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Weak-field expansion for processes in a homogeneous background magnetic field
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The weak-field expansion of the charged fermion propagator under a uniform magnetic field is studied.
Starting from Schwinger’s proper-time representation, we express the charged fermion propagator as an infinite
series corresponding to different Landau levels. This infinite series is then reorganized according to the powers
of the external field strengthB. For illustration, we apply this expansion tog→nn̄ andn→ng decays, which
involve charged fermions in the internal loop. The leading and subleading magnetic-field effects to the above
processes are computed.

PACS number~s!: 12.20.Ds, 13.10.1q, 13.40.Hq, 95.30.Cq
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I. INTRODUCTION

Particle reactions taking place in the early universe
astrophysical environments are often affected by the ba
ground magnetic field or excitations in the medium@1#. A
typical example is the modification of the neutrino index
refraction in the early universe or supernova@2#. There one
needs to compute the neutrino self-energy in the medium
the background electromagnetic field or both. The neutr
index of refraction is then extracted from the modified d
persion relation of the neutrino. Another example is the pl

mon decayg* →nn̄ @1# where the decaying photon acquir
an effective mass through the effects of the medium or
background magnetic field. With such an effective mass,
above decay is kinematically permissible. Furthermore,
behavior of electron propagators occurring in the inter
loop of the above decay is also affected by the medium
the magnetic field. This also leads to a modification to
plasmon decay amplitude. Finally, a more recent exampl
the enhancement of neutrino-photon scatterings due to
background magnetic field@3,4#. At the lowest order in the
weak interaction, it is known that the amplitude forgg

→nn̄ is proportional to the neutrino mass@5#. Hence the
resulting scattering cross section is rather suppressed. O
other hand, the presence of the background magnetic
alters the structures of internal electron propagators, s
that gg→nn̄ is non-vanishing atO(GF) even in the mass
less limit of neutrinos. Specifically, thegg→nn̄ cross sec-
tion is enhanced by a factor (mW /m)4(B/Bc)

2 due to a back-
ground magnetic fieldB @3,4#, where mW and m are the
masses ofW boson and electron respectively;Bc[m2/e is
the critical magnetic field.

In the above processes, the relevant magnetic-fi
strengths are often smaller than the critical valueBc . There-
fore it is appropriate to expand the decay width, cross sec
or other physical quantities in powers ofB/Bc . In the litera-
ture, such an expansion is usually performed after the
evant amplitude is obtained@6#. For a more complicated pro
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cess, it is not always convenient to do so since the amplit
to be expanded may be very cumbersome. In this article,
shall propose a more straightforward weak-field expans
which is performed directly on the charged fermion prop
gator participating in the process. With the charged ferm
propagators expanded, the physical amplitude can be e
expressed in powers ofB/Bc . To perform such an expansio
on propagators, we shall begin with Schwinger’s proper-ti
representation for a charged fermion propagator under a
form background magnetic field@7#. It is useful to realize
that Schwinger’s representation can be recast into a se
expansion in terms of Landau levels@8#. In the weak field
limit B!Bc , we shall demonstrate that one can reorgan
the infinite series in powers of the field strengthB. This is the
expansion we are after.

This article is organized as follows: In Sec. II, we w
review Schwinger’s derivation of charged fermion propag
tor in a homogeneous background magnetic field. Since
convention used by Schwinger differs from the curren
popular convention, we shall repeat some relevant detail
the derivation for clarification. We shall also illustrate ho
to rewrite Schwinger’s result as an infinite series where e
term is associated with specific Landau levels@8#. In the
weak-field limit, we shall demonstrate how to rearrange
above series in powers of the magnetic-field strengthB. Fi-
nally, some technical issues relevant to the phase facto
Schwinger’s proper-time representation will be discussed
this section. In Sec. III, we begin with a brief discussion
our earlier work@4#, where the weak-field expansion tec
nique is applied togg→nn̄ and its crossed processes in
background magnetic field@3,9#. To further illustrate the
technique of weak-field expansion, we also calculate the
cay rates ofg→nn̄ and the neutrino Cherenkov processn
→ng in a background magnetic field. Our results will b
compared to previous calculations which are performed
ing exact charged-fermion propagators in the backgro
magnetic field@10–12#. A few concluding remarks are pre
sented in Sec. IV.

II. CHARGED-FERMION PROPAGATOR IN A
HOMOGENEOUS BACKGROUND MAGNETIC FIELD

A. The exact propagator solution

The Green’s functionG(x,x8) of the Dirac field in the
presence of a gauge fieldAm satisfies the following equation
©2000 The American Physical Society14-1
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~ i ]”1eA” 2m!G~x,x8!5d~x2x8!, ~1!

whered(x2x8) is the Dirac’s delta function andm stands
for the mass of the Dirac field. We will follow the techniqu
employed in Schwinger’s paper@7# which regardsG(x,x8)
as the matrix element of an operatorG, namely G(x,x8)
5^x8uGux&. Therefore, Eq.~1! may be written as

~P” 2m!G51, ~2!

with Pm5Pm1eAm denoting the conjugated momentum
which obeys the following commutation relations:

@Pm ,xn#5 igmn , ~3!

@Pm ,Pn#5 ieFmn , ~4!

with Fmn[]mAn2]nAm denoting the field-strength tenso
of the gauge field. Eq.~2! can be formally solved by writing

G5
1

P” 2m
52 i E

0

`

ds~P” 1m!exp@2 i ~m22P” 2!s#. ~5!

This integral representation forG implies that

G~x,x8!52 i E
0

`

dse2 im2s^x8u~P” 1m!U~s!ux&, ~6!

where U(s)5e2 iHs with H[2(P” )252P22 1
2 esmnFmn.

We observe thatU(s) can be viewed as the unitary time
evolution factor if one takesH as the effective Hamiltonian
that evolves the stateux& according to

ux~s!&5U~s!ux~0!&, ~7!

where s is the proper time variable. One can now rewr
G(x,x8) as

G~x,x8!52 i E
0

`

dse2 im2s@gm^x8~0!uPm~0!ux~s!&

1m^x8~0!ux~s!&#, ~8!

where we have assumedPm(s) operates onux(s)& and
Pm(0) operates onux(0)&. We note that the operatorsxm and
Pm satisfy

dxm

ds
52 i @xm ,H#52Pm ,

dPm

ds
52 i @Pm ,H#522eFmnPn, ~9!

for a constant field strengthFmn . In the matrix notation, we
may writedx/ds52P, anddP/ds522eFP. Furthermore
the transformation function̂x8(0)ux(s)& can be character
ized by the following equations:

i ]s^x8~0!ux~s!&5^x8~0!uHux~s!&,

~ i ]m1eAm~x!!^x8~0!ux~s!&5^x8~0!uPm~s!ux~s!&,
10501
~2 i ]m8 1eAm~x8!!^x8~0!ux~s!&5^x8~0!uPm~0!ux~s!&,
~10!

with the boundary condition:̂x8(0)ux(s)&→d4(x2x8) as
s→0. To evaluate Eq.~8!, we first solve Eq.~9! and obtain

P~s!5e22eFsP~0!,

x~s!2x~0!5~12e22eFs!~eF!21P~0!.
~11!

This solution implies

P2[2H2
1

2
esmnFmn

5~x~s!2x~0!!K~x~s!2x~0!!,

@xm~s!,xn~0!#5 i ~12e22eFs!~eF!21, ~12!

whereK[ 1
4 (eF)2sinh22eFs. Therefore, one has

^x8~0!uHux~s!&52
1

2
esF2~x2x8!K~x2x8!

2
i

2
tr~eFcotheFs!^x8~0!ux~s!&.

~13!

With this result, one can solve the first equation in Eq.~10!,
which gives

^x8~0!ux~s!&5C~x,x8!s22

3expF2
1

2
tr ln@~eFs!21 sinh~eFs!#G

3expF2
i

4
~x2x8!eFcoth~eFs!~x2x8!

1
i

2
esmnFmnsG . ~14!

The factorC(x,x8) can be determined by substituting E
~14! into the second and third equations in Eq.~10!. Since
the RHS of these two equations are given by

^x8~0!uP~s!ux~s!&5
1

2
@eF coth~eFs!2eF#~x2x8!

3^x8~0!ux~s!&,

^x8~0!uP~0!ux~s!&5
1

2
@eF coth~eFs!1eF#~x2x8!

3^x8~0!ux~s!&, ~15!

one then arrives at
4-2
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F i ]m1eAm~x!2
1

2
eFmn~x82x!nGC~x,x8!50,

F2 i ]m8 1eAm~x8!1
1

2
eFmn~x82x!nGC~x,x8!50. ~16!

ThereforeC(x,x8) is found to be

C~x,x8!5C8~x8!expF ieE
x8

x

djmS Am1
1

2
Fmn~j2x8!nD G

5C~x!expF ieE
x8

x

djmS Am1
1

2
Fmn~j2x!nD G .

~17!

HereC8(x8) andC(x) denote integration constants inx8 and
x respectively. Note that the integralAm1 1

2 Fmn(j2x8)n is a
total derivative in the presence of a homogeneous field if
first homology group of the space-timeM is trivial, i.e.,
H1(M )50 @13#. Hence the phase factor is independent
the integration path connectingx and x8. One can further
show thatC(x8)5C8(x). ThereforeC(x8) or C8(x) has to
be a constant independent ofx andx8. This constant can be
determined by applying the boundary conditio
^x(s)ux8(0)&→d4(x2x8) ass→0. One obtains

C52 i ~4p!22 ~18!

with the help of the identity

E
2`

`

eia2x2
dx5Aip

a2. ~19!

From Eqs.~8!, ~14!, ~15! and ~18!, one arrives at

G~x,x8!5F~x,x8!G~x,x8!, ~20!

where

G~x,x8![2~4p!22E
0

`ds

s2

3Fm1
1

2
g•~eF coth~eFs!1eF!~x2x8!G

3expS 2 im2s1
i

2
esmnFmnsD

3expF2
1

2
tr ln@~eFs!21sinh~eFs!#

2
i

4
~x2x8!„eF coth~eFs! … ~x2x8!G , ~21!

F~x,x8![expH ieE
x8

x

djmFAm1
1

2
Fmn~j2x8!nG J .

~22!
10501
e

f

Note that the translation invariance is broken by the ph
factorF(x,x8). Note also that the phase factorF(x,x8) van-
ishes if the path connectingx and x8 is chosen to be a
straight-line. In addition, if the background gauge field is
homogeneous magnetic field such thatF1252F215B, one
can show that

smnFmn52F12s3[2F12S s3 0

0 s3
D ,

expF2
1

2
tr ln~ F21 sinhF !G5

B

sinB
,

g~F cothF 2F !x5~g•x! i2
B

sinB
~g•x!'eiF 12s3,

x~F cothF !x5xi
22B cotBx'

2 , ~23!

with (a•b) i5a0b02a3b3 and (a•b)'5a1b11a2b2 for ar-
bitrary 4-vectorsam and bm. Henceai

25a0a02a3a3, and
a'

2 5a1a11a2a2. To simplify the notations, we shall denot
(g•p) i(') as g•pi(') . From the relations in Eq.~23!, the
propagator functionG(x,x8), which respects the translatio
invariance, becomes

G~x!52~4p!22E
0

`ds

s2

eBs

sin~eBs!
exp~2 im2s1 ieBss3!

3expF2
i

4s
~xi

22eBscot~eBs!x'
2 !G

3Fm1
1

2s S g•xi2
eBs

sin~eBs!

3exp~2 ieBss3!g•x'D G . ~24!

B. Weak field limit

We find it is more convenient to cast Eq.~24! in the form
@6#

G~x,x8!5E d4p

~2p!4 e2 ip(x2x8)G~p!, ~25!

with

G~p!5E d4xeipxG~x!

52 i E
0

` ds

cos~eBs!
expF2 isS m22pi

2

1
tan~eBs!

eBs
p'

2 D GFexp~2 ieBss3!~m1g•pi !

2
g•p'

cos~eBs!G . ~26!
4-3
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One can further show that

G~p!52 i E
0

` ds

cos~eBs!
expF2 isS m22pi

21
tan~eBs!

eBs
p'

2 D G
3F @cos~eBs!1g1g2 sin~eBs!#~m1g•pi!

2
g•p'

cos~eBs!G ~27!

when the following identities are applied:

exp~ izs3!5coszI1 i sinzs3 , ~28!

s3[S s3 0

0 s3
D 5 ig1g2 . ~29!

If we define a new variablev[eBs, then Eq.~27! can be
rewritten as@8#

G~p![2 i E
0

`

dv exp~2 ivr!
1

eB
@~m1g•pi!I 11g1g2

3~m1g•pi!I 22~g•p'!I 3#, ~30!

where

I 15exp~2 ia tanv !,

I 25exp~2 ia tanv !tanv,

I 35exp~2 ia tanv !
1

cos2 v
, ~31!

with r[(m22pi
2)/eB anda[p'

2 /eB. BecauseI j (v)5I j (v
1np) for j 51,2,3, we get

E
0

`

dvexp~2 ivr!I j5 (
n50

`

exp~2 irnp!E
0

p

dv

3exp~2 irv !I j~v !

5
1

12e2 irpE
0

p

dv exp~2 irv !I j

[
1

12e2 irp Aj . ~32!

It is sufficient to evaluateA1 since the other integrals ar
obtained using

A25 i
]

]a
A1 ,

A35
2 i

a
~12e2 irp!2

r

a
A1 . ~33!
10501
To evaluateA1[*0
pdv exp@2ia tanv#exp(2irv), we rewrite

exp@2 ia tanv#5expFa 2e22iv11

2e22iv21G . ~34!

The RHS of this equation can be expanded using the
guerre polynomials. Specifically, the Laguerre polynomi
Ln(x) are generated by the following generating function

exp@2xZ/~12Z!#

12Z
5 (

n50

`

Ln~x!Zn ~35!

for uZu<1. Upon multiplyingZ on both sides of Eq.~35! and
subtracting Eq.~35!, one arrives at

expF 2xZ

12ZG5 (
n50

`

„Ln~x!2Ln21~x!…Zn, ~36!

where one setsL21(x)50. Using the identity

expS x

2

Z11

Z21D5expF2
xZ

12ZG•expS 2
x

2D ~37!

with the identificationsZ[2e22iv, x[2a, and combining
Eqs.~32!, ~34!, and~36!, one obtains

A15E
0

p

dve2a (
n50

`

„Ln~2a!2Ln21~2a!…

3exp~22inv !~21!n exp~2 irv !

5e2a (
n50

`

Cn~2a!~21!nE
0

p

dv exp@2 i ~r12n!v#

52 iea~12e2 irp! (
n50

`
~21!nCn~2a!

r12n
. ~38!

Using Eqs.~30!, ~33! and ~38!, one rewrites the propagato
function G(p) into a simple form@8#

iG~p!5 (
n50

`
2 idn~a!D1dn8~a!D̄

pL
212neB

1 i
g•p'

p'
2 , ~39!

where dn(a)[(21)ne2aCn(2a), dn85]dn /]a,pL
25m2

2pi
2 , and

D5~m1g•pi!1g•p'

m22pi
2

p'
2 ,

D̄5g1g2~m1g•pi!. ~40!

We note that, in the limit of extreme field strength, i.e
B@Bc or B!Bc , only part of the terms in Eq.~39! are
relevant. In the strong field limitB@Bc , only contributions
from the lowest Landau leveln50 need to be kept. For the
weak field limit B!Bc , we shall demonstrate that the infi
nite series in Eq.~39! may be reorganized in powers of th
4-4
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magnetic fieldB. Therefore those terms with lower powe
of B are more important in this limit. To reorganize the s
ries, we first observe that

(
n50

`
2 idnD1dn8D̄

pL
212neB

5
1

pL
2 (

n50

`
2 idnD1dn8D̄

11
2neB

pL
2

5
1

pL
2 (

n50

`

(
k50

`

~2 idnD1dn8D̄ !S 22neB

pL
2 D k

5 (
k50

`
1

pL
2 S 22eB

pL
2 D k

3S 2 iD (
n50

`

nkdn~a!1D̄ (
n50

`

nkdn8~a!D . ~41!

The infinite series(n50
` nkdn(a) and (n50

` nkdn8(a) can be
evaluated with the the identity

(
n50

`

dn~a!exp~22inv !5exp@2 ia tan v#, ~42!

which follows from Eqs.~34!, ~36!, and~37!. Let us proceed
by taking a derivative]/]v on both sides of Eq.~42!. This
gives

~22i !1(
n50

`

n1dn~a!exp~22inv !5
2 ia

cos2 v
exp@2 ia tan v#.

Taking this derivativek times, we find that

~22i !k(
n50

`

nkdn~a!exp~22inv !

5H S 2 ia

cos2 v D k

1O~ak21!J exp@2 iatanv #.

~43!

To be more specific, one can defineU(v)[exp@2ia tanv#
following Eq. ~42!. It can be shown that]vU5FU with F
[2 ia/cos2 v. Hence one can show that

]v
kU5 (

l 50

k21

Cl
k21]v

k2 l 21F]v
l U

5@Fk1C2
kFk22]vF1C3

kFk23]v
2F1C2

3C4
kFk24

3~]vF !2#1k3~a!1k4~a!1O~ak25!. ~44!
10501
-
HereCb

a[a!/ @b!(a2b)! # denotes the number of combina
tions of sizeb from a collection of sizea. In addition,k3 and
k4 denote the third and fourth derivative terms. They can
shown to be

k3~a!5C4
kFk24]v

3F1C5
kC2

5Fk25]vF]v
2F

1C2
6C6

kFk26~]vF !3,

k4~a!5C5
kFk25]v

4F1C6
kC4

6Fk26]vF]v
3F

1C2
5C6

kFk26~]v
2F !2

1C7
kC4

7C2
3Fk27]v

2F~]vF !2

1C8
kC3

7C2
3Fk28~]vF !4. ~45!

Note that above formula for the expansion of]v
kU can either

be proved by method of induction or can be read off direc
from the combinatorial factor in the the expansion of (]v

1F)k
•1 @14#. It is worthy pointing out that]v

kF(v50)50
for all odd numberk and the value of]v

kF(v50) when
k is even can be computed directly. For example o
can show that]v

2F(v50)52F(v50), and ]v
4F(v50)

516F(v50). Hence the order ofak22 and the order of
ak24 terms read ]v

kU(v50)52C3
k(2 ia)k221@16C5

k

140C6
k#(2 ia)k24. Similarly, one can also show that th

order of ak2n term for theD̄ term vanishes whenn is an
even integer whileD term vanishes for all odd integern.
Hence, by settingv50 on both sides of Eq.~43!, we obtain

(
n50

`

nkdn~a!5S a

2 D k

2
1

2
C3

kS a

2 D k22

1FC5
k1

5

2
C6

kG S a

2 D k24

,

(
n50

`

nkdn8~a!5
k

2 S a

2 D k21

2
k22

4
C3

kS a

2 D k23

1
k24

2

3FC5
k1

5

2
C6

kG S a

2 D k25

1O~ak26!. ~46!

Here we only keep terms to the order ofO(ak25). Sincea
5p'

2 /eB, the leading terms on the RHS of the above eq
tion give up to order ofO(e3B3) contributions toG(p), as
can be seen from Eq.~41!. Precisely we have
4-5
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(
n50

`
2 idnD1dn8D̄

pL
212neB

5 (
k50

`
1

pL
2 S 22eB

pL
2 D kH 2 iD F S a

2 D k

2
1

2
C3

kS a

2 D k22G1D̄F k

2S a

2 D k21

2
k22

4
C3

kS a

2 D k23G J 1 iG4~p!

5 (
k50

`
1

pL
2 F2 iD S 2p'

2

pL
2 D k

1D̄S 2p'
2

pL
2 D k21S 2k

pL
2 DeBG1 (

k50

`
1

pL
2 F i2C3

kDS eB

pL
2 D 2S p'

2

pL
2 D k22

12~k22!C3
kD̄S eB

pL
2 D 3S 2p'

2

pL
2 D k23G1 iG4~p!

5
2 iD

pL
2

1

11
p'

2

pL
2

2
D̄

~pL
2!2

1

S 11
p'

2

pL
2 D 2 eB1 iG2~p!1 iG4~p!

5
iD

p22m2 2
D̄

~p22m2!2 eB1 iG2~p!1 iG4~p!, ~47!
n
t

th
s.
at

t

fac-

ce
t

r-

ase
s-
lid
lec-

, let
ree
as
where iG2(p) denotes terms of ordere2B2 and e3B3 and
iG4(p) denotes terms of ordere4B4 ande5B5. Therefore, by
Eqs.~40! and ~39!, we arrive at

iG~p!5
iD

p22m2 2
D̄

~p22m2!2 eB1 i
g•p'

p'
2

1 iG2~p!1 iG4~p!

5
i ~p”1m!

p22m2 2
g1g2~g•pi1m!

~p22m2!2 eB1 iG2~p!1 iG4~p!.

~48!

The first term of Eq.~48! is just the electron propagator i
the vacuum, while the second term is its correction
O(eB). The corrections with higher powers ineB can be
calculated in a similar way. For example, to evaluate
termG2(p) andG4(p), we need to compute a few identitie
Note thatC3

k5k(k21)(k22)/6 hence one can show th
(k50

` C3
k(2x)k23/651/(11x)4 for all uxu,1 from consecu-

tive differentiating the identity(k50
` (2x)k51/(11x) which

is valid for all uxu,1. Similarly, one can also show tha
(k50

` (k22)C3
k(2x)k2351/(11x)424x/(11x)5 for all

uxu,1. Therefore, one can extract theO(e2B2) andO(e3B3)
terms from the series expansion in Eq.~41!. The result leads
to the following contribution:

iG2~p!52
2ie2B2p'

2

~p22m2!4
D12e3B3

3F 1

~p22m2!4 1
4p'

2

~p22m2!5G D̄, ~49!

where D and D̄ have been defined in Eq.~40!. Similarly,
one can show that (k50

` C5
k(2x)k2551/(11x)6,

(k50
` C6

k(2x)k2651/(11x)7, (k50
` (k24)C5

k(2x)k25

51/(11x)626x/(11x)7 and (k50
` (k24)C6

k(2x)k26
10501
o

e

52/(11x)727x/(11x)8 for all uxu,1. Hence the fourth
and fifth order propagatoriG4(p) can be shown to be

iG4~p!52@8ie4B4#F2p'
2 pL

223~p'
2 !2

~p22m2!7 GD

28e5B5F15~p'
2 !2216p'

2 pL
212pL

2

~p22m2!8 G D̄. ~50!

C. Phase factor

In this subsection, we discuss how to treat the phase
tor F(x,x8) as defined in Eq.~22!. First, we note that
F(x,x8) is reduced to

F~x,x8!5expH ieE
x8

x

djmAm~j!J , ~51!

if the integration path connectingx andx8 is a straight line.
This choice of integration path is only for convenience sin
the integration in Eq.~22! is path independent provided tha
the vector potentialAm(j) is nonsingular. Second, for a pa
ticular type of Coulomb gauge:

A0~j!50,

A~j!5
B

2
~x282j2 ,j12x18,0!,

the exponent*x8
x djmAm(j) vanishes, henceF(x, x8)51.

Therefore, by choosing the above Coulomb gauge, the ph
factor F(x,x8) in the electron Green’s function can be di
regarded. Such a simplification is, however, no longer va
for more complicated processes where more than one e
tron propagators are involved in the process. To illustrate
us consider a one-loop triangular diagram composed of th
electron propagators. We denote vertices of the diagram
4-6
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P, Q and R respectively. It is useful to recall that the fu
phase factor between two pointsP andQ is

F~P,Q!5expH i E
Q

P

dxmFAm~x!1
1

2
Fmn~x2Q!nG J

~52!

according to Eq.~22!. Here we usePm to denote the coordi-
nate of the pointP. Similarly Qm andRm denote coordinates
of the pointsQ andR respectively. As discussed before, o
can setF(P,Q)51 by choosing the special gauge

AQ~x![A0~x!1ÃQ~x!, ~53!

with A0(x)5B/2•(2x2 ,x1,0) and ÃQ(x)5B/2•(Q2 ,
2Q1,0). Similarly, one can respectively setF(R,P) and
F(Q,R) to unity by choosing the gauges

AP~x![A0~x!1ÃP~x!,

AR~x![A0~x!1ÃR~x!, ~54!

with ÃP(x)5B/2•(P2 ,2P1,0) and ÃR(x)5B/2•(R2 ,
2R1,0) respectively. Apparently,AQ(x), AP(x), andAR(x)
are distinct from one another. Hence they cannot be ado
simultaneously to set all phase factors to unity. In oth
words, the phase factors shall give rise to a nontrivial c
tribution to the three-point amplitude. In fact this nontrivi
contribution can be understood in an alternative view. T
ing Eq. ~52! as an example, the integrand on the RHS of
equation can be written asA[A1 1

2 FDx where A
[Amdxm, A[Amdxm, and FDx[Fmndxm(x2Q)n are all
one-form. One can easily show thatA is a closed form, i.e.,

dA50. ~55!

Note thatA is exact if the first homology group is trivial
namely,H1(M )50. To be more specific, if the gauge fun
tion Am(x) is regular everywhere, then the one-formA is
also regular. Therefore there exists a zero-formv such that
A5dv is an exact form. As a result, the line integratio
which defines F(P,Q) is path independent. In ou
problem, we need to compute the product of three pha
F(P,Q)•F(R,P)•F(Q,R). It is then important to note tha
the one-formA in each of the above phases depends on
boundary point of the path, despite the fact that the ga
function Am(x) is regular. In other words, the gauge ofA is
chosen differently in each path, which then gives rise t
non-trivial phase for a three-point amplitude. Precisely o
may isolate the boundary dependencies ofA by writing, for
example,A5A82FmndxmQn in the case ofF(P,Q). Ap-
parently,A8 is an exact form universal to the three phas
while FmndxmQn depends on the boundary pointQ. Using
this separation, one may rewrite each phase as
10501
ed
r
-

-
e

s:

e
e

a
e

,

F~x,x8!5expF ieE
x8

x

djmS Am1
1

2
FmnxnD G

3expF2 i
e

2
FmnE

x8

x

djmx8nG . ~56!

Let us denote the first factor exp@ie*x8
x djm(Am11

2Fmnx
n)#

as F8(x,x8). Since F8(P,Q)•F8(R,P)•F8(Q,R)
5F8(Q,Q)51, we conclude from Eq.~56! that

F~P,Q!•F~R,P!•F~Q,R!

5expF2
ie

2
~R2P!mFmn~P2Q!nG . ~57!

This is the nontrivial phase contribution one must attach
the amplitude of a three-point process when we write
weak field charged propagator according to Eq.~48!.

III. APPLICATIONS

A. gg\nn̄

The weak-field expansion derived in the last section
been applied to calculate the amplitudes ofgg→nn̄ and its
crossed processes in a homogeneous magnetic field less
Bc @4#. According to the discussion in the previous sectio
the magnetic-field dependencies of above amplitudes re
in two places: the first place is in the electron propaga
which is affected by the external magnetic field, while t
second place is in the overall phase which is a function of
field strength tensorFmn . Let us now takegg→nn̄ as an
example for illustration. Since the incoming photon energ
are much less thanmW , we can calculate the scattering am
plitudes using the following effective four-fermion intera
tions between leptons and neutrinos:

L52
GF

A2
„n̄ lga~12g5!n l…„ēga~gV2gAg5!e…, ~58!

wheregV51/212 sin2uw and gA51/2 for l 5e; gV521/2
12 sin2 uw andgA521/2 for l 5m,t. The Feynman diagram
contributing togg→nn̄ is shown in Fig. 1 of Ref.@4#. We
should remark that the contribution due togA is proportional
to the neutrino mass in the limit of vanishing magnetic fie
At O(eB) in the limit B!Bc , it gives no contribution to the
amplitude by the charge conjugation invariance. Theref
we shall neglect the contribution bygA . Likewise, we shall
also neglect contributions bygV for l 5m,t, since 21/2
12 sin2 uw50.04!1.

To O(eB), the amplitude forgg→nn̄ can be written as
M[M11M2, whereM1 arises from inserting the externa
magnetic field to electron propagators according to Eq.~48!,
whereasM2 comes from expanding the overall phase fac
for the three-point function as shown in Eq.~57!. Therefore
one has
4-7
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M15 i4paeB
GFgV

A2
ū~p2!ga~12g5!v~p1!e1

me2
nE d4l

~2p!4

3trH ga~12g5!Fg1g2@g•~ l 1k1! i1m#

@~ l 1k1!22m2#2 gm
i ~ ł 1m!

l 22m2 gn
i ~ ł 2k” 21m!

~ l 2k2!22m2

1
i ~ ł 1k” 11m!

~ l 1k1!22m2 gm
g1g2@g• l i1m#

~ l 22m2!2 gn
i ~ ł 2k” 21m!

~ l 2k2!22m2

1
i ~ ł 1k” 11m!

~ l 1k1!22m2 gm
i ~ ł 1m!

l 22m2 gn
g1g2@g•~ l 2k2! i1m#

@~ l 2k2!22m2#2 G J , ~59!

wheregV512(124 sin2 uw)/2 for ne andm is the mass of the electron. The first and second term ingV are the contributions
from theW andZ exchanges, respectively. To write down the amplitudeM2, we recall Eq.~57! which states that the overa
phase factor forgg→nn̄ is

F~X,Y!•F~Z,X!•F~Y,Z!5expF2
ie

2
~Z2X!mFmn~X2Y!nG . ~60!

With B in the forwardz direction and choosingXm5(0,0,0,0), we arrive at

F~X,Y!•F~Z,X!•F~Y,Z!5expH S 2 iB

2 D ~Y1Z22Y2Z1!J
.12

ieB

2
~Y1Z22Y2Z1!. ~61!

Since we calculate the amplitude only toO(eB), the first term of the above expansion gives rise toM1; while the second term
gives rise toM2 which reads

M25 i4paeB
GFgV

A2
E d4Yd4Z

2 i

2
~Y1Z22Y2Z1!E d4ld4qd4r

~2p!12 e1
me2

n

3exp@2 i ~q2 l 2k1!•Y#exp@2 i ~r 2q2k2!•Z#ū~p2!ga~12g5!v~p1!

3trH ga~12g5!
i ~ ł 1m!

l 22m2 ~2 iegm!
i ~q”1m!

q22m2 ~2 iegn!
i ~r”1m!

r 22m2 J . ~62!

We can recast the amplitudeM2 by using the equations

Yi exp@2 i ~q2 l 2k1!•Y#52 i
]

] l i
exp@2 i ~q2 l 2k1!•Y#,

Zi exp@2 i ~r 2q2k2!•Z#5 i
]

]r i
exp@2 i ~r 2q2k2!•Z#,

and the integration by part, such that

M25 i4paeB
GFgV

A2
E d4Yd4Z

2 i

2 E d4ld4qd4r

~2p!12 e1
me2

n exp@2 i ~q2 l 2k1!•Y#exp@2 i ~r 2q2k2!•Z#ū~p2!ga~12g5!v~p1!

3F ]

] l 1

]

]r 2
2

]

] l 2

]

]r 1
G trH ga~12g5!

i ~ ł 1m!

l 22m2 ~2 iegm!
i ~q”1m!

q22m2 ~2 iegn!
i ~r”1m!

r 22m2 J . ~63!

Before we proceed to computeM1 andM2, we wish to reiterate the validity of the above expansion. As we have pointed
in Ref. @4# that, by dimensional analysis, any given power ofeB in the expansion ofM is accompanied by an equal power
1/m2 ~for m.p) or 1/p2 ~for p.m). Herep denotes the typical energy scale of external particles. Therefore, botheB/m2 and
eB/p2 are much smaller than unity forB!Bc[m2/e. Now performing the integration inM1 andM2, we obtain
105014-8
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M[M11M25
GFgVa3/2

A2A4p
ū~p2!ga~12g5!v~p1!Ja, ~64!

where@15#

Ja5C1~e1Fe2!~k1
a2k2

a!1C2@~e1Fk1!~k1•e2!k2
a1~e2Fk2!~k2•e1!k1

a#1C3@~e1Fk1!e2
a1~e2Fk2!e1

a#1C4@~e1Fk2!

3~k1•e2!k1
a1~e2Fk1!~k2•e1!k2

a#1C5@~e1Fk2!~k1•e2!k2
a1~e2Fk1!~k2•e1!k1

a#1C6@~e1Fk2!e2
a1~e2Fk1!e1

a#

1C7~k2•e1!~k1•e2!@~Fk1!a1~Fk2!a#1C8~e1•e2!@~Fk1!a1~Fk2!a#1C9~k1Fk2!~e1•e2!~k1
a2k2

a!1C10~k1Fk2!

3~k2•e1!~k1•e2!~k1
a2k2

a!1C11~k1Fk2!@~k2•e1!e2
a2~k1•e2!e1

a#, ~65!

with, for instance, (e1Fe2)[e1
mFmne2

n and (Fk1)a[Fabk1b . The coefficient functionsCi ’s are given as follows:

C152
8

m2 ~ I @0,0,1#1I @0,0,2#24I @1,1,1#25I @1,1,2#12I @2,1,1#12I @2,1,2#1tI @2,1,2#12I @2,2,1#12I @2,2,2#

25tI @3,2,2#12tI @4,2,2#12tI @4,3,2# !,

C252
8

m4 ~ I @1,1,2#22I @2,1,2#23I @2,2,2#14I @3,2,2#12I @3,3,2#24I @4,3,2# !,

C352
4

m2 ~2I @0,0,2#24I @1,1,1#24I @1,1,2#2tI @1,1,2#12cI@2,1,2#12I @2,2,1#12I @2,2,2#13tI @2,2,2#24tI @3,2,2#

22tI @3,3,2#12tI @4,3,2# !,

C452
16

m4 ~5I @3,2,2#22I @4,2,2#24I @4,3,2# !,

C552
8

m4 ~ I @1,1,2#12I @2,1,2#2I @2,2,2#210I @3,2,2#18I @4,2,2#14I @4,3,2# !,

C652
4

m2 ~2I @0,0,1#12I @0,0,2#24I @1,1,1#24I @1,1,2#2tI @1,1,2#24I @2,1,1#24I @2,1,2#22I @2,2,1#22I @2,2,2#

1tI @2,2,2#12tI @3,2,2#24tI @4,2,2#22tI @4,3,2# !,

C75
8

m4 ~ I @1,1,2#22I @2,1,2#2I @2,2,2#14I @3,2,2#24I @4,3,2# !,

C85
4

m2 ~2I @0,0,2#24I @1,1,1#24I @1,1,2#2tI @1,1,2#12tI @2,1,2#12I @2,2,1#12I @2,2,2#1tI @2,2,2#24tI @3,2,2#

12tI @4,3,2# !,

C952
8

m4 ~ I @1,1,2#12I @2,1,2#14I @2,1,3#2I @2,2,2#210I @3,2,2#212I @3,2,3#14I @4,2,2#14I @4,2,3#14tI @4,2,3#

14I @4,3,2#14I @4,3,3#212tI @5,3,3#14tI @6,3,3#14tI @6,4,3# !,

C105
64

m6 ~ I @4,2,3#24I @5,3,3#12I @6,3,3#12I @6,4,3# !,
105014-9
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C1152
8

m4 ~ I @1,1,2#12I @2,1,2#14I @2,1,3#2I @2,2,2#24I @3,2,3#24I @4,2,2#24I @4,2,3#24I @4,3,2#24I @4,3,3#

14tI @5,3,3#24tI @6,3,3#24tI @6,4,3# !, ~66!
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I @a,b,c#[E
0

1

dxE
0

12x

dy
xbya2b

~12txy2 i«!c , ~67!

with t[2(k1•k2 /m2). Our result is an extension of the ca
culation in Ref. @3# which considers only the low energ
limit k1•k2!m2. In such a limit, one can calculateM using
the effective Lagrangian forgg→nn̄g @9# and replacing one
of the photons by the external magnetic field.

With the amplitudeM, it is straightforward to compute th
scattering cross sectionsB(gg→nn̄) in the background
magnetic field. Sincegg→nn̄ could contribute to the
energy-loss of a magnetized star, it is useful to compute
stellar energy-loss rateQ, which is related tosB through@16#

Q5
1

2~2p!6E 2d3kW1

ev1 /T21

3E 2d3kW2

ev2 /T21

~k1•k2!

v1v2
~v11v2!

3sB~gg→nn̄!. ~68!

In Ref. @3#, Q is calculated based upon an approxima
cross section obtained in the limitEg!m. Such a calculation
is repeated in our earlier work@4# which is based upon the
cross sectionsB(gg→nn̄) obtained from the amplitudeM
in Eq. ~64!. We found that, for temperatures below 0.0
MeV, the effective-Lagrangian approach employed in R
@3# works very well. On the other hand, this approach b
comes rather inaccurate for temperatures greater tha
MeV. At T50.1 MeV, our calculation gives an energy-lo
rate almost two orders of magnitude greater than the re
from the effective Lagrangian. Such a behavior can be
derstood from the energy dependence of the scattering c
section, as shown in Fig. 2 of Ref.@4#. It is clear that, for
T50.1 MeV,Q must have received significant contributio
from scatterings withv'm. At this energy, the full calcula-
tion gives a much larger scattering cross section than
given by the effective Lagrangian. By comparing the pred
tions of the full calculation and the effective-Lagrangian a
proach@3#, we conclude that the applicability of the latter
the energy-loss rate is quite restricted. While the effect
Lagrangian works reasonably well withv,0.1m , it would
give a poor approximation onQ unlessT,0.01m.

B. g\nn̄, n\ng

In order to compare our approach with previous ones,
consider the simple two-body decay modesg→nn̄ @10–12#
10501
e

d

f.
-
1

lt
-
ss

at
-
-

e

e

and n→ng @17# in a background magnetic field. We sha
limit the energies of incoming particles to be less than
pair-production threshold 2m. For if Eg ,En.2m, the domi-
nant decay modes should becomeg→e1e2 and n
→ne1e2 respectively. For incoming energies below th
pair-production threshold, it turns out that the photon m
menta in bothg→nn̄ andn→ng are spacelike@18#. Hence
the former process is kinematically forbidden. The amplitu
of the latter process can be written as

M„n~p1!→n~p2!g~q!…

52
GF

A2e
Zeaū~p2!gb~12g5!u~p1!

3„gVPab~2q!2gAPab
5 ~2q!…, ~69!

wherePab andPab
5 are vector-vector and vector-axial ve

tor two-point functions given by

Pab~q!52e2E d4k

~2p!4 tr@gaG~k2q!gbG~k!#,

Pab
5 ~q!52e2E d4k

~2p!4 tr@gaG~k2q!gbg5G~k!#. ~70!

The factorZ is the wave-function renormalization consta
of the photon field, induced by the effect of external ma
netic fields. Since the deviation ofZ from the unity is rather
small, proportional to the fine structure constanta, we shall
setZ51 in our subsequent discussions.

The structures of the two-point functionsPab and Pab
5

were given in previous literature@6,12#

Pab~q!5A~qi
2giab2qiaqib!1B~2q'

2 g'ab2q'aq'b!

1C~q2gab2qaqb!,

Pab
5 ~q!5Ci„qi

2F̃ab1qia~ F̃q!b1qib~ F̃q!a…

1C'„2q'
2 F̃ab1q'a~ F̃q!b1q'b~ F̃q!a….

~71!

We wish to remind the reader thatq'
2 5(q1)21(q2)2 for a

magnetic field in the1z direction. The calculations ofPab

andPab
5 for B,Bc are straightforward using the weak fie

expansion derived in Eqs.~48!, ~49!, and ~50!. Due to
charge-conjugation and gauge invariances, the magn
field effects toPab and Pab

5 begin at the ordere2B2 and
4-10
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e3B3 respectively. The subleading contributions are then
the ordere4B4 ande5B5 respectively. The coefficient func
tions of Pab(q) are given by

A5
ia

p F2
7

45S B

Bc
D 2

1S 26

315
2

52

945

v2

m2 sin2 u D S B

Bc
D 4

1•••G ,
B5

ia

p F 4

45S B

Bc
D 2

1S 2
16

105
1

4

135

v2

m2 sin2 u D S B

Bc
D 4

1•••G ,
C5

ia

p F S 2

45
2

1

105

v2

m2 sin2 u D S B

Bc
D 2

1S 2
4

105
1

44

1575

3
v2

m2 sin2 u2
10

2079

v4

m4 sin4 u D S B

Bc
D 4

1•••G , ~72!

wherev is the photon energy whileu is the angle between
the the magnetic-field direction and the direction of pho
propagation. For the coefficient functions ofPab

5 (q), we
find

Ci5
ia

Bp F 1

70

v2

m2 sin2 uS B

Bc
D 3

1S 2
26

945

v2

m2 sin2 u

1
10

693

v4

m4 sin4 u D S B

Bc
D 5

1•••G ,
C'5

ia

Bp F S 2
1

15
1

1

70

v2

m2 sin2 u D S B

Bc
D 3

1S 8

63
2

86

945

v2

m2 sin2 u1
10

693

v4

m4 sin4 u D
3S B

Bc
D 5

1•••G . ~73!

It should be noted that the validity of weak-field expansi
in Eqs. ~72! and ~73! also depends on the ratior
[v2 sin2 uB2/m2Bc

2 , in addition to the requirement (B/Bc)
2

!1. For a sufficiently large photon energy such thatr .1,
the expansion in Eqs.~72! and ~73! may break down. How-
ever, since we have limited the photon energy tov,2m, the
ratio r is automatically smaller than 1.

The computation ofn→ng width requires the knowledge
of photon index of refractionn[uqW u/v. The index of refrac-
tion can be calculated from the two-point functionPab(q).
It is well known thatn depends on the photon polarization
For the magnetic field in the1z direction, the polarization
states with distinct index of refraction aree'

m5(0,0,1,0) and
e i

m5(0,2cosu,0,sinu). Here we have adopted the conve
tion that qm5(v,v sinu,0,v cosu), i.e., photon propagate
on the x2z plane with an angleu to the magnetic field
direction. HenceeW' is the polarization vector perpendicula
to thex2z plane whileeW i lies on thex2z plane. The photon
dispersion relation is given by

q22 iPa50, ~74!
10501
f

n

.

wherePa5ea
aPabea

b . Here the indexa stands for the polar-
ization states, namelya5' or i . Combining Eqs.~72! and
~74!, we arrive at

@11 iB sin2 u1 iC#q25 iBv2 sin2 u,

@11 iC#q252 iAv2 sin2 u, ~75!

for polarization statesa5' anda5i respectively. Since the
electomagnetic coupling constant is rather small, the
hand side of the above equations may be approximated
q2. Using the definitionq25v2

•(12n2), we obtain

n'511
a

p F 2

45S B

Bc
D 2

1S 2
8

105
1

2

135

v2

m2 sin2 u D
3S B

Bc
D 4

1•••Gsin2 u,

ni511
a

p F 7

90S B

Bc
D 2

1S 2
13

315
1

26

945

v2

m2 sin2 u D S B

Bc
D 4

1•••Gsin2 u.

~76!

It is seen that the leading contributions ton' and ni agree
with the results obtained by Adler@18#. The next-to-leading
contribution ton',i depend on both the photon energyv and
the photon propagation direction@19#.

Given the above photon dispersion relation, we procee
compute then→ng width in the subcritical background
magnetic field. We note that the most recent calculation
n→ng width is performed by Ioannisian and Raffelt@17#.
Following their approach, we write the width of this proce
as

G5
1

16pE1
2E

0

vmax
dv(

pols
uMu2, ~77!

whereM is the amplitude given by Eq.~69!, E1 is the neu-
trino energy, andvmax5min(E1 ,vc) with vc the critical
photon energy beyond which the photon four moment
becomes timelike and the Cherenkov condition no lon
holds. We note that, in deriving the above width, one h
taken the collinear approximation that the particles in
initial and final states are all parallel with one another. T
correction to such an approximation is small, proportiona
the fine structure constanta. From Eq.~69!, we obtain

uMu25
4gA

2GF
2

e2 ea~a!e* a8~a!~p1
bp2

b81p1
b8p2

b!Pab
5 Pa8b8

5 ,

~78!

where a5i ,'. The contribution by the vector-vector two
point functionPab is negligible since bothp1 and p2 are
approximately parallel to the photon momentumq and
qbPab50 due to the gauge invariance. The fact that bothp1
4-11
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and p2 are approximately parallel toq also has a conse
quence on the polarization dependencies ofuMu2. This is
easily seen with

qbPab
5 52~Ciqi

22C'q'
2 !~ F̃q!a . ~79!

For aB field in the1z direction, (F̃q)a is nonvanishing only
for a50,3. Givene'

m5(0,0,1,0) ande i
m5(0,2cosu,0,sinu)

as stated earlier, one immediately sees thatuMu2 vanishes
for a photon in a' mode. Hence the photon radiated fro
the neutrino is polarized, with its polarization vector lying o
the surface spanned byqW andBW .

The width ofn→ng can be readily calculated using Eq
~77!, ~78! and ~71!. We have

G5
gA

2GF
2B2

2p2E1a
sin6 uE

0

vmax
dv~E12v!v4uCi2C'u2. ~80!

SinceCi and C' are already given by Eq.~73!, G can be
easily determined oncevmax is specified. SinceE1,2m,
which impliesv,2m, the photon refractive index is alway
greater than 1 as indicated by Eq.~76!. Hence the critical
energyvc for photon dispersion relation to cross the lig
cone is greater than 2m. Thusvmax[min(E1 ,vc)5E1. The
width G is given as follows:

G5
2GF

2aE1
5

135~2p!4 sin6 uF 1

50S B

Bc
D 6

2S 8

105
2

1

49

E1
2 sin2 u

m2 D S B

Bc
D 8

1•••G . ~81!

Comparisons of our result with the earlier results of Re
@12,17# are in order. First, we focus on the weak field regi
B,Bc while Refs. @12,17# considers the general magnet
field and the corresponding coefficient functionsCi ,' are
expressed in double integrals. Second, due to a different
vention, the coefficient functions obtained in Ref.@17#, de-
noted asCi ,'8 , are related to ours via the relationuCi2C'u
5(e4/32p2m2)uCi822C'8 u where

Ci85 im2E
0

`

dsE
21

1

dve2 isf0~12v2!,

C'8 5 im2E
0

`

dsE
21

1

dve2 isf0R, ~82!

with

f05m21
12v2

4
qi

21
cos~eBsv !2cos~eBs!

2eBssin~eBs!
q'

2 ,

R5
12v sin~eBsv !sin~eBs!2cos~eBs!cos~eBsv !

sin2~eBs!
.

~83!

To compare the two sets of results, it is useful to real
that one can rotate the integration contour,s→2 is, in
10501
.

n-

e

the above integrals, providedq0[v,2m. In this way,
the phasee2 isF0 turns into e2sF0 and becomes highly
suppressed for a larges. ForB,Bc , such a behavior permits
one to simultaneously perform the weak-field and lo
energy expansions with respect toCi ,' . The results of ex-
panding uCi822C'8 u may be organized into the sum
of the following series (n50an(v2 sin2 u/m2)n(B2/Bc

2)n,
(n50bn(v2 sin2 u/m2)n(B2/Bc

2)n11, (n50cn(v2 sin2 u/m2)n(B2/
Bc

2)n12 . . . . One observes that the coefficientsa1 and a2

correspond to theO(v2B2) and O(v4B4) terms in ouruCi
2C'u respectively. We found that all the coefficientsai8s
vanish. This is indeed reflected in our calculations where
O(v2B2) and O(v4B4) terms in uCi2C'u vanish as well.
We also found agreements between the coefficientsb0,1 and
the correspondingO(B2), O(v2B4) terms inuCi2C'u. Al-
though we did not compare the coefficientc0 with theO(B4)
term inCi , due to the growing complexity in computing th
general coefficientsci8s, the agreements we just found wit
respect to the first two series seems rather compelling.
cause of these agreements, we also confirm the state
made in Ref.@17# that the earlier calculation onPmn

5 is
incorrect.

From the above comparisons, we have seen that our
proach, in spite of less general, is convenient for obtain
the analytic amplitudes of physical processes in a subcrit
background magnetic field. In such a magnetic field, it s
fices to know the leading and subleading terms in the we
field expansion. Our approach produces those terms dire
from Feynman diagrams.

The work on extending the present analysis to the m
complicated processes, such as the photon splittingg→gg
and the pair productiong→e1e2 is currently being pursued
For the latter process, we have exploited the analytical pr
erties of the vacuum polarization functionPmn in the back-
ground magnetic field. For a subcritical magnetic field, it
possible to obtain a simple expression for the absorption
efficient~the pair-production width! for arbitrary photon en-
ergies @20#. This is an improvement to the previous wo
where a simplified expression is possible only forv@m
@21#. For the former process,g→gg, our result shall serve
as an additional check to the previous results@18,22#.

IV. CONCLUSION

In this paper, we have developed the weak-field exp
sion technique for processes occurring in a background m
netic field. This expansion is performed with respect to
ternal electron propagators which are affected by
background magnetic field. In some processes, our appro
is valid for general external momenta even if they are mu
greater than the electron massm. For external momenta
much greater thanm, the effective-Lagrangian approach
no longer appropriate. To illustrate this point, we calcula
the amplitude ofgg→nn̄ under a background magnet
field, and consequently determined the stellar energy-
rate Q due to this process. It is interesting to find that t
effective-Lagrangian approach is inappropriate for comp
ing the stellar energy-loss rate due togg→nn̄, unless the
4-12
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star temperature is less than 0.01m. This result reflects
clearly the importance of our approach. In fact, our appro
can be applied to many other processes. In this regard
also discussed the processesg→nn̄ and n→ng under a
strong background magnetic field. We found that the valid
of weak-field expansion with respect to the above proces
are also determined by the parameterr[v2 sin2 uB2/m2Bc

2 ,
besides the requirementB,Bc . For energy below pair pro
duction threshold, the parameterr is less than 1, which
causes no trouble to the weak-field expansion. We found
g→nn̄ is kinematically forbidden whilen→ng is permitted
by the phase space. Our predictions on the latter pro
agree with previous works@17#. It has also been pointed ou
that our approach, although less general, is convenient
D

s.

y

10501
h
e

y
es

at

ss

or

obtaining the analytic amplitudes of physical processes i
subcritical background magnetic field.

We are currently extending the weak-field expans
technique to the photon splitting processg→gg @18,22# and
the pair production processg→e1e2 @18,21#. Both pro-
cesses are of great interests in the physics of pulsars
which the background magnetic fields are close to the crit
valueBc .
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