is actually
possible due to the existing ¯ight schedule. Fol-
lowing the formulations provided by Swan (1979),
Kanafani and Ghobrial (1982), Teodorovic
(1983) and Teodorovic and Krcmar-Nozic (1989),
we obtain total schedule delay cost on link a,
TSCa, as

TSCa � cd1s
OT

Na
fa; �30�

where OT represents the average operating time of
the airport over a speci®c period; OT=Na is the
average headway on link a; cd1 denotes a unit
time±cost transformation re¯ecting the perceived
money cost of schedule delay time; s represents the
multiplier a�ected by ¯ight scheduling, and s is
proved by Teodorovic (1983), Teodorovic and
Krcmar-Nozic (1989) to equal 1/4. Teodorovic
(1988) also assumed that OT is 22.8 hours a day,
and the weekly OT equals 7� 22:8 hours.

Swan (1979) derived the stochastic delay cost
per passenger. The stochastic delay is the time
di�erence between the departure time of the ¯ight
chosen by the passenger and the departure time of

the ¯ight on which the passenger received an
available seat. The total stochastic delay cost on
link a, TSTa, can be given by following the cost in
Swan (1979) as

TSTa � cd2 m1

OT

Na

l
�n

� �m2

fa; �31�

where cd2 denotes a unit time±cost transformation
re¯ecting the perceived money cost of stochastic
delay time, l represents the average demand per
¯ight, �n is the average seat capacity, and m1; m2

denote constant parameters. Moreover, m1 and m2

are assumed to equal 2.5 and 9, respectively, in
Swan (1979), and l=�n is the average load factor.

Finally, the total cost of passenger travel time
on link a, TCp

a, is

TCp
a � TTa � TSCa � TSTa: �32�

4.2. Flight frequency programming problem

The fact that not all aircrafts can be assigned to
¯ights due to factors such as maintenance and
turnover accounts for why the aircraft utilization
should be considered when determining ¯ight fre-
quencies. Let Aq represent the total number of
aircraft type q in ¯eet, and uq denote the maximum
possible utilization of aircraft type q. The maxi-
mum possible utilization implies the maximum
possible daily use of aircraft for a period of time
(Kane, 1990; Teodorovic, 1983). In our case, the
weekly maximum possible total hours ¯own are
uq � Aq � 7�days�. The uq normally depends on the
technical maintenance system and the network
structure (Teodorovic, 1983). This is attributed to
the fact that the total aircraft utilization must be
less than or equal to the maximum possible utili-
zation, we use the relation by Teodorovic (1983) asX

r

X
s

X
p

ftrspq Nrspq 6 uq Aq � 7 8q; �33�

where ftrspq denotes the block time of aircraft type
q on route p between city r and city s.

On some nonstop routes, the carrier may be
required to provide a ¯ight frequency equal to or
larger than a certain minimum frequency. Denote
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Lo
rs as the minimum number of direct ¯ights per

week between city r and city s, and P o
rs as the set

of nonstop routes between r)s. Restated, the fol-
lowing inequality must hold for some nonstop
routes in the network. That is,X

q

Nrspq P Lo
rs; p 2 P o

rs: �34�

This study not only determines the ¯ight fre-
quencies on individual routes, but also solves the
routing problem of an airline network by mini-
mizing the total air carrier costs and by minimizing
the total passenger travel costs. Herein, a two-
objective programming problem is formulated to
determine ¯ight frequencies. This problem is for-
mulated as follows:

Min Z1 �
X
a2A

TCc
a; �35a�

Min Z2 �
X
a2A

TCp
a; �35b�

subject to :

X
r

X
s

X
p

X
q

dr;s
a;p g�rspqnqNrspq ÿ fa P 0 8a 2 A;

�35c�

frs �
X

p

X
q

frspq; p 2 Prs 8�r; s�; �35d�

X
p

X
q

Nrspq �
X

p

X
q

Nsrpq; p 2 Prs 8r; �35e�

X
r

X
s

X
p

ftrspq Nrspq 6 uq Aq � 7 8q; �35f�

X
q

Nrspq P Lo
rs; p 2 P o

rs; �35g�

all Nrspq; frspq P 0: �35h�

Eqs. (35a) and (35b) are two objective func-
tions, and Eqs. (35c)±(35h) are constraints. Eq.
(35c) represents that the transportation capacities

o�ered in terms of the number of seats on each
link must be equal to or greater than the number
of passengers on all routes that contain that link.
Eq. (35d) de®nes that the sum of the passengers
carried by any aircraft q along any route p from
r to s equals the total number of passengers
traveling between these two cities. Eq. (35e)
determines that an equal number of take-o� and
landing operations occur at each airport in the
network during a certain period of time. Eq. (35f)
suggests that the total aircraft utilization must
be equal to or less than the maximum possible
utilization. Eq. (35g) indicates that the ¯ight
frequencies for some direct nonstop ¯ights must
be equal to or larger than a certain minimum
frequency. Finally, Eq. (35h) con®nes all
variables to be nonnegative.

In practice, the variables Nrspq and frspq should
be integer and, therefore, the problem is a non-
linear integer programming one. However, non-
linear integer programming problems are
extremely di�cult to solve, particularly for prob-
lems with large dimensions. Owing to di�culties in
obtaining optimal solutions to such large combi-
natorial problems, the nonlinear programming
problem is rounding relaxation of the nonlinear
integer programming problem. A similar relax-
ation approach can be found in several investiga-
tions, e.g., Teodorovic et al. (1994) and
Teodorovic and Krcmar-Nozic (1989) used linear
programming to approximate the solution of in-
teger programming by neglecting the variablesÕ
integer aspect. Furthermore, Nrspq is considered
herein as the average weekly ¯ight frequency of
¯ights over one year covering season and o�-sea-
son period and used merely as a basis for future
operating planning.

4.3. Proposed solution to two-objective nonlinear
programming problem

Determining ¯ight frequency on routes, ex-
pressed by Eqs. (35a)±(35h) above, is a two-ob-
jective nonlinear programming problem of the
general form:

Min Z1�x�; Z2�x�f g; x 2 X; �36�
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where x is the set of decision variables, i.e.
x � Nrspq; frspq; 8r; s; p; q

� 	
; X 2 Rn is the set of

feasible points de®ned by given constraints, i.e.
Eqs. (35c)±(35h); Z1�x� and Z2�x� in Eqs. (35a) and
(35b) are the two objective functions, respectively,
to be minimized. Directly applying the notion of
optimality for single-objective nonlinear pro-
gramming to this two-objective nonlinear pro-
gramming allows us to arrive a complete optimal
solution that simultaneously minimizes these two
objective functions. However, in general, such a
complete optimal solution does not always exist
when the objective functions con¯ict with each
other (Sakawa, 1993). In our problem, these two
objectives con¯ict with each other. Consequently,
instead of a complete optimal solution, the Pareto
optimality concept is introduced herein. The Pa-
reto optimality is the solution where no objective
can be reached without simultaneously worsening
at least one of the remaining objectives (Cohon,
1978). The Pareto optimal solutions can be solved
by the constraint method for our two-objective
programming. The constraint method for charac-
terizing Pareto optimal solutions attempts to solve
the following constraint problem formulated by
taking one objective function, Z1�x�, as the objec-
tive function and allowing the other objective
function, Z2�x�, to be an inequality constraint for
some selected values of e2 (Haimes and Hall, 1974;
Steuer, 1986; Sakawa, 1993):

Min Z1�x�
s:t: Z2�x�6 e2;

x 2 X:

�37�

The relationships between the optimal solution
x� to the constraint problem and the Pareto opti-
mality of the two-objective programming problem
have been proven to follow the theorem (Sakawa,
1993), such that: x� 2 X is a Pareto optimal solu-
tion of the two-objective nonlinear programming
problem, if and only if x� is an optimal solution of
the constraint problem for some e2 (Sakawa,
1993). Consider the Lagrange function, L�x; k� �
Z1�x� � k12 Z2�x� ÿ e2� �, for the constraint problem
with respect to the e-constraints. If the Lagrange
multiplier, k12, associated with the active con-

straint, i.e. Z2�x� ÿ e2 � 0, then the corresponding
Lagrange multiplier can be proven to lead to the
trade-o� rates between Z1�x� and Z2�x� by
k12 � ÿoZ1�x�=oZ2�x� (Sakawa, 1993). The trade-
o� rate means the marginal decrease of Z1�x� with
one unit increase in Z2�x�. Herein, we use
k12 � ÿDZ1=DZ2 to approximate ÿoZ1=oZ2.
Then, both Pareto optimal solutions and trade-o�
rates can be obtained by altering the values of e2

and solving the corresponding constraint prob-
lems. In this manner, a variety of frequency plans
for routes can be generated from Pareto optimal
solutions for decision makers. These Pareto opti-
mal solutions can be plotted as a Pareto optimal
boundary. Along this Pareto optimal boundary,
this study attempts to obtain a solution nearest to
the ideal point. The ideal point is de®ned as the
point Z ideal � Zmin

2 ; Zmin
1

ÿ �
, where Zmin

1 and Zmin
2 are

the values of the objective function for single-
objective programming that minimize Z1 and Z2,
respectively. Realizing the ideal point is generally
infeasible, Yu (1973) and Zeleny (1974) introduced
the concept of compromise programming. The
compromise solution is a Pareto optimal solution
which has the shortest geometrical distance from
the ideal point. In the following case study, com-
promise programming is applied to determine and
derive a compromise solution from these Pareto
optimal solutions.

5. Case study

A case study is presented as follows to dem-
onstrate the application of proposed models based
on some available data from China Airlines
(CAL). The objective of the case study attempts to
design CALÕs international network for the year
2000. CALÕs international ¯eet comprises of ®fty
aircraft, including Boeing 747s and 737s, Mc-
Donnell Douglas 11s, and Airbus 300s. Its pas-
senger routes include more than thirty destinations
in Asia, Europe, North America, Africa and the
Oceania. For simplicity, we simply select thirteen
nodes in twelve countries among them. The se-
lected thirteen nodes consist of the origin city
Taipei (TPE) and twelve destinations, including
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Hong Kong (HKG), Manila (MNL), Tokyo
(TYO), Bangkok (BKK), Kuala Lumpur (KUL),
Singapore (SIN), Jakarta (JKT), Los Angeles
(LAX), San Francisco (SFO), Frankfurt (FRA),
Rome (ROM) and Amsterdam (AMS). The tra�c
among these selected countries is the major part of
the tra�c carried by CAL. However, the historic
data of the airlineÕs city-pair tra�c are unavail-
able. Herein, we use annual total country-pair
passenger among these twelve countries for fore-
casting; these forecasted values are then translated
to CALÕs city-pair tra�c by multiplying its relative
average market share. These CALÕs relative mar-
ket shares are roughly estimated on the basis of its
historic data and time table. The city-pair pas-
senger tra�c is forecasted by Eqs. (12)±(19) in
Section 3. The data year, forecast values, and their
upper and lower limits for each city-pairÕs pas-
senger tra�c in years 2000 are listed in Table 1.
These annual values are divided by 52 (weeks) to
obtain average weekly tra�c. In the case study, we
choose tra�c forecasts, and their upper and lower
limits for the year 2000, as three levels of input
data.

While considering CALÕs international ¯eet
expansion to satisfy future tra�c growth and to
simplify its ¯eet composition, we assume that ®fty
wide-body aircraft are available, including eigh-
teen Boeing 747-400s (397 seats), twelve Boeing
747-200s (356 seats) and twenty Airbus 300s (263
seats) in CALÕs ¯eet to serve the selected thirteen
nodes. On the other hand, some of CALÕs oper-
ating cost data are unavailable. Thus, the operat-
ing cost data reported in Kane (1990) are
employed to estimate them. Aircraft characteristic
data reported in Horonje� and McKelvey (1994)
are also used to estimate ¯ight time and airport
time.

This study uses the CALÕs mileage data
between any two cities for all these thirteen nodes
to proceed with the initial step of shape design-
ing. All-to-all route candidates are obtained by
the Floyd algorithm, as proposed in Section 2.
CAL is a major Taiwanese carrier with its base at
TPE, and its international passenger routes are all
connected routes serving TPE and all other des-
tinations. Thus, we only select route candidates
with its origin at TPE among those possible route

Table 1

The tra�c forecasts, estimated upper and lower limits of city-pair passengers carried by CAL in 2000a

City-pair Lower limits Forecasts Upper limits

TPE$HKG� 814684 910327 1198722

TPE$MNL� 121678 158674 188116

TPE$TYO� 297425 305060 330581

TPE$BKK� 195242 267177 302733

TPE$KUL� 114250 122937 139122

TPE$SIN� 156040 192165 236499

TPE$JKT� 123633 153167 182825

TPE$LAX� 513593 642535 706384

TPE$SFO� 179758 224887 247234

TPE$FRA� 20249 22053 25664

TPE$ROM� 7064 8448 9319

TPE$AMS� 5819 6119 7447

TYO$LAXy 227275 279020 338415

TYO$SFOy 159092 195314 236890

BKK$FRAy 201835 336457 347409

BKK$ROMy 137916 229904 237387

BKK$AMSy 142575 237670 245407

KUL$FRAy 55752 93203 93604

KUL$ROMy 15852 26500 26614

KUL$AMSy 18760 31362 31497

a Source: Historic data, �Department of Statistics, M.O.T.C., R.O.C. (1997), and yBoeing Commercial Airplane Group (1995). �9
historic data, years 1988 to 1996, and y10 historic data, years 1984 to 1993, respectively, for model forecasting.
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candidates in this case study. The two-step
network design approach proposed herein can
also work for network design without any pre-
positive constraint. For other cases, e.g., major
domestic airlines in U.S., the all-to-all route
candidates obtained by the Floyd algorithm
should be directly ranked in the next step based
on the grey clustering method in the future study.
To simplify the calculation, the route ¯ows on
two-way directions are assumed to match a
symmetric pattern.

The critical values for index mrsc are obtained
by a phone interview survey with CALÕs planners

to investigate their decision preferences and, then,
used to set its whitening functions of high,
medium and low decision categories. These cate-
gories are set as ``equal to 0'', ``approximate to 1''
and ``larger than 2'', respectively, for index mrsc.
On the other hand, assume that the critical values
for the other two indices, Crsc and hrsc, are ac-
cording to the statistical distribution of the cal-
culated values xi1 for all route candidates. Then,
set the whitening functions of high, medium and
low decision categories for route length index Crsc

to be ``equal to 1,'' ``approximate to 0.88,'' and
``smaller than 0.8,'' respectively, where 0.88 and

Fig. 2. The whitening functions associated with three decision categories (low, medium and high) and three indices: (a) number of

intermediate stops, (b) route length index and (c) tra�c concentration index.
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0.8 are the median and the 20th percentile, re-
spectively. The whitening functions of each deci-
sion category for tra�c concentration index, hrsc,
are set in a similar manner, and the critical values
of high, medium and low decision categories for
hrsc are given by the 80th percentile, the median
and the 20th percentile of calculated values for all
route candidates, respectively. Moreover, the up-
per limit for index mrsc is set at 2 according to the
assumption of Teodorovic et al. (1994). On the
other hand, since Crsc6 1 from the de®nition of
Crsc in Eq. (1), the maximum value of index Crsc is
1; thus, the upper limit for index Crsc is 1. In
addition, the maximum value among all the cal-
culated values of index hrsc is approximately equal
to 0.55; thus, the upper limit for hrsc is set to 0.55.
The above whitening functions for each index
and decision category are constructed by Eqs.
(5)±(7) in Section 2. Figs. 2(a)±(c) plot these
whitening functions.

According to the results obtained from the in-
terviews which elicit CALÕs plannersÕ weights on
the importance of each index, these three indices
do not markedly di�er from each other. Therefore,
we assume that these three indices are equally
important and the weight x1 of each index is as-
sumed to be 1/3. Next, Eq. (8) is used to calculate
the decision weight parameters and use Eq. (10) to
assess these weight parameters and determine a
decision category for each route candidate. Fi-
nally, the route candidate determined as ``high
decision category'' is chosen to be the optimal
candidate and to comprise and form the shape of
the airline network. Moreover, three designed
networks are obtained by using forecast values, as
well as their upper and lower limits. The designed
shape with tra�c forecasts is the same as that with
their upper limits. Thus, Figs. 3(a) and (b) plot two
designed network shapes, one for forecast values
and their upper limits and the other for their lower
limits.

Most routes of the designed network are non-
stop ¯ights, as shown in Fig. 3. Nevertheless, some
routes from Taipei to US and Europe destinations
are designed with one intermediate stop, e.g. To-
kyo and Bangkok. According to Fig. 3(b), route
TPE-BKK-AMS was removed from the designed
network shape with lower limits of forecast values

because it was determined as the ``median decision
category''.

The appropriate types of aircraft are selected
for each ¯ight on each link comprising these de-
signed ¯ight networks by their range. Tables 3(a)±
(c) list these chosen aircraft on individual routes.
Then, base values for the parameters of cost
functions are given to resolve the problem to de-
termine ¯ight frequencies. Assume that the average
load factor l=�n is 70%, and specify pro®table load
factor g�rspq for each route according to the average
value of load factor for those routes operated by
CAL during 1997. Moreover, the average unit
time-cost re¯ecting line-haul travel time and delay
time are assumed to be $23.15/hour and $30.29/
hour, respectively, according to slight adjustments
on the values of time obtained by Furuichi and
Koppelman (1994). In this case study, the maxi-
mum possible utilization of three types of aircrafts
is given to 16.8 hours per day. The least numbers

Fig. 3. The designed network shapes with di�erent forecasted

inputs: (a) tra�c forecasts and upper limits; (b) lower limits.
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for direct ¯ights on routes TPE-FAR, TPE-ROM
and TPE-AMS are set to 1. Consequently, the
average weekly frequencies of routes can be ob-
tained by solving formulated two-objective non-
linear programming models.

In this study, these two-objective programming
models are solved by using GINO, a computer-
modeling program developed by Liebman et al.
(1986) based on a generalized reduced gradient
algorithm. The Pareto optimal solutions and

Fig. 4. The Pareto optimal boundaries with di�erent forecasted inputs: (a) tra�c forecasts; (b) upper limits; (c) lower limits.
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trade-o� rates are obtained by the constraint
method described in the previous section. More-
over, the compromise solutions on Pareto optimal
boundaries are obtained by obtaining the solutions
with the minimum Geometrical distance from the
ideal point. Figs. 4(a)±(c) plot the Pareto optimal
boundaries for forecast values, as well as their
upper and lower limits, respectively. Each point on
these boundaries represents a Pareto optimal so-
lution obtained by the constraint method. Table

2(a)±(c) list the objective function values of Pareto
optimal solutions. The trade-o� rates are also
shown for each point in Fig. 4 and listed in
Table 2.

The trade-o� rate can be considered as the
ratio of weights for objectives Z2 and Z1 in the
sense of decision making. According to Fig. 4
and Table 2, the higher absolute value of trade-
o� rate implies a lower value of the objective Z2.
This observation implies that if decision-makers

Table 2

The objective function values, the trade-o� rates and the marginal rates of substitution of Pareto optimal solutions with di�erent

forecasted inputs: (a) tra�c forecasts; (b) upper limits; (c) lower limits

Objective function value ($) Trade-o� rate Marginal rate of substitution

Z1 Z2

(a) Tra�c forecasts

4979523 12190132 )1 0

4919223 12211502 )1 )1

4903710 12269929 )0.4209 )2.3757

4893571 12349725 )0.2514 )3.9777

4886225 12429522 )0.2079 )4.8093

4881995 12509318 )0.2051 )4.8764

4877513 12589115 )0.1891 )5.2888

4874368 12668912 )0.0886 )11.285

4871790 12748709 )0.0771 )12.972

4869419 12908302 0 )1
(b) Upper limits of tra�c forecasts

5493702 13248990 )1 0

5431301 13269696 )1 )1

5420194 13312453 )0.3618 )2.7643

5413048 13375916 )0.219 )4.5655

5407828 13439378 )0.1843 )5.4267

5403400 13502840 )0.1577 )6.3394

5399600 13566303 )0.1349 )7.4126

5396337 13629764 )0.117 )8.5444

5393778 13693226 )0.0799 )12.515

5392177 13756689 )0.0482 )20.743

5391188 13820151 0 )1
(c) Lower limits of tra�c forecasts

3354371 9468962 )1 0

3332974 9483452 )1 )1

3320723 9564615 )0.3779 )2.6463

3310591 9660269 )0.2336 )4.2815

3303537 9755922 )0.1902 )5.2581

3297614 9851575 )0.1633 )6.1225

3292494 9947228 )0.1421 )7.0397

3288037 10042882 )0.1222 )8.1815

3284253 10138534 )0.1035 )9.6606

3281621 10234188 )0.0543 )18.41

3280207 10329841 0 )1
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pay more attention to the service levels, they may
use those optimal solutions with higher absolute
trade-o� rates. On the other hand, if decision-
makers decide to aim at the operating economies,
then they may obtain those optimal solutions
with lower absolute trade-o� rates. In addition,

according to our results, the trade-o� rates of the
compromise solutions equal )1, implying that the
compromise solution is equivalent to the solution
of single-objective programming that minimize
Z1 � Z2. Furthermore, the concept of marginal
rate of substitution is introduced herein between

Table 3a

The Pareto optimal solutions with di�erent forecasted inputs: Tra�c forecasts

Marked points A B C D

Trade-o� rate )1 )1 )0.4209 0

Marginal rate of substitution 0 )1 )2.3757 )1
Objective function value

($)

Z1 4979523 4919223 4903710 4869419

Z2 12190132 12211502 12269929 12908302

Routes Aircraft Weekly ¯ight frequencies (one direction)

Tra�c forecasts

TPE-HKG B747-400 0 0 0 0

B747-200 0 0 0 35

A300 48 48 48 0

TPE-MNL B747-400 0 0 0 0

B747-200 0 0 0 7

A300 9 9 9 0

TPE-TYO B747-400 0 0 5 0

B747-200 0 0 0 10

A300 14 14 7 0

TPE-BKK B747-400 0 0 9 8

B747-200 0 0 0 1

A300 14 14 0 0

TPE-KUL B747-400 0 0 0 5

B747-200 0 0 0 0

A300 7 7 7 0

TPE-SIN B747-400 0 0 0 7

B747-200 0 0 0 0

A300 10 10 10 0

TPE-JKT B747-400 0 0 0 6

B747-200 0 0 0 0

A300 8 8 8 0

TPE-LAX B747-400 13 13 13 13

TPE-TYO-LAX B747-400 15 15 15 15

TPE-SFO B747-400 5 5 5 5

TPE-TYO-SFO B747-400 9 9 9 9

TPE-FRA B747-400 0 0 0 0

B747-200 1 1 1 1

TPE-BKK-FRA B747-400 0 13 13 13

B747-200 15 0 0 0

TPE-ROM B747-400 1 1 1 1

TPE-BKK-ROM B747-400 9 9 9 9

TPE-AMS B747-400 0 0 0 0

B747-200 1 1 1 1

TPE-BKK-AMS B747-400 0 9 9 9

B747-200 10 0 0 0
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these two objectives for airlineÕs decision-makers.
The marginal rate of substitution between objec-
tives Z2 and Z1 is de®ned as the amount of pas-
sengersÕ service levels the decision-maker willing
to sacri®ce in exchange for lowering one unit of
airlineÕs operating costs. The marginal rate of

substitution represents the marginal increase of
total passenger travel costs when the carrierÕs
operating cost is decreased by one unit. The
trade-o� rate between objectives Z1 and Z2; k12, is
the inverse number of the marginal rate of sub-
stitution between objectives Z2 and Z1; and can be

Table 3b

The Pareto optimal solutions with di�erent forecasted inputs: Upper limits

Marked points A B C D

Trade-o� rate )1 )1 )0.3618 0

Marginal rate of substitution 0 )1 )2.7643 )1
Objective function value

($)

Z1 5493702 5431301 5420194 5391188

Z2 13248990 13269696 13312453 13820151

Routes Aircraft Weekly ¯ight frequencies (one direction)

Upper limits of tra�c forecasts

TPE-HKG B747-400 0 0 0 0

B747-200 0 0 0 46

A300 63 63 63 0

TPE-MNL B747-400 0 0 0 0

B747-200 0 0 0 8

A300 11 11 11 0

TPE-TYO B747-400 0 0 0 0

B747-200 0 0 6 11

A300 15 15 7 0

TPE-BKK B747-400 0 0 4 0

B747-200 0 0 7 11

A300 15 15 0 0

TPE-KUL B747-400 0 0 0 0

B747-200 0 0 0 7

A300 8 8 8 0

TPE-SIN B747-400 0 0 0 0

B747-200 0 0 0 9

A300 12 12 12 0

TPE-JKT B747-400 0 0 0 3

B747-200 0 0 0 4

A300 10 10 10 0

TPE-LAX B747-400 14 14 14 14

TPE-TYO-LAX B747-400 17 17 17 17

TPE-SFO B747-400 5 5 5 5

TPE-TYO-SFO B747-400 10 10 10 10

TPE-FRA B747-400 0 0 0 0

B747-200 1 1 1 1

TPE-BKK-FRA B747-400 0 14 14 14

B747-200 15 0 0 0

TPE-ROM B747-400 1 1 1 1

TPE-BKK-ROM B747-400 9 9 9 9

TPE-AMS B747-400 0 0 0 0

B747-200 1 1 1 1

TPE-BKK-AMS B747-400 0 10 10 10

B747-200 11 0 0 0
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denoted as 1=k12 � ÿDZ2=DZ1. The marginal
rates of substitution between objectives Z2 and Z1

are shown on each point on Pareto optimal
boundaries in Fig. 4 and are also listed in Table
2. The solutions with lower objective Z1 values
have higher absolute values of marginal rates of
substitution; meanwhile, those with higher ob-
jective Z1 values have lower absolute values of

marginal rates of substitution. This ®nding im-
plies that if the decision-makers decide to choose
solutions with higher operating economies and
want to lower one more unit of airlineÕs operating
cost, they must simultaneously worsen larger
amount of the service levels. Furthermore, among
three Pareto optimal boundaries in Figs. 4(a)±(c),
the curve associated with upper limits of

Table 3c

The Pareto optimal solutions with di�erent forecasted inputs: Lower limits

Marked points A B C D

Trade-o� rate )1 )1 )0.3779 0

Marginal rate of substitution 0 )1 )2.6463 )1
Objective function Value

($)

Z1 3354371 3332974 3320723 3280207

Z2 9468962 9483452 9564615 10329841

Routes Aircraft Weekly ¯ight frequencies (one direction)

Lower limits of tra�c forecasts

TPE-HKG B747-400 0 0 0 28

B747-200 0 0 0 0

A300 43 43 43 0

TPE-MNL B747-400 0 0 0 5

B747-200 0 0 0 0

A300 7 7 7 0

TPE-TYO B747-400 0 0 7 9

B747-200 0 0 0 0

A300 14 14 4 0

TPE-BKK B747-400 0 0 5 7

B747-200 0 0 0 0

A300 10 10 3 0

TPE-KUL B747-400 0 0 0 4

B747-200 0 0 0 0

A300 6 6 6 0

TPE-SIN B747-400 0 0 0 5

B747-200 0 0 0 0

A300 8 8 8 0

TPE-JKT B747-400 0 0 0 4

B747-200 0 0 0 0

A300 7 7 7 0

TPE-LAX B747-400 10 10 10 10

TPE-TYO-LAX B747-400 12 12 12 12

TPE-SFO B747-400 4 4 4 4

TPE-TYO-SFO B747-400 7 7 7 7

TPE-FRA B747-400 0 0 0 0

B747-200 1 1 1 1

TPE-BKK-FRA B747-400 0 8 8 8

B747-200 9 0 0 0

TPE-ROM B747-400 1 1 1 1

TPE-BKK-ROM B747-400 5 5 5 5

TPE-AMS B747-400 0 0 0 0

B747-200 1 1 1 1

C.-I. Hsu, Y.-H. Wen / European Journal of Operational Research 127 (2000) 44±68 65



estimated tra�c has the ¯attest slope, while the
curve associated with lower limits has the steepest
slope. This observation also implies that the
overall substitution rates between passengersÕ
traveling costs and airlineÕs operating costs with
high tra�c surpass those associated with lower
tra�c.

Tables 3a±c lists the solutions for four groups
of points marked by A, B, C and D, on each
Pareto optimal boundary in Figs. 4(a)±(c). The
results of points B are compromise solutions,
while those of points A are the solutions that
minimize total passenger travel cost and those of
points D are the solutions minimizing total car-
rier operating cost. Results obtained from points
C are e�cient solutions whose objective values lie
between those of points B and those of points D.
These four groups of points correspond to dif-
ferent objectives and ful®ll various tra�c levels;
they are di�erent groups of frequency plans. The
solutions are reasonable, as evidenced by com-
paring the results of compromise solutions with
the actual frequencies shown on CALÕs existing
time table with adjustment for future tra�c
growth. Moreover, results obtained from other
Pareto optimal solutions (e.g., the results of
points A, C and D) provide ¯exibility for plan-
ners to determine di�erent routing and frequency
plans corresponding to di�erent decision objec-
tives. Restated, these Pareto optimal solutions
could provide airlines with higher ¯exibility of
aiming and weighting on di�erent objectives on
decision making. Consequently, a group of fre-
quency plans can be generated to satisfy di�erent
objectives and to ful®ll various tra�c levels on
prerequisite planning for a carrierÕs route network
design.

6. Conclusions

This study presents a series of models to
forecast airline city-pair passenger tra�c and to
determine the shape of a carrierÕs airline network
and its corresponding ¯ight frequencies. The
models proposed herein are formulated by ap-
plying Grey theory and multiobjective program-
ming.

Also considered herein is the route length, the
total number of intermediate stops and the con-
centration of tra�c ¯ow as indices and applying
grey clustering to assess the route candidates so
as to comprise and form the designed airline
networks with di�erent tra�c levels. In addition,
grey time-series models are developed to forecast
the airlineÕs city-pair tra�c and to estimate their
upper and lower limits to capture the extents of
variations in future trends. Moreover, a group of
optimal frequency plans on routes of these de-
signed networks is determined by applying mul-
tiobjective programming. These groups of
solutions not only provide ¯exibility in decision-
making with two di�erent objectives, but also
show the trade-o� rates and the marginal rates of
substitution between two objectives that minimize
the total airline costs and/or the passenger travel
costs. The case study not only demonstrates that
the shapes and optimal solutions of the designed
networks yield promising results, but also verify
that the models are practical in airline network
design.
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