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Frequency Acquisition and Tracking in High
Dynamic Environments

Yu T. Su and Ru-Chwen Wu

Abstract—This paper presents mean squared error (MSE)
analysis of two classes of frequency acquisition and tracking
algorithms. Additive white Gaussian noise as well as Rician
fading channels are considered. The class of batch-processing
algorithms is an extension of earlier least squares proposals used
in more benign (lower dynamic) environments. These algorithms
try to fit the phase trajectory of the down-converted samples of
a received signal. Such a trajectory will depend on the histories
of both the signal and the local frequency variations when the
local frequency is updated recursively. We propose a method to
solve this difficulty and present both first-order and second-order
recursive algorithms. Numerical results demonstrate that the
MSE performance predicted by our analysis is consistent with
that estimated by computer simulation and that the proposed
algorithms not only provide rapid acquisition times but also give
small tracking jitters.

Index Terms—Frequency synchronization, least squares estima-
tion, satellite communication.

I. INTRODUCTION

CARRIER recovery is an important issue in designing a
communication system. The fact that the relative move-

ment between the transmitter and the receiver induces various
degrees of frequency variation at the receiving end makes it
even more critical in a mobile communication channel. This
problem is especially difficult to overcome in a high dynamic
environment such as mobile low-earth-orbit (LEO) satellite
communications. To illustrate this point, let us consider a
continuous-wave (CW) signal transmitted from
a radio source. The time delay between the transmitter and
the receiver can be evaluated by ,
where is the speed of light and is the slant distance
between the transmitter and the receiver at time. The received
signal can thus be expressed as

(1)
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Fig. 1. Doppler frequency and Doppler rate at ground terminal for a 1.5-GHz
signal transmitted from a LEO satellite with 350-km altitude.

Assuming the existence of various order of derivatives, we have

(2)

Equations (1) and (2) imply that the total phase of the re-
ceived signal is given by

(3)

Define the equivalent baseband signal’s phase as
. The first and second derivatives of

, denoted by and , are known as the Doppler
frequency and Doppler rate (or differential Doppler), respec-
tively. Fig. 1 depicts the Doppler and Doppler rate, seen by an
earth terminal, of a 1.5-GHz signal that is transmitted from a
LEO satellite traveling in circular earth orbit with an altitude

km. The time span of approximately 270 s represents
the time elapsed for the satellite to travel from 20to 160 of
elevation angle. For this particular case, the Doppler frequency
and Doppler rate can be as high as 35 kHz and 800 Hz/s,
respectively.

Coherent phase-shift keying such as binary phase-shift keying
(BPSK) and quadrature phase-shift keying (QPSK) are the most
popular modulation schemes employed in digital satellite com-
munication links. But these modulations are not very tolerant of
linkdisturbances likehigh Doppler rates, specular multipath, and
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ionospheric anomalies. To combat large Doppler and differential
Doppleruncertainties, theCostascarrier tracking loopused tode-
modulate QPSK signals must have a relatively wide bandwidth,
and this will cause a significant threshold degradation. Thus, a
Costas loop or other phase-locked loops for coherent reception
mayrequirefrequencyacquisitionaidsinahighdynamicenviron-
ment. Automatic frequency control (AFC) [1], [2] loops are often
employed to serve such a need. However, an AFC loop may not
becapableofmeetingthefastacquisition/reacquisitionspecifica-
tion commonly required in large Doppler uncertainty or high dy-
namiccondition.SomemodificationsofconventionalAFC loops
have been proposed [6]; although these schemes result in perfor-
mance improvement, they are quite computationally demanding.

On the other hand, (3) implies that the baseband signal phase
can be expressed as

(4)

where the remainder is as . This fact
suggests that a second-order polynomial (in) approximation
of the received baseband phase within a short time period can
in fact provide estimators for the Doppler frequency and the
differential Doppler. In other words, given the phase samples

, obtained at (
), respectively, we want to find such that

(5a)

(5b)

is minimized, being the initial observation time. The solution
is well known

(6)

(7)

where
.

If a first-order least squares (LS) fit is used, we will obtain an
estimate for the Doppler frequency only. The first-order solution
is given by

(8)

(9)

where .

Su [3], Tretter [5], and Belliniet al.[4] proposed a first-order
LS method to estimate a fixed frequency offset. Chuang [11]
used a similar approach for burst-mode frequency recovery.
Knowles and Waltman [17] and Lang and Musicus [16] used the
second-order solution, assuming fixed frequency and frequency
rate offsets. Kumar [12], [13] applied LS estimation to various
series expansions of the received signal. Some other algorithms
based on signal phase or frequency samples were derived
[14]–[17]. Most of these algorithms are one-shot, batch form
schemes that offer estimate(s) for a fixed frequency offset
(and/or frequency rate). Some of them are capable of tracking a
slow-varying frequency [1], [2], [6], [10], [13]. In applications
where computational simplicity is required, the fixed-gain
filter may be used [18]. However, it is suitable for small
dynamic conditions only. The well-known maximum likelihood
(ML) principle can be applied to estimate frequency offset
[7]–[10]. But ML methods cannot necessarily provide a fast
estimate unless the candidate frequency uncertain range is
very limited.

This paper presents two classes of frequency acquisition
and tracking algorithms. The first class provides frequency
update information for the local numerical-controlled oscillator
(NCO) every seconds, while the second class continuously
offers such support. These algorithms not only can deal with a
large frequency variation range but also yield rapid acquisition
time and small steady-state jitter. The ensuing section describes
both classes of algorithms, considers the phase reconstruction
problem, and discusses the data modulation issue. Section III
presents the mean squared prediction error analysis. Unlike
previous presentations, we do not assume a Gaussian distribu-
tion for the phase reconstruction error. Simulation results that
validate our proposals and analysis are shown in Section IV.
The last section summarizes our major results.

II. FREQUENCYACQUISITION AND TRACKING ALGORITHMS

A. Phase Recovery and Data Modulation Issues

To implement our algorithms, the baseband phase informa-
tion has to be extracted from the received waveform first.
When the only perturbation is additive white Gaussian noise
(AWGN), the optimal phase estimator is known to be given
by , where and are the
in-phase and quadrature-phase components of the baseband
signal sampled at , for , i.e.,

(10a)

(10b)

where is the sampling period and , are indepen-
dent and identically distributed (i.i.d.) Gaussian random vari-
ables with the common variance . However, such a phase es-
timator can only render relative phase information (module 2).
To derive the absolute phase that reflects the true phase varia-
tion history, we need a different phase reconstruction method.
This can be accomplished if we keep track of the phase differ-
ence between two adjacent samples. The absolute phase
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can then be obtained by accumulating phase differences sequen-
tially, while the latter is to be derived from

(11)

The sign of the phase difference (increasing or decreasing) is
determined by the locations of the two consecutive sample pairs

and , assuming that the
sampling rate is fast enough to ensure that they are less than 180
apart. As long as this assumption is valid, phase differences can
be obtained by table lookup using ROM.

Although our algorithms are based on an unmodulated carrier
assumption, they can be modified for some digital modulated
signals. Belliniet al. [4] suggested that a fourth-power law de-
vice be used to remove the data modulation of a QPSK signal.
We can also fit the reconstructed phases of a received
BPSK sequence or, equivalently, let the signal sequence pass
through the concatenation of a square-law device and a low-pass
filter. Both operations remove BPSK modulation at the expense
of incurring a so-called squaring loss, which is an increasing
function of the data bandwidth. The above methods are special
cases of a general approach for removing PSK data modulation
via memoryless nonlinear processing [19].

Other approaches include decision-directed processing
algorithms that utilize a detected data sequence [20]–[23] or
data-aided processing algorithms that invoke a known data
pattern [23]–[25]. Nevertheless, all these methods assume
that the symbol timing is known and can be categorized as
timing-directed approaches. This assumption is not very real-
istic during the acquisition mode but is valid for the tracking
mode. When symbol timing information is not available and/or
frequency uncertainty is large, one of the other more compli-
cated phase recovery (unwrapping) algorithms [3], [26]–[28]
that require higher sampling rates is needed. Unfortunately,
at low carrier-to-noise ratio (CNR), the reliability of these
algorithms becomes doubtful.

Hence, it is safe to say that our algorithms need either an un-
modulated preamble or a memoryless nonlinearity preprocessor
for acquisition purpose. They can be used in conjunction with
one of the timing-directed phase unwrapping methods (data-
aided, decision-directed) to deal with the modulated carrier case
during the tracking mode.

B. Batch Form Algorithms

We first consider a simple extension of the LS approach for
use in frequency tracking. We notice that a first-order LS so-
lution (8), (9), even in the absence of noise, still suffers from
estimation error caused by truncating the higher order (second-
order and up) terms of the Taylor series (3). In general, for an

th-order approximation over the time period
, the truncation error (remainder term) is bounded by

(12)

Since the second-order term is not often negligibly small, as
Fig. 1 has shown, this kind of modeling error alone can thus
make a first-order estimate unreliable. Moreover, in a dynamic
environment where the received carrier frequency is not a con-
stant, an estimate for the differential Doppler is needed not only
for a more reliable estimation but also for the prediction of the
future frequency variation, as the Taylor series expansion for

(13)

tells us that the estimators, and , can be used to
produce an accurate prediction for if is small.

Using the LS estimation and prediction solutions, we can
easily form a batch-processing periodically updated frequency
acquisition/tracking algorithm as follows.

1) Reconstruct consecutive baseband phases by

(14)

where is the th recovered signal phase difference.
The set will be referred to as the
reconstructed or the compensated phase trajectory.

2) Estimate the Doppler (and Doppler rate) by using (9) or
(6) and (7) to fit the reconstructed phases in the least
squares sense.

3) Feed the above estimator(s) to the NCO to update the
frequency of the local signal. The updated frequency (and
frequency rate) is used until next estimator(s) is obtained

seconds later.
For the first-order algorithm, the updated frequency is equal to
the sum of the current frequency plus the newly estimated fre-
quency offset. The second-order algorithm uses (13) to update
the local frequency every seconds. The new estimator(s)
( ) will be used until the next estimation is obtained sec-
onds later, being the update period; see Fig. 2. The second
step can be generalized to anth-order LS estimation algo-
rithm, i.e., fitting the reconstructed baseband phase trajectory
by an th-order polynomial

(15)

for . Here we are interested in the least squares
solution , instead of the real phase of
received signal. The choice of the order, as will become clear
in Section III, depends on the desired mean squared error (MSE)
performance, the sampling rate, the channel dynamic, and the
channel noise statistic.

C. Recursive Algorithms

The error associated with the above tracking algorithms
comes from three different sources. The first one is the base-
band phase reconstruction process, (11) and (14), the second
one arises from using only finite terms of the Taylor series (4)
to model the received signal’s phase, and the third one has to
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Fig. 2. Block diagram of the proposed LS frequency acquisition and tracking system.

do with the frequency predictor that uses a truncated version
of (13). They are referred to as the phase reconstruction error,
modeling error, and truncation error, respectively. As will be
shown in the next section, the MSE of the above LS algorithm
is a function of these three errors and the sample size () used.

For a batch-processing algorithm, the predictors are used to
control the NCO output frequency before the next set of predic-
tors is obtained seconds later, the MSE right after a set of new
predictors is obtained is dominated by the phase reconstruction
error. As time elapses, the modeling and truncation errors will in-
crease. The specification of depends mainly on the maximum
modeling and truncation errors we can tolerate. Decreasing the
update period can reduce these two errors at the expense of a
perhaps larger estimation (Doppler or Doppler rate) error due to a
smaller sample size. The benefit of using a recursive algorithm is
thus obvious: one can reduce the modeling and truncation errors
to a minimum while keep the sample size fixed.

To have an efficient implementation of such a real-time algo-
rithm, we would like the estimators be computed recursively.
In other words, after using the set
to derive the estimator(s) and update the NCO frequency, we
input the new phase sample , and then, based on

, compute our new estimator(s).
Conceptually, the algorithm works as if we have applied a
sliding window of size to the reconstructed phase trajectory
so that estimators are continuously derived from the member
samples within the window. Like a batch-processing algorithm,
a basic assumption of such an algorithm is that thecon-
secutive phase samples within a window are functions of the
received frequency and noise only. This assumption is no longer
valid for a recursive implementation since the reconstructed
phase trajectory, , with , has
been “compensated” by the local frequency source due to
the feedback by our predictors. More specifically, for the
batch-processing algorithm, the phase samples in the same
batch result from mixing with the same local NCO frequency,
while for a candidate recursive algorithm, every reconstructed
phase sample is produced by mixing the received, samples
with distinct local frequencies. Therefore, to implement the
recursive algorithm, we have to recover the uncompensated
phase trajectory. This can be realized by using a “bookkeeping”

register, which keeps track of the accumulated compensations
and the restored original uncompensated phase trajectory [see
(a.4) and (b.6) in Table I(a) and (b), whereand represent
the compensated and uncompensated phases, respectively,
and for ]. Using this idea, we
can then remove the effect of the local frequency variation
from the down-converted sample phases. After some algebraic
manipulations, we obtain the first-order and second-order algo-
rithms listed in Table I(a) and (b), respectively. The first-order
algorithm requires seven additions and five multiplications
per iteration, while the second-order algorithm requires 15
additions and 12 multiplications per iteration. Note that the
recursive algorithm presented in [16] does not update the
frequency whenever a new sample is obtained. The purpose
of that algorithm is to derive a pair of unknown but fixed
frequency and frequency rates; therefore it does not have to
deal with the difficulty we meet here.

III. M EAN SQUARED FREQUENCYERRORANALYSIS

We will denote as the difference between the true phase
and the reconstructed phase of theth-order algorithm at ,

, and , the corresponding phase model error, and the
truncation error associated with the frequency predictor, respec-
tively.

To have a prediction of the frequency offset at ,
we can use either
or . Be-
cause both pairs of estimators, and

, are based on the same set of sam-
ples, they should have the same phase reconstruction error, but
the other two kinds of error can be different. For the first-order
LS algorithm, the phase model error and the resulting MS
estimation errors of and are the same. But
the consideration of the frequency prediction error favors the
choice of the latter predictor because it results in a smaller
maximum truncation error; see (12). Expressing the true
frequency at time as

(16)



SU AND WU: FREQUENCY ACQUISITION AND TRACKING IN HIGH DYNAMIC ENVIRONMENTS 2423

TABLE I
(a) SUMMARY OF THE FIRST-ORDER RECURSIVEFREQUENCYACQUISITION

AND TRACKING ALGORITHM. (b) SUMMARY OF THE SECOND-ORDER

RECURSIVEFREQUENCYACQUISITION AND TRACKING ALGORITHM

(a)

(b)

and the reconstructed phase in (9) as1

(17)
we can calculate the MSE for the first-order Doppler predictor

(18)

1This results from the assumption that we always use the normalization
~�(0) = 0 or ~�(N + 1) = 0.

where . If higher order truncation errors can
be neglected, i.e.,

(19a)

(19b)

the MSE can be approximated by

(20)

For the second-order algorithm, the true frequency at time
is

(21)

and the reconstructed phase derived from (11) and (14) is

(22)

Hence the MSE for the Doppler predictor becomes

(23)

Similarly, with the approximations of the truncation and the
model errors

(24)

we have

(25)
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The MSE for the Doppler rate estimator or predictor can be de-
rived in an analogous manner and will be omitted here. The
above equations indicate that the model and the truncation errors
can be predicted or bounded if we either know or can reliably
estimate or bound the channel dynamic. To evaluate the phase
reconstruction error, we need to know the statistic of the recon-
structed phases, which can be expressed as

(26)

where we have assumed, without loss of generality, that
. Note that these three equations are

only mathematically equivalent; the limit range of a single
arctan function forces us to use the first equation for phase
reconstruction. Nevertheless, the last equation tells us that
the phase reconstruction error is equal to the variance of

, whose probability density function
(pdf) is given by [29]

(27)

where is the true phase, , is the re-
ceived signal power, is one-sided power spectral density of
the thermal noise, and thefunction is defined as

(28)

There are two other effects that must be accounted for in eval-
uating the phase reconstruction error if we consider a digital
implementation, namely, the analog-to-digital (A/D) conversion
error and the quantization error. The former resulted from con-
verting the samples to finite-bit numbers, and the
latter is due to the fact that only finite-precision arctan values
can be stored in a ROM. The conversion error depends on the
A/D converter used, and the combined MSE analysis is well
documented [3], assuming that a noncoherent AGC is in place.
Hence we will omit further discussion on these two errors.

It is clear from the above analysis that the MSE is deter-
mined by the update speed , the signal-to-noise ratio , the
sample size , the sampling rate 1 , and the channel dy-
namic (which directly affect the model and the truncation er-
rors). Comparing (20) and (25), we find that the MS Doppler
prediction errors for both the first- and second-order algorithms
are of the same order. Equation (6), on the other hand, reveals
that the MSE for the Doppler rate estimator is proportional to

. Therefore, the optimal associated with each algorithm
is different, but the concern of the Doppler rate estimator’s re-
liability often forces us to use a larger for the second-order
algorithm.

We next extend our investigation to an uncorrelated Rician
fading environment characterized by the following received
signal model [30]:

(29)

(30)

where and are independent zero-mean Gaussian random
variables with a common variance . It is shown in the Ap-
pendix that the pdf of for this case is the same as (27) ex-
cept that .

The third case to be considered is the correlated Rician fading
channel under which the diffuse components, of the re-
ceived signal become independent first-order Gauss–Markov
processes

(31)

(32)

where and are independent white Gaussian se-
quences with the variance . The resulting MSE can
be obtained by replacing the first terms on the right-hand side
of (18) and (23) by

(33)

and

(34)
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Fig. 3. Doppler frequency and Doppler rate at ground terminal; LEO satellite
altitude is 7000 km; transmitted signal frequency is 1.5 GHz.

Fig. 4. RMS frequency tracking error atT ; T = 1 s.

where is the covariance between two reconstructed
phases , separated by sampling intervals and can be
computed from their joint pdf derived in the Appendix.

IV. NUMERICAL EXAMPLES

To investigate the numerical behaviors of the proposed algo-
rithms, computer simulations were conducted. For most of the
simulation results reported here, the channel dynamic of Fig. 3,
which represents the time span for a satellite at 7000 km alti-
tude to move from 73to 107 of elevation angle, is assumed.
The number of samples for each batchis chosen to be 100
and s. The time right after theth update is denoted by

, i.e., , for some ; the time in the middle
of two adjacent updates is denoted by; and
is the time right before a new update is to be output.

As shown in Fig. 4, the root mean square (rms) frequency
prediction error of the second-order LS algorithm atis supe-
rior to that of the first-order algorithm if the sampling rate 1
is chosen appropriately. For a fixed sampling rate, the rms fre-
quency error is a decreasing function of the CNR. Fig. 5 shows
the rms frequency tracking errors at and , respectively.

Fig. 5. RMS frequency tracking errors atT andT , CNR= 40 dB-Hz.

The sampling interval for the first-order algorithm is 10s,
while that for the second-order algorithm is 10s as the nu-
merical results presented in Fig. 4 indicate these are the better
choices for them. Also shown in Fig. 5 is the performance of an-
other second-order algorithm, which, instead of a constant for-
ward-predicting frequency signal, causes the NCO to generate
a local CW signal with linearly increased frequency, i.e., during
a sinterval, the NCO output signal has a phase that is gov-
erned by (5b) where is the time elapsed since the last update

is given. We did not provide the performance of this
algorithm in Fig. 4 because it is indistinguishable from that of
the other second-order algorithm at . The latter algo-
rithm becomes inferior to the former algorithm when we com-
pare their performance at and because it has larger model
and truncation errors.

Rician fading is often parameterized by , the
ratio of the energy in the specular component to the average
energy in the diffuse component. Fig. 6 compares the perfor-
mance in AWGN and Rician fading channels with various cor-
relation coefficient , whereCNR denotes the average CNR.
In all cases, the second-order LS algorithm always outperforms
the first-order algorithm. The relationship between and is
clearly not linear. The MSE of the first-order algorithm, as (33)
indicates, can be decomposed into two parts

(35)

where the first term is positive and the second term is negative.
Since the covariance increases as increases or de-
creases, the MSE rate of change at a particulardepends on the
covariance’s rate of change with respect toand . There seems
to be no general rule to predict the MSE behavior as a function
of channel correlation coefficient.

The MSE caused by the modeling and the truncation errors
is deterministic if the transmitter trajectory and the algorithm
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TABLE II
MEAN SQUARED FREQUENCYTRACKING ERRORPREDICTED BY ANALYSIS AND SIMULATION

Fig. 6. Performance of the LS frequency tracking algorithm over Rician fading
channels atT ,  = 4; CNR = 40 dB-Hz.

used are known. Furthermore, this part of MSE is independent
of the other part caused by the phase reconstruction error. There-
fore, the sample mean of derived from simulation rep-
resents the frequency error due to the former two errors, and
the sample variance is the MSE caused by the latter error only.
Table II lists the mean squared frequency tracking error induced
by the phase reconstruction error predicted, respectively, by our
analysis and by simulations. These numbers reveal that our anal-
ysis does yield very reliable estimation for the MS frequency
tracking error.

The performance of the recursive form is the same as that
of the batch form at . The superiority of the second-order
algorithm is made clearer in Fig. 7, where we compare the
performance of both algorithms listed in Table I(a) and (b)
for a higher dynamic environment as that given by Fig. 1.
Natali [1] presented eight different AFC loop configurations
and compared their performance. His simulation indicates that
the cross-product AFC and its analog version yield the best
performance for CW and differential phase-shift keying signals,
although their advantage is not too impressive; see [1, Figs. 20
and 21]. Cahn [2] has suggested the use of a third-order digital
cross-product AFC loop to combat high channel dynamics.
This digital loop is implemented by discretizing a second-order
Jaffe–Rechtin filter with bandwidth

(36)

(37)

(38)

(39)

where and is the update (sampling) period.
For , the rms frequency tracking error is [2]

. Fig. 7 also depicts the rms frequency error
trajectories in AWGN and uncorrelated Rician channels for the
above AFC loop withCNR dB-Hz, Hz, and a
update period ss. We can clearly see that the steady-
state rms frequency tracking error for the AFC loop is much
larger than that of the LS algorithms. The transient behavior
of the loop is not shown for fear of masking the difference in
steady-state performance. It takes the AFC loop about 0.6 s to
reach the steady state (from an initial Doppler offset of 35 kHz).
In contrast, our algorithms need only 1 ms (100 samples with a
sampling rate samples/s) to produce the initial frequency
estimate whose rms error is negligible when compared with that
of the third-order AFC loop. We have to stress that better AFC
performance might still be obtained by exploiting error signals
other than those discussed in [1].

V. CONCLUSIONS

We have presented MSE analysis of two classes of frequency
acquisition and tracking algorithms for use in high dynamic en-
vironments. Both batch form and recursive form are suitable for
real-time implementation. The class of batch form algorithms
is a simple extension of existing algorithms, but the recursive
algorithms need major modifications. These algorithms are of
low complexity and have fast acquisition time and low tracking
jitter. They can also be modified to track the frequency of a
phase-modulated signal if a nonlinear preprocessor to remove
data modulation is added or a timing-directed phase unwrap-
ping methods is in place.

Unlike previous similar MSE analyses that use Gaussian
assumptions, our analysis uses the exact reconstructed phase
distributions. Simulation results showed that our MSE estima-
tion is quite accurate. Furthermore, the resulting performance is
far superior to that of a third-order cross product AFC loop. The
effects of various design parameters—sampling rate, sample
or window size, order of signal phase trajectory approxima-
tion—and system and channel dynamic parameters—CNR,
maximum Doppler, and Doppler rate—can be deduced from
our MSE analysis. It also enables us to study performance
and design parameter tradeoffs. Although we concentrated our
effort on the first- and second-order algorithms, the concept and
the analysis can easily be extended to higher order algorithms
if needed.
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Fig. 7. Recursive least squares (RLS) frequency-tracking algorithms and
steady-state behavior of Cahn’s third-order AFC loop atCNR = 50 dB-Hz.
The transient behavior (0� 0.6 s) of the AFC loop is not shown.

APPENDIX

RECONSTRUCTEDPHASE DISTRIBUTIONS IN RICIAN FADING

CHANNELS

The received signal can be decomposed as

(A.1)

where and are independent Gaussian random variables
with variance . Using the change of variables

we obtain the conditional joint pdf of and given and

(A.2)

where and . The unconditional joint
pdf of and is given by

(A.3)
where , are the density function of , . The fact
that and are i.i.d. Gaussian random variables with variance

leads to

(A.4)

and

(A.5)

By substituting (A.4) and (A.5) into (A.3), we obtain

(A.6)

and the marginal pdf of

(A.7)

where . Comparing the above equation with
(A.1), we conclude that an equivalent model for the received
and samples is

(A.8)

where and are i.i.d. zero-mean Gaussian random vari-
ables with variance .

Next let us consider the case when the diffuse components
, at different times are correlated and can be modeled

as independent Gauss–Markov processes. Denote the random
variables , , , by

(A.9)

The corresponding mean vectoris

(A.10)
and the joint probability density function is given by

(A.11)

where

(A.12)

is the covariance matrix with and

(A.13)
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(A.14)

After the changes of variables, ,
, , , and

some algebraic manipulation, we obtain

(A.15)

with

(A.16)

The integration

(A.17)

then leads to

(A.18)

where is defined by (A.16) and is a function of , , and
; more specifically

(A.19)
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