PHYSICAL REVIEW D, VOLUME 62, 105014

Weak-field expansion for processes in a homogeneous background magnetic field
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The weak-field expansion of the charged fermion propagator under a uniform magnetic field is studied.
Starting from Schwinger’s proper-time representation, we express the charged fermion propagator as an infinite
series corresponding to different Landau levels. This infinite series is then reorganized according to the powers
of the external field strengtB. For illustration, we apply this expansion j0- vv and v— vy decays, which
involve charged fermions in the internal loop. The leading and subleading magnetic-field effects to the above
processes are computed.

PACS numbes): 12.20.Ds, 13.106:q, 13.40.Hq, 95.30.Cq

[. INTRODUCTION cess, it is not always convenient to do so since the amplitude

to be expanded may be very cumbersome. In this article, we

Particle reactions taking place in the early universe oshall propose a more straightforward weak-field expansion,
astrophysical environments are often affected by the backhich is performed directly on the charged fermion propa-
ground magnetic field or excitations in the medifit]. A gator participating in the process. With th(_a charged ferm|or_1

typical example is the modification of the neutrino index of propagators expanded, the physical amplitude can be easily

refraction in the early universe or supernd2d. There one expressed in powers &/ B . To perform Sth an expansion

. . . on propagators, we shall begin with Schwinger’s proper-time
needs to compute the neutrino self-energy in the medium Qi egentation for a charged fermion propagator under a uni-
the background electromagnetic field or both. The neutringorm packground magnetic fielf7]. It is useful to realize
index of refraction is then extracted from the modified d|S'that Schwinger’s representation can be recast into a series
persion relation of the neutrino. Another example is the plasexpansion in terms of Landau levdl8]. In the weak field
mon decayy* — vv [1] where the decaying photon acquires limit B<B., we shall demonstrate that one can reorganize
an effective mass through the effects of the medium or théhe infinite series in powers of the field strenghThis is the
background magnetic field. With such an effective mass, th§XPansion we are after.

above decay is kinematically permissible. Furthermore, the 1 NiS aricle is organized as follows: In Sec. II, we wil
. Co . eview Schwinger’s derivation of charged fermion propaga-
behavior of electron propagators occurring in the mterna(

: . or in a homogeneous background magnetic field. Since the
loop of the above decay is also affected by the medium o, ention used by Schwinger differs from the currently

the magnetic field. This also leads to a modification 10 the, s ar convention, we shall repeat some relevant details of
plasmon decay amplitude. Finally, a more recent example ige derivation for clarification. We shall also illustrate how
the enhancement of neutrino-photon scatterings due to thg rewrite Schwinger’s result as an infinite series where each
background magnetic fielt8,4]. At the lowest order in the term is associated with specific Landau levig. In the
weak interaction, it is known that the amplitude fory  weak-field limit, we shall demonstrate how to rearrange the
— vy is proportional to the neutrino mags]. Hence the above series in powers of the magnetic-field streriytkri-
resulting scattering cross section is rather suppressed. On thélly, some technical issues relevant to the phase factor in
other hand, the presence of the background magnetic fieldchwinger's proper-time representation will be discussed in
alters the structures of internal electron propagators, suchlis section. In Sec. Ill, we begin with a brief discussion on
that yy— v is non-vanishing aD(G) even in the mass- °Y" egrher wgrk[4], where the v_veak-ﬂeld expansion te_ch-
less limit of neutrinos. Specifically, they— vy cross sec- ue IS applied toyy—vv and its crossed brocesses in a
o2 : 7y 2 background magnetic fiel@3,9]. To further illustrate the
g(r)cr)]ulrsm derngﬁzgc%;gcggw/$%e$§/£C) a?\l::ient]oaa::e:gg technique of weak-field expansion, we also calculate the de-
L W R Y cay rates ofy— vy and the neutrino Cherenkov process
tmhzsc?r?t?cgmggrswggcaf?; delectron respectiveB,=m-/e is —vyina backgr_ound magne_tic field._ Our results will be
) . .. .compared to previous calculations which are performed us-
In the above processes, the relevant magnetlc—ﬂelﬁ]g exact charged-fermion propagators in the background

strengths are often smaller than the critical vage There- magnetic field 10-13. A few concluding remarks are pre-
fore it is appropriate to expand the decay width, cross sectioBanted in Sec. IV.

or other physical quantities in powersBfB. . In the litera-
ture, such an expansion is usually performed after the rel- Il. CHARGED-FERMION PROPAGATOR IN A
evant amplitude is obtaind®]. For a more complicated pro- HOMOGENEOUS BACKGROUND MAGNETIC FIELD

A. The exact propagator solution

*Email address: wfgore@cc.nctu.edu.tw The Green’s functiorG(x,x") of the Dirac field in the
"Email address: glin@cc.nctu.edu.tw presence of a gauge fiehd, satisfies the following equation:
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(i0+eA-m)G(x,x")=(x—x"), D) (=ig,TeA, )X (0)[x(s))=(x"(0)[I1,(0)[x(s)),
10
where §(x—x") is the Dirac’s delta function anth stands .
for the mass of the Dirac field. We will follow the technique wjith the boundary condition(x’(0)|x(s))— &*(x—x’) as

employed in Schwinger’s pap¢r] which regardsG(x,x’)  s—0. To evaluate Eq(8), we first solve Eq(9) and obtain
as the matrix element of an operat@ namely G(x,x")

=(x"|G|x). Therefore, Eq(1) may be written as (s)=e 2¢F1(0),
N-m)G=1, 2
(T1=m) @ x(s)—x(0) = (1— e~ 2¢FS)(eF)~11(0).
with IT,=P,+eA, denoting the conjugated momentum, (11)
which obeys the following commutation relations: . o
This solution implies
[I1,.X,]=19 4., ()
1
[HM’HV]:ieF,LLV! (4) HZE—H—EeU’quILV
with F,,=d,A,—3d,A, denoting the field-strength tensors =(x(s)—x(0))K(x(s)—x(0)),
of the gauge field. Eq2) can be formally solved by writing
1 . [X.(8),%,(0)]=i(1—e ?*F)(eF)*, (12)
G= —=—if ds(l+m)exd —i(m?—11%)s]. (5)
—m 0 whereK= (eF)?sinh %eFs Therefore, one has

This integral representation f@ implies that 1

. (x"(0)|H[x(s))=~— 5€0F — (x=x")K(x=x')

G(x,x’)z—if dse*‘m25<x’|(]7[+ m)U(s)|x), (6)
0

[
, -3 tr(eFcothe Fs)(x’ (0)|x(s)).
where U(s)=e s with H=—(M)2=—-T12—}ec,, F*".

We observe thatJ(s) can be viewed as the unitary time- (13
evolution factor if one takesl as the effective Hamiltonian
that evolves the state) according to With this result, one can solve the first equation in Ed),
which gives
Ix(s))=U(s)[x(0)), (7
i _ Na—2
where s is the proper time variable. One can now rewrite X' (Q)[x(s))=C(x.x")s
G(x,x") as 1
xexp — 5 tr In[(eFs) !sinheFs)]
GOxx)=— [ “dse ™y (011, 0)lx(5) i
0 xex;{—Z(x—x’)chotr(er)(x—x’)
+m(x’ (0)[x(s))], (8)
i
where we have assumed ,(s) operates on|x(s)) and + 5eo,, F*"s|. (14
I1,(0) operates ofx(0)). We note that the operatoxg and 2
IT,, satisfy

The factorC(x,x’) can be determined by substituting Eq.
(14) into the second and third equations in Ef0). Since

d—;= —i[x, ,H]=2I1,, the RHS of these two equations are given by
I, (O 1 ,
2= il H]= - 2¢F,, IT", 9) (x'(0)] (s)|x(s)>—E[chotI’(er)—eF](x—x )

’
for a constant field strength,,, . In the matrix notation, we X(x'(0)[x(s)),

may writedx/ds= 211, anddIl/ds= —2eFII. Furthermore
the transformation functiox’(0)|x(s)) can be character-

1
ized by the following equations: {(x"(0)I(0)|x(s)) = 5[eFcoth(eFs) +eF](x—x’)

id5(x"(0)[x(s))=(x"(0)|H[x(s)), X(x"(0)[x(s)), (15
(id,+eA, (X)X (0)|x(s))=(x"(0)|II,(s)|x(s)), one then arrives at
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Note that the translation invariance is broken by the phase
C(x,x")=0, factord(x,x’). Note also that the phase factb(x,x’) van-
ishes if the path connecting and x’ is chosen to be a
straight-line. In addition, if the background gauge field is a
C(x,x")=0. (16) homogeneous magnetic field such tikgt=—F,,=B, one
can show that

id,+eA,(x)— eFW(x —X)"

e ! 1 !
{—mlﬁeAM(x )+ Eer(X —-X)"
ThereforeC(x,x") is found to be o 0 )

(T/,LVF —2F120'3 2F12( 0 o3

C(x,x’)=C’(x’)ex+eJid§“ A+ 1FW(g x")" ”

=C(x)exr{ief)id§“

HereC’(x') andC(x) denote integration constantsxh and ) 5

x respectively. Note that the integra|, + 3F ,,(§—x")" is a X(F cothF)x=Xxj — B cotBx{ , (23

total derivative in the presence of a homogeneous field if the 0n0 3.3 b4 a2h?

first homology group of the space-timd is trivial, i.e., With (a-b)j=a’b”—a°b” and a-b), = b ‘a b fOF ar-
H.(M)=0 [13]. Hence the phase factor is independent ofb'tfafy 4 vectorsa“ and b*. Henceaf=a’a’—a’%a’® and

the integration path connectingand x’. One can further a‘ =a'a'+a?a?. To simplify the notations, we shall denote

show thatC(x")=C’(x). ThereforeC(x") or C’(x) has to  (¥-P)|) @S ¥-Pj)- From the relations in Eq(23), the

be a constant independentfndx’. This constant can be propagator functiorG(x,x"), which respects the translation

determined by applying the boundary condition invariance, becomes

(x(s)|x"(0))— 8*(x—x") ass—0. One obtains

L In(F~ hF 5
ex —Etr n( F~1sinhF)|= SB’

1
Aut 5 Fl(é= x))

(17) y(F cothF _F)X:(’Y'X)H— ('y )() e'F12‘73

sinB

»ds eBs
C=—i(477)72 (18) g(X)Z—(47T)_2 O?Mexq—imzs—kieB&w)

with the help of the identity

” ia?x? i
e dx= = (19

[
2 2
Xexr{ — 4—S(x” —eBgot(eB9xT)

N 1 eBs
XM ol YT sin(eB9
From Egs.(8), (14), (15) and(18), one arrives at
><exp(—ieBs(rs)y~xl> . (29
G(x,x")=Dd(x,x")G(x,x"), (20
where B. Weak field limit
~ds We find it is more convenient to cast E@4) in the form
Gixx)=—(4m 2| L6l
0

dp . )
= ~ip G )
X m+;y.(chotr(er)+eF)(x—x') Gxx f(zw)“e G(p), (25

i with
X ex;{ —im?s+ EeaWFWs>
G(p)= J d*xeP*G(x)

XeXF{_ltr In[(eFs) ~sinn(eFs)] = ds
-], m‘“ﬂ[“s(mz‘pz

2

—;—r(x—x’)(chotr(er))(x—x’), (21
taneBs
~eBs M ) exp(—ieBsog)(m+y-p))
D(x,x')= exp||ej déH| A ZFW(f x")” AR (26)
(22 cogeB9 |’
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One can further show that

(= ds } taneB9
g(p)=—|jo mexr{—ls(mz—pf+r{— f)

eBs

X|[cogeB9 + y1y;sin(eBs](m+y-p))
Y P
 cogeBs @7
when the following identities are applied:
exp(izog)=coszl +i sinzos, (28
03 O .
O-SE 0 =1 Y1Y2- (29)
g3

If we define a new variable=eBs then EQq.(27) can be
rewritten ag8]

» 1
gp)=-—i fo dv eXp(—ivp)gs[(mﬂL y-ppPlit y1v2

X(m+y-ppPla—(y-po)lsl, (30)
where
l,=exp —iatany),
[,=exp —ieatanv)tanv,
3= i ! 31
3—exp(—|atanv)m, (31

with p=(m?-pf)/eB and a=pf/eB. Becausd;(v)=1;(v
+na) for j=1,2,3, we get

]

fwdvexq—ivp)lj: z eXF(—ipn’iT)fwdv
0 0

n=0
xexp(—ipv)li(v)
1 = _
meo dv exp(—lpv)lj

1

It is sufficient to evaluateéd\,; since the other integrals are

obtained using

A '07A
Z_I&a b

—i .
A3:7(1_eilpw)_§A1. (33)

PHYSICAL REVIEW D62 105014

To evaluateA; = [ [dv exd —i« tanv ]Jexp(—ipv), we rewrite

—e vy

_e—2|v_1 .

exg —iatanv]= exp{ @ (34

The RHS of this equation can be expanded using the La-
guerre polynomials. Specifically, the Laguerre polynomials
L.(x) are generated by the following generating function:

exd —xZ/(1-2)]
1-Z

=2 L()Z" (35

for |Z|<1. Upon multiplyingZ on both sides of Eq¢35) and
subtracting Eq(35), one arrives at

-xZ] < )
exp—|= 2 (La()—Lo-1())Z", (36
n=0
where one setk_;(x)=0. Using the identity
XZ+1 _ XZ X 3
Sy i e B ) B

with the identificationsZ=—e 2"?, x=2a, and combining
Egs.(32), (34), and(36), one obtains

A= fowdvewgo (Ln(2a) = Ly-1(2a))

Xexp(—2inv)(—1)"exp —ipv)

—e o> Cn(Za)(—l)“dev exd —i(p+2n)v]
n=0 0

e, (—1)"Cy(2a)

p+2n (38)

Using Egs.(30), (33) and (38), one rewrites the propagator
function G(p) into a simple form 8]

. 5 —idy(a)D+dj(a)D  y-p,
Ig(p)_nzo p’+2neB ps (39
where dn(a)=(-1)"e “C,(2a), d.=dd,/da,p?=m?
—pf, and
m2—pﬁ
D=(m+y-pp+yp.—=,
P

D=y1y2(m+y-p). (40)
We note that, in the limit of extreme field strength, i.e.,
B>B, or B<B., only part of the terms in Eq(39) are
relevant. In the strong field limiB>B., only contributions
from the lowest Landau level=0 need to be kept. For the
weak field limitB<B_., we shall demonstrate that the infi-
nite series in Eq(39) may be reorganized in powers of the
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magnetic fieldB. Therefore those terms with lower powers Here Ci=a!/[b!(a—b)!] denotes the number of combina-

of B are more important in this limit. To reorganize the se-tions of sizeb from a collection of size. In addition,x3 and

ries, we first observe that k4 denote the third and fourth derivative terms. They can be
shown to be

K3(@)=CKF*43F + CECSF*%0,F o°F

1 <« —id,D+d/D
== > T oneB 6~kpk—6 3
pL n=0 14 ne +C5CsF*°(a,F)~,
P
1 & _ [ —2neB\ _ ~kek—5 4 KBk 6 3
RS (_ianerr,]D)( ! ) Ka( @)= CKFK 53%F + CKCEF* 64 F 53F
p|_ n=0 k=0 p|_
+C3CEF 8(92F)?
_i 1 [—2eB\*
=1 A +CKCIC3FR79%F (9,F)?
- 2z +CECICIF 8(g,F)%. (45)
x| —iD Y, n*d,(a)+D >, nkdr;(a)). (41)
n=0 n=0
The infinite seriesS|,_,n*d,(«) and =;_,n*d/(a) can be . .
evaluated with the the identity Note that above formula for the expansiondtJ can either
be proved by method of induction or can be read off directly
oc from the combinatorial factor in the the expansion &f, (

> d,(@)exp—2inv)=exd —ia tanv], (42 +F)X.1 [14]. It is worthy pointing out that?l'fF(v=0)=O
n=0 for all odd numberk and the value ofr?';F(v=0) when
which follows from Eqs(34), (36), and(37). Let us proceed k is even can be computed directly. For example one

200 Ay _ A
by taking a derivative?/dv on both sides of Eq42). This ~ can show thatd;F(v=0)=2F(v=0), and J,F(v=0)
gives =16F(v=0). Hence the order 0“2 and the order of

a** terms read 9“U(v=0)=2C(—ia)* 2+[16CK
+4OCIe§](—ia)k’4. Similarly, one can also show that the

- —ia il
(—2)1>) nd,(a)exp —2inv)= Fexp{—ia tanv].  order of & " term for theD term vanishes when is an
n=0 v even integer whileD term vanishes for all odd intege.
Taking this derivativek times, we find that Hence, by setting =0 on both sides of Eq43), we obtain

(—20)> nfd,(a)exp(—2inv) ” ¥ 1 [«
n=0 > nkdn<a>=(—) ——Cé(—
& 2 2782

—ia \¥
:l(—co§v> +0(ak1)]exq—iatam].

kfa\k1 k-2 e
@ ¥ nkd;<a>=§(‘) ) Ck(‘
To be more specific, one can defibdv)=exd —iatanv]
o
2

following Eq. (42). It can be shown that,U=FU with F
=—jalcosv. Hence one can show that X

k=5
+0(aX%). (46)

5
Ck+ Ec'g

v

k-1
dKu=> cf " 1F4u
1=0

Here we only keep terms to the order@fa* ®). Sincea

=[F*+CkFk~29,F + CKFK392F + C3CkFk# =p?/eB, the leading terms on the RHS of the above equa-
tion give up to order of0(e>B®) contributions toG(p), as
X (9,F)?]+ ka(@)+ k(@) +O(a*" ). (44)  can be seen from E@41). Precisely we have
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“ —id,D+d/D & 1/-2eB\¥ [[a\k 1
55 ol
n=0 p;+2neB k=0 P\ PL
N N i
=2, —|—iD +D
IR
_/eB\3/ —p2\k3
+2(k—2)C§D(—2) gi)
PL L
-iD 1 D
=72 2 [ 2\2 2
pL 1+B§ (pD) (1_1__;
PL PL

iD

pT—m

whereiG,(p) denotes terms of ordee’B? and e*B® and
iG4(p) denotes terms of ordef*B* ande®B®. Therefore, by
Egs.(40) and (39), we arrive at

. iD .Y'p
|g(p)=p2_m2_(p2_m2)295+' pfl
+iGo(p)+iG4(P)
i(p+m)  yryo(y-py+m) . .
= p7—mZ 1([:2)2—m”2)2 eB+iG,(p) +iG4(p).

(48)

The first term of Eq(48) is just the electron propagator in

i} @ k—2 k @ k—1
Cs(i) Hz(z) -
2\ k—1
e
—|eB
pi p;

+1G4(p)

D
== 2_(pz_mz)zeB+igz(p)+ig4(p),

PHYSICAL REVIEW D62 105014

k—2 a3
—_—cK =
4 3( )

5| || +ig)

0

Eileel 1

k=0 PL pL pE

-k

>2eB+igz(p)+ig4(p)

(47)

=2/(1+x)"—7x/(1+x)® for all |[x|<1. Hence the fourth
and fifth order propagatdiG,(p) can be shown to be

iGa(p)=—[8ie"B’]

2pipf—3(p?)?
(p?—m?)7

15(p?)2— 16p? p? + 2p?

(p?—m?)8

_ 8e5BS

15. (50)

C. Phase factor

In this subsection, we discuss how to treat the phase fac-
tor d(x,x’) as defined in Eq(22). First, we note that

the vacuum, while the second term is its correction to®(X.X') is reduced to

O(eB). The corrections with higher powers &B can be

calculated in a similar way. For example, to evaluate the

term G,(p) andG,(p), we need to compute a few identities.
Note thatCézk(k—l)(k—Z)/6 hence one can show that
v oC5(—x) " 3/6=1/(1+x)* for all |x|]<1 from consecu-
tive differentiating the identit)Efzo(—x)kz 1/(1+x) which

is valid for all [x|<1. Similarly, one can also show that
v o(k=2)CK(—x)3=1/(1+x)*—4x/(1+x)° for all
|x|<1. Therefore, one can extract tBée’B?) andO(eB?)
terms from the series expansion in E41). The result leads
to the following contribution:

2ie?B?p?

iG,(p)=— ———D+2e°B3
2(p) (p?P—m?)?

1 4p?

| pr—m2? " (p>— > 49

m2)5

whereD and D have been defined in Eq40). Similarly,
one can show that =p_,C&(—x)* 5=1/(1+x)®,
S oCe(—x)  C=1/(1+x)7,  Sp_o(k—4)CE(—x)<®
=1/(1+x)%—6x/(1+x)7 and I;_o(k—4)C{(—x)k8

<1>(x,x’)=exp|ieJ’;dgﬂAM(g)}, (52)

if the integration path connectingandx’ is a straight line.
This choice of integration path is only for convenience since
the integration in Eq(22) is path independent provided that
the vector potentiah ,(¢) is nonsingular. Second, for a par-
ticular type of Coulomb gauge:

Ay(£€)=0,

B
A(§)= 5 (&, 61-X,.0),

the exponentf,dé#A,(£) vanishes, hencab(x,x’)=1.
Therefore, by choosing the above Coulomb gauge, the phase
factor ®(x,x") in the electron Green'’s function can be dis-
regarded. Such a simplification is, however, no longer valid
for more complicated processes where more than one elec-
tron propagators are involved in the process. To illustrate, let
us consider a one-loop triangular diagram composed of three
electron propagators. We denote vertices of the diagram as
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P, Q and R respectively. It is useful to recall that the full o[ 1
phase factor between two poirfisand Q is O(x,x")=exgie | d&*| A, +5F, X"
x' 2
P 1 Xexp —i o F ng"x’” (56)
d(P,Q)=ex if dx# A#(x)+§FW(x—Q)” 2 M) '
Q

2
52 Let us denote the first factor epgf i,dgﬂ(AﬂﬂL%FWx”)]
according to Eq(22). Here we usé®* to denote the coordi- as ®'(x,x’). Since &®'(P,Q)-®'(R,P)-®'(Q,R)
nate of the poin®. Similarly Q* andR* denote coordinates =®'(Q,Q)=1, we conclude from E¢56) that
of the pointsQ andR respectively. As discussed before, one

can set®(P,Q)=1 by choosing the special gauge
®(P,Q)-P(R,P)-®(Q,R)

Aq(x)=Ao(x) +Ag(x), (53) =ex;{—§(R— P)“F,(P-Q)*|.  (57)

with  Ag(X)=B/2-(—X5,X3,0) and Ag(x)=B/2-(Q,,
—Q,0). Similarly, one can respectively sdt(R,P) and
®(Q,R) to unity by choosing the gauges

This is the nontrivial phase contribution one must attach to
the amplitude of a three-point process when we write all
weak field charged propagator according to E).

Ap(X)=Ag(X) +Ap(X), Ill. APPLICATIONS
A. ‘y'y—n/;
AR(X)EAO(X)-I—Z\R(X), (54) The weak-field expansion derived in the last section has

been applied to calculate the amplitudesyaf— vv and its
with  Ap(x)=B/2-(P,,—P;,0) and Agr(x)=B/2-(R,, crossed processes in a homogeneous magnetic field less than
—R;,0) respectively. Apparentlyho(x), Ap(X), andAg(x) B, [4]. According to the discussion in the previous section,
are distinct from one another. Hence they cannot be adoptatie magnetic-field dependencies of above amplitudes reside
simultaneously to set all phase factors to unity. In otherin two places: the first place is in the electron propagator
words, the phase factors shall give rise to a nontrivial conwhich is affected by the external magnetic field, while the
tribution to the three-point amplitude. In fact this nontrivial second place is in the overall phase which is a function of the
contribution can be understood in an alternative view. Takf|e|d Strength tensoF e Let us now take—y»y_) V; as an

ing Eq.(52) as an example, the integra?d on the RHS of theexample for illustration. Since the incoming photon energies
equation can be written asA=A+3;FAX where A are much less thamy,, we can calculate the scattering am-

=A,dx*, A=A, dx*, and FAx=F , dx*(x—Q)" are all  plitudes using the following effective four-fermion interac-
one-form. One can easily show thdtis a closed form, i.e., tions between leptons and neutrinos:

dA=0. (55 Gg — _

L=~ E(M Yo(1=¥5)v)(€Y*(dy—0ays)e), (58)
Note that.A is exact if the first homology group is trivial,
namely,H,(M)=0. To be more specific, if the gauge func-
tion A ,(x) is regular everywhere, then the one-forhis ) .
also rgg(]u?ar. Thgrefore thgrvt\al exists a zero-fasnsuch that +2 ST wandga=—1/2 forl =y, 7. The Feynman diagram
A=dw is an exact form. As a result, the line integration contributing toyy— vv is shown in Fig. 1 of Ref[4]. We
which defines ®(P,Q) is path independent. In our should remark that the contribution duedg is proportional
prob]em, we need to Compute the product of three phase@ the neutrino mass in the limit of VaniShing magnetic field.
®(P,Q)-®(R,P)-®(Q,R). It is then important to note that At O(eB) in the limit B<B., it gives no contribution to the
the one-formA in each of the above phases depends on th@mplitude by the charge conjugation invariance. Therefore
boundary point of the path, despite the fact that the gaug@e shall neglect the contribution gy . Likewise, we shall
function A ,(x) is regular. In other words, the gauge.dfis ~ @IS0 neglect contributions bygy for I=y,7, since —1/2
chosen differently in each path, which then gives rise to at 2 Sir* 6,=0.04<1. -

non-trivial phase for a three-point amplitude. Precisely one To O(eB), the amplitude foryy— vv can be written as
may isolate the boundary dependenciesdolby writing, for ~ M=M;+M,, whereM arises from inserting the external
example, A=A'—F,,dx*Q" in the case ofP(P,Q). Ap-  magnetic field to electron propagators according to (),
parently, A" is an exact form universal to the three phaseswhereasM, comes from expanding the overall phase factor
while F,,dx*Q" depends on the boundary poi@t Using  for the three-point function as shown in E§7). Therefore
this separation, one may rewrite each phase as one has

wheregy=1/2+2 sin?g,, and g,=1/2 for |=e; gy=—1/2
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Grg
M;=i4maeB—= \/— YU(po) v (1— 75)v(p1)6162f 277
1 vively-(Itky+m] it+m) it —k+m)
ya( 75) [(I+k1)2—m2]2 Y |2_ 2 7 (|_ ) _m2

I+k)Z—m2 Y —(P=mdZ Y (I—kyp*—

Xtr

i(HHkitm) im) yyoly (1 =k +m]
(k)Z=m? " 2= ¥ " [(I=k,) 2~ m??

: (59

wheregy=1—(1—4 sirf §,)/2 for v, andm s the mass of the electron. The first and second tergyiare the contributions
from theW andZ exchanges, respectively. To write down the amplitiig we recall Eq.(57) which states that the overall

phase factor foryy— vv is
ie
CI)(X,Y)-CD(Z,X)-(D(Y,Z)IGX[{ - E(Z—X)“FW(X—Y)V}. (60)

With B in the forwardz direction and choosin¥,=(0,0,0,0), we arrive at

(IJ(X,Y)~<I>(Z,X)~CI>(Y,Z)=eXp{ (T) (lez—vzzl)}

ieB
=1- 5125~ YoZy). (61)

Since we calculate the amplitude only@geB), the first term of the above expansion gives riséitg while the second term
gives rise toM, which reads

. GFgV _| d4|d4qd4
M,=i4maeB N fd4Yd427(Y122—Y221)JWE1 €

Xexg —i(q—1—ky)- Ylexgd —i(r—q—Kky) - ZJu(py) y*(1— ys)v(ps)
i(t+m) i(g+m) i(r‘+m)]

Xty Yo(1— 75)|2 2( ie Y,L)ﬁ( 'e%)rz_mz - (62

We can recast the amplitudé, by using the equations

1%
I —exd —i(g—1—kq)-Y],

Yiexgt —i(a—1—ky)-Y]=—i 5

Zyexi (1~ q k) Z]=1 2 exil ~i(r~qky)-Z]

and the integration by part, such that

—i [ dYd*qd*r
M=i4raeB FgVJ atv iz [ S5 et extt-i(a-1—ky) - Yient —i(r—a- ko) Zu(p2) Y (1= 790 (py)

[a 9 d a} [ i(t+m) i(q+ , i(f+m)
X tr
aly dry  dl, or

Ya(1=¥s) 2z (— lem)—z—z‘(—l YT | (63

Before we proceed to compukd; andM,, we wish to reiterate the validity of the above expansion. As we have pointed out
in Ref.[4] that, by dimensional analysis, any given powee& in the expansion oM is accompanied by an equal power of
1/m? (for m>p) or 1/p? (for p>m). Herep denotes the typical energy scale of external particles. Thereforegl@th® and
eB/p? are much smaller than unity f@<B.=m?/e. Now performing the integration iM, andM,, we obtain

105014-8



WEAK-FIELD EXPANSION FOR PROCESSES IN A . .. PHYSICAL REVIEW 62 105014

G 3/2
FQva™ N
M=M,+ MZZWU(pZ)Ya(l_VS)U(pl)J ) (64)

4

where[15]
J¥=Cy(e1F €5) (ki —Kk5) + Co[ (€1Fkq) (K1 - €2)k5 + (€2F k) (Ko- €1)KS 1+ Cal (€1Fky) €5+ (e2Fky) €71+ Cyl (€1FK»)
X(Kyq- )k + (€2Fkq) (Ko €1)k5 ]+ Csl(€1FKo) (K- €2)K5+ (€aFky) (Ko €1)KT T+ Cgl (€1FKo) €5+ (€2FKy) €7]
+Co(Ky- €1)(Ky- €2)[ (FKp)“+ (FKy)“]+ Cgler- €2)[ (Fky)“+ (Fky) ]+ Co(kiFky) (€1- €5) (KT —K5) + Cro(kiFky)

X(kz- €1)(Ky- €2) (KT —k3) +Cri(kiFka)[ (K- €1) €5 — (Ky - €2) €71, (65

with, for instance, & Fe;)=¢€/F, €, and (Fkl)“EF“Bklﬁ. The coefficient function€,;’s are given as follows:

Ci=— %(I[O,O,l]vLI[0,0,2]—4I[1,1,1]—5I[1,1,2]+2I[2,1,1]+2I[2,1,2]+t|[2,1,2]+2I[2,2,1]+2I[2,2,2]

—5t1[3,2,2]+ 2t1[4,2,2] + 2t1[4,3,2]),

C,=— %(I [1,1,2]-21[2,1,2]— 31[2,2,2]+ 41[3,2,2] + 21[3,3,2] — 41[ 4,3,2]),

Ca=— %(m [0,0,2]-41[1,1,1]— 41[1,1,2] - tI[1,1,2]+ 2¢c1[2,1,2] + 21[ 2,2, 1] + 21[ 2,2,2] + 3tI[ 2,2,2] — 4t1[ 3,2,2]

—2t1[3,3,2]+2t1[4,3,2)),

Cu=— $(5| [3,2,2]—21[4,2,2]— 41[4,3,2)),
Co=— %u [1,1,2]+21[2,1,2]—1[2,2,2]— 101[3,2,2] + 81[4,2,2] + 41[4,3,2]),

Ce=— %(m [0,0,1]+21[0,0,2]—41[1,1,1]— 41[1,1,2] -tI[1,1,2] — 41[2,1,1] — 41[2,1,2] — 21[ 2,2,1] — 21[ 2,2,2]

+11[2,2,2]+ 2t1[3,2,2]— 4t1[ 4,2,2] — 2t1[4,3,2]),

C,= %(I [1,1,2]—-21[2,1,2]— 1[2,2,2]+ 41[3,2,2] — 41[ 4,3,2]),

Cg= %(m [0,0,2]—41[1,1,1]— 41[1,1,2] —tI[1,1,2]+ 2tI[2,1,2] + 21[ 2,2, 1]+ 21[ 2,2,2] + t1[ 2,2,2] — 4tI[ 3,2,2]

+2t1[4,3,2)),

Co=— %(I [1,1,2]+21[2,1,2]+41[2,1,3]—1[2,2,2]— 101[ 3,2,2] — 121[ 3,2,3] + 41[ 4,2,2] + 41[ 4,2,3] + 4tI[4,2,3]

+41[4,3,2]+41[4,3,3]—12t1[5,3,3] + 4t1[ 6,3,3] + 4t1[ 6,4,3]),

Cio= %(I [4,2,3]—-41[5,3,3]+21[6,3,3]+ 21[6,4,3]),
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Cn=—;;UHJQHQHZLE+4HZLQ—WZZﬂ—4W&Zﬂ—4ﬂ422—4W42$—4W4&ﬂ—4ﬂ4&ﬂ

+4t1[5,3,3]— 4t1[6,3,3] — 4t1[6,4,3]), (66)
|
where and v— vy [17] in a background magnetic field. We shall
b ab limit the energies of incoming particles to be less than the
I[a,b,c]zfldxfl_xdy Xy ’ 67) pair-production thresholdr. For if E,/,Ey>2+m,_the domi-
0 0 (1-txy—ig)© nant decay modes should becomg—e"e  and v

—ve'e” respectively. For incoming energies below the
with t=2(k,-k,/m?). Our result is an extension of the cal- pair-production threshold, it turns out that the photon mo-
qulation in Ref.[3] which c_onsiders only the low eNergy menta in bothy— vv and v— vy are spaceliké18]. Hence
limit k,-kp<m?. In such a limit, one can calcula using  the former process is kinematically forbidden. The amplitude

the effective Lagrangian foyy— v?y [9] and replacing one of the latter process can be written as
of the photons by the external magnetic field.

With the amplitudeM, it is straightforward to compute the M(v(p1)—v(p2)¥(d))
scattering cross sectionB(yy_—> 1;) in the background G, B
magnetic field. Sinceyy—vv could contribute to the =— —Ze"u(p,) YP(1— ys)u(py)
energy-loss of a magnetized star, it is useful to compute the V2e

stellar energy-loss rat@, which is related targ through[16] X (QyTT 5 — ) — QAHiﬁ( ~q), (69

1 2d%K
Q= 5 f opIT - wherell ,; andIl; are vector-vector and vector-axial vec-
2(2m)°) e’ -1 . ap ;
tor two-point functions given by
203k, (ky-ky)
fewz/T_zl wllwi (w1t w3) " o ZJ d*k . . .
- aﬁ(q)_ € (277_)4 r[Yag( Q)')’ﬁg( )];
Xog(yy—vv). (68)
, . d*k
5 — 2
In Ref. [3], Q is calculated based upon an approxmatednaﬁ(q)__e J(217)4tr[yag(k—q)yﬁysg(k)]. (70)

cross section obtained in the lintit,<m. Such a calculation
is repeated in our earlier woild] which is based upon the
cross sectionrg(yy— vv) obtained from the amplituds ~ The factorZ is the wave-function renormalization constant
in Eq. (64). We found that, for temperatures below 0.01 of the photon field, induced by the effect of external mag-
MeV, the effective-Lagrangian approach employed in Ref Netic fields. Since the deviation @from the unity is rather
[3] works very well. On the other hand, this approach be-Small, proportional to the fine structure constantwe shall
comes rather inaccurate for temperatures greater than $6tZ=1 in our subsequent discussions. 5
MeV. At T=0.1 MeV, our calculation gives an energy-loss ~ The structures of the two-point functiod$,; and1l;,
rate almost two orders of magnitude greater than the resuere given in previous literatur,12]

from the effective Lagrangian. Such a behavior can be un-

derstood from the energy dependence of the scattering crossHaﬁ(q)=A(qﬁguaﬁ—q”aq”5)+B(—qumﬁ—qmqw)
section, as shown in Fig. 2 of Rd#]. It is clear that, for )

T=0.1 MeV, Q must have received significant contributions +C(q°9ap™dabp),

from scatterings witho~m. At this energy, the full calcula-

tipn gives a much_ larger scat_tering cross seption than t.hat Hzﬂ(q)zcu(qﬁﬁaﬁjL qHa(T:q)BJr Q\w(ﬁQ)a)

given by the effective Lagrangian. By comparing the predic- N B 5
tions of the full calculation and the effective-Lagrangian ap- +C¢(‘QfFa5+ A1 o(FA)g+a, g(FA) ).
proach[3], we conclude that the applicability of the latter to

the energy-loss rate is quite restricted. While the effective

Lagrangian works reasonably well with<<0.1m , it would

give a poor approximation o@ unlessT<0.01m. We wish to remind the reader thgf =(q")*+(g?)” for a
magnetic field in thet z direction. The calculations dff , 5

andl‘[fw for B<B, are straightforward using the weak field
expansion derived in Eqs48), (49, and (50). Due to

In order to compare our approach with previous ones, Weharge-conjugation and gauge invariances, the magnetic-
consider the simple two-body decay modes: vv [10-12  field effects toll,; and IT}, begin at the ordee?B? and

(71)

B. y—»v;, vy
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e®B? respectively. The subleading contributions are then ofvherell ,= egﬂaﬁef. Here the indexa stands for the polar-
the ordere*B* ande®B® respectively. The coefficient func- ization states, namelg=_ or |. Combining Eqs(72) and

tions of I ,4(q) are given by (74), we arrive at
A_ia' 7(/B 2+ 26 52 w? 20 B 4+ [1+iB sir? 6+iC]g°=iBw?sir’ 0,
~ 7| 45B; 1315 945m2® B, )
[1+iC]g%=—iAw?sir? 6, (75)
B_ia’4B2 16 4(1)2_”2084 . arizati velv. Si h
= |23 B, + 1—05+ 135 m2 S B, +oe or polarization statea =1 anda=|| respectively. Since the
- electomagnetic coupling constant is rather small, the left
ol 2 1 o2 B2 4 44 hand side of the above equations may be approximated by
c='* (__ = 2 Grell 2] o - 24 25 g?. Using the definitiory?= w?- (1—n?), we obtain
w145 105m? Be 105 1575
2 (B)\? 8 2 o
w? o 4 0=t 2 2 o) - g e S
H T cird . . L Py
szsmze 5079m? S 6)(8(: +ooe, (72) 7|45\ B, 105 135m
B 4
where w is the photon energy whilé is the angle between X B_) +-|sir? 6,
the the magnetic-field direction and the direction of photon ¢
propagation. For the coefficient functions Hfzﬁ(q), we ol 7 /B2
find =14 - —|—=
1 n 1+ - 90<Bc>
ia |l w2 B 8 26 (,02 13 26 2 B 4
C=———sin20(— +| -z sife et |+ ]si
I~ B7r| 70 m? 5 945 m? + 315+ 945 2 Sir? 0 B, + Sir? 6.
10 o* B\° (76)
+@WSIH4(9)(B—C) +-e, - - o
It is seen that the leading contributionsne andn; agree
; 2 3 with the results obtained by AdI¢d8]. The next-to-leading
Il 1 1 w* | B L
Ci==||—=+==—sirfg contribution ton, | depend on both the photon energyand
Bmr 15 70m Be the photon propagation directi¢@a9].

8 86 w? 10 o* Given the above photon dispersion relation, we proceed to
+|—=— —=—5sif 0+ — — si* 0 compute thev— vy width in the subcritical background
63 945m? 693 m* o :
magnetic field. We note that the most recent calculation of
v— vy width is performed by loannisian and Raff¢lt7].

B 5
X B +--. (73 Following their approach, we write the width of this process
¢ as
It should be noted that the validity of weak-field expansion 1 N
in Egs. (72) and (73 also depends on the ratio - Zf ’“axdwE IM|?, (77)
= w? sir? AB%n?BZ, in addition to the requiremenB(B,)? 167E1Jo pols

<1. For a sufficiently large photon energy such thatl, . ) _ )
the expansion in Eq$72) and (73) may break down. How- where M is the amplitude given by Ed69), E; is the neu-

ever, since we have limited the photon energwto2m, the N0 energy, andwma=min(Ey, ) with w. the critical
ratio r is automatically smaller than 1. photon energy beyond which the photon four momentum

The computation of— vy width requires the knowledge becomes timelike and the Cherenkov condition no longer
. - . holds. We note that, in deriving the above width, one has
of photon index of refractiom=|q|/w. The index of refrac-

tion can be calculated from the two-point functibhs(q). taken the collinear approximation that the particles in the

It is well known thatn depends on the photon polafizations initial and final states are all parallel with one another. The
{hatn dep 1the p polanzations. ., rection to such an approximation is small, proportional to
For the magnetic field in the-z direction, the polarization

DA . the fine structure constaat From Eg.(69), we obtain
states with distinct index of refraction ae¢=(0,0,1,0) and a.(69)

€['=(0,—cos6,0,sinf). Here we have adopted the conven- 4gf\G§ , , ,
tion thatg*=(w,w sin6,0,» cosd), i.e., photon propagates |M|2=Te“(a)e*“ (a)(p?ps +p? pf)HiBHi,B,,
on the x—z plane with an angled to the magnetic field (78)

direction. Hence?L is the polarization vector perpendicular
to thex—z plane whiIeEH lies on thex—z plane. The photon wherea=|,L. The contribution by the vector-vector two-

dispersion relation is given by point functionIl,,z is negligible since botip,; and p, are
approximately parallel to the photon momentugn and
q’—ill,=0, (74 g”11,5=0 due to the gauge invariance. The fact that imth
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and p, are approximately parallel tq also has a conse- the above i_ntg)grals, DF_OVide(_iof w<2m. In this way,
quence on the polarization dependencies.bf|2. This is  the phasee "¢ turns into e”*"c and becomes highly

easily seen with suppressed for a large ForB<B_, such a behavior permits
one to simultaneously perform the weak-field and low-
qBHi/FZ(CHQf—CLQf)(TZQ)a- (79 energy expansions with respect@ . The results of ex-

panding |C{—2C]| may be organized into the sum
For aB field in the + z direction, {q), is nonvanishing only  of the following series =,,_qa,(w? sir 6/m?)(BYBY)",
for @=0,3. Givene#=(0,0,1,0) ancef'=(0,—c0s6,0,5in6) = p—oba(w’ sin? IMP)"(BYBY)™, 3, oCq(w? sin® 6/mP)"(B
as stated earlier, one immediately sees {2 vanishes BZ)™2... . One observes that the coefficierts and a,
for a photon in aL mode. Hence the photon radiated from correspond to th®©(»?B?) and O(»*B*) terms in our|CH
the neutrino is polarized, with its polarization vector lying on —C, | respectively. We found that all the coefficierass

the surface spanned loyandB. vanish. This is indeed reflected in our calculations where the
The width of v— vy can be readily calculated using Egs. O(w?B?) and O(»*B”) terms in|C;—C,| vanish as well.
(77), (78) and(71). We have We also found agreements between the coefficibgisand

the correspondin@(B?), O(w?B?) terms in|C;—C, |. Al-
giGEBz o o [@max 4 5 though we did not compare the coefficiegtwith the O(B*)
~27%Ea " ofo do(E;—0)o’|C=C.[% (80  term in C,. due to the growing complexity in computing the
general coefficients/s, the agreements we just found with
SinceC| andC, are already given by Eq73), I can be respect to the first two series seems rather compelling. Be-
easily determined once,,, is specified. SinceE;<2m, cause of these agreements, we also confirm the statement
which impliesw< 2m, the photon refractive index is always made in Ref.[17] that the earlier calculation ofil>, is
greater than 1 as indicated by E6). Hence the critical incorrect.
energy o for photon dispersion relation to cross the light From the above comparisons, we have seen that our ap-
cone is greater thanm®. Thusw,,,=min(E;,w.)=E;. The  proach, in spite of less general, is convenient for obtaining

width I" is given as follows: the analytic amplitudes of physical processes in a subcritical
background magnetic field. In such a magnetic field, it suf-
ZG,Z:aEi s 1/B\® fices to know the leading and subleading terms in the weak-
~1352m)% " o 5_0(B_c field expansion. Our approach produces those terms directly
from Feynman diagrams.
8 1 E2sir69\/ B8 The work on extending the present analysis to the more
1105 49 m? B_c Tl (81) complicated processes, such as the photon splitiirgyy

and the pair productioy—e*e™ is currently being pursued.
Comparisons of our result with the earlier results of RefsFor the latter process, we have exploited the analytical prop-
[12,17] are in order. First, we focus on the weak field regionerties of the vacuum polarization functidi*” in the back-
B< B, while Refs.[12,17] considers the general magnetic ground magnetic field. For a subcritical magnetic field, it is
field and the corresponding coefficient functio@g, are possible to obtain a simple expression for the absorption co-
expressed in double integrals. Second, due to a different comfficient(the pair-production widthfor arbitrary photon en-
vention, the coefficient functions obtained in REE7], de-  ergies[20]. This is an improvement to the previous work
noted asCj , , are related to ours via the relatid)ﬁ“—CJ where a simplified expression is possible only te&m
= (e*/32m m2)|C|i_2Ci| where [21]. For the former processy— yy, our result shall serve
as an additional check to the previous res(ii8,22.
o 1
C|i=im2f dsJ dve $%(1—v?),
0 -1 IV. CONCLUSION
o 1 ' In this paper, we have developed the weak-field expan-
C = imzf de dve SR, (82)  sion technique for processes occurring in a background mag-
0 -1 netic field. This expansion is performed with respect to in-
with ternal electron propagators which are affected by the
background magnetic field. In some processes, our approach
is valid for general external momenta even if they are much
greater than the electron mass For external momenta
much greater tham, the effective-Lagrangian approach is
1-v sineBw)sin(eBs — cogeBscogeBy) no longer appropriate. To illustrate this point, we calculated
= = . the amplitude ofyy— vy under a background magnetic
sinr(eB9 . .
83) field, and conse_quently deter_mmed the_ stellar_ energy-loss
rate Q due to this process. It is interesting to find that the

To compare the two sets of results, it is useful to realizeeffective-Lagrangian approach is inappropriate for comput-

that one can rotate the integration contosf —is, in ing the stellar energy-loss rate due 49— vv, unless the

—v? , cogeBw)—cogeBy |,

1
— 2
Po=m™+ ——ait 2eBssineBy 0L
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star temperature is less than 0@l This result reflects obtaining the analytic amplitudes of physical processes in a
clearly the importance of our approach. In fact, our approaclisubcritical background magnetic field.

can be applied to many other processes. In this regard, we We are currently extending the weak-field expansion
also discussed the processes:vv and v—wvy under a technigue to the photon splitting procegs- yy [18,22 and
strong background magnetic field. We found that the validitythe pair production process—e"e™ [18,21. Both pro-

of weak-field expansion with respect to the above processe&esses are of great interests in the physics of pulsars on
are also determined by the parameterw? sin? 9Bn?BZ, which the background magnetic fields are close to the critical
besides the requiremeBt<B,. For energy below pair pro- ValuéBc.

duction threshold, the parameteris less than 1, which

causes no trouble to the weak-field expansion. We found that

y—vv is kinematically forbidden whilee— vy is permitted
by the phase space. Our predictions on the latter process This work was supported in part by the National Science
agree with previous worksl7]. It has also been pointed out Council under the Grant Nos. NSC-89-2112-M-009-001,
that our approach, although less general, is convenient fdlSC-89-2112-M-009-035, and NSC-89-2112-M001-001.
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