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Frequency Acquisition and Tracking in High
Dynamic Environments

Yu T. Su and Ru-Chwen Wu

Abstract—This paper presents mean squared error (MSE) 40 3 800
analysis of two classes of frequency acquisition and tracking *g°pp:er f’iq- —" 3 goo
algorithms. Additive white Gaussian noise as well as Rician 30 | [ Poppler rate
fading channels are considered. The class of batch-processing T o0 b 1700
algorithms is an extension of earlier least squares proposals used L 1 2
in more benign (lower dynamic) environments. These algorithms - 10 b 600 %
try to fit the phase trajectory of the down-converted samples of § ’ 1500 &
a received signal. Such a trajectory will depend on the histories 3 0F &
of both the signal and the local frequency variations when the £ - 400 ?
local frequency is updated recursively. We propose a method to g -10 | v 2
solve this difficulty and present both first-order and second-order 8 , ) 7300 &
recursive algorithms. Numerical results demonstrate that the 8 -20 [ ' 1 200 e
MSE performance predicted by our analysis is consistent with
that estimated by computer simulation and that the proposed -30 ¢ R 4 100
algorithms not only provide rapid acquisition times but also give a0 F - ‘ L N 0
small tracking jitters. 0O 30 60 90 120 150 180 210 240 270

Index Terms—Frequency synchronization, least squares estima- time (sec)
tion, satellite communication.

Fig. 1. Doppler frequency and Doppler rate at ground terminal for a 1.5-GHz

signal transmitted from a LEO satellite with 350-km altitude.

|. INTRODUCTION Assuming the existence of various order of derivatives, we have

ARRIER recovery is an important issue in designing a

communication system. The fact that the relative move-
ment between the transmitter and the receiver induces various
degrees of frequency variation at the receiving end makes_it . .
evgn more crit(i]cal inya mobile communicationgchannel. Th quatlor_ls (1)_anq (2) imply that the total pha&e) of the re-
problem is especially difficult to overcome in a high dynr:lmif:;e““ad signal is given by
environment such as mobile low-earth-orbit (LEO) satellite
communications. To illustrate this point, let us consider a
continuous-wave (CW) signalt) = cos wt transmitted from
a radio source. The time delayt between the transmitter and
the receiver can be evaluated by = »(t — At)/c = »(t)/c,
where c is the speed of light and(t) is the slant distance pgfine
between the transmitter and the receiver at thrkhe received it) =
signaly(t) can thus be expressed as

r(t) =7t — At) + 7(t — At)At
+ %éi(t — A (A 4. 2)

o(t) = wt — % r(t — AF) 4+ (t — AB)AL
+%7‘(t CADA + . (@)

the equivalent baseband signal's phase as
4 6(t) — wt. The first and second derivatives of
8(t), denoted bywp(¢) andwp(t), are known as the Doppler
frequency and Doppler rate (or differential Doppler), respec-
tively. Fig. 1 depicts the Doppler and Doppler rate, seen by an
earth terminal, of a 1.5-GHz signal that is transmitted from a
LEO satellite traveling in circular earth orbit with an altitude
h = 350 km. The time span of approximately 270 s represents
, _ _ _ the time elapsed for the satellite to travel fronf 20 160 of
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ionospheric anomalies. To combat large Doppler and differentialSu [3], Tretter [5], and Bellinet al.[4] proposed a first-order
Doppleruncertainties, the Costas carriertracking loop used to & method to estimate a fixed frequency offset. Chuang [11]
modulate QPSK signals must have a relatively wide bandwidilsed a similar approach for burst-mode frequency recovery.
and this will cause a significant threshold degradation. Thuskaowles and Waltman [17] and Lang and Musicus [16] used the
Costas loop or other phase-locked loops for coherent receptsatond-order solution, assuming fixed frequency and frequency
may require frequencyacquisitionaidsinahigh dynamicenvirorate offsets. Kumar [12], [13] applied LS estimation to various
ment. Automatic frequency control (AFC) [1], [2] loops are ofteseries expansions of the received signal. Some other algorithms
employed to serve such a need. However, an AFC loop may haised on signal phase or frequency samples were derived
be capable of meeting the fastacquisition/reacquisition specifi¢a4]-[17]. Most of these algorithms are one-shot, batch form
tion commonly required in large Doppler uncertainty or high dyschemes that offer estimate(s) for a fixed frequency offset
namic condition. Some modifications of conventional AFC loop&nd/or frequency rate). Some of them are capable of tracking a
have been proposed [6]; although these schemes result in perétow-varying frequency [1], [2], [6], [10], [13]. In applications
mance improvement, they are quite computationally demandimghere computational simplicity is required, the fixed-gaifi
On the other hand, (3) implies that the baseband signal phéiter may be used [18]. However, it is suitable for small
can be expressed as dynamic conditions only. The well-known maximum likelihood
] (ML) principle can be applied to estimate frequency offset
§(t+At) _ é(t) +wp(t)AL+ WD(t)(At)Q + R(t, At) (4) [7]—_[10]. But ML methods _cannot necessarily provi_de a fast_
2! estimate unless the candidate frequency uncertain range is
very limited.
This paper presents two classes of frequency acquisition
tracking algorithms. The first class provides frequency
I@date information for the local numerical-controlled oscillator
I

where the remainddk(t, At) is O[(At)%]asAt — 0. This fact
suggests that a second-order polynomialXif) approximation
of the received baseband phase within a short time period
in fact provide estimators for the Doppler frequency and t
differential Doppler. In other words, given the phase samp
(1), 6(2), ..., 6(NV), obtained aty, ta, ..., tx (t1 < t2 <
... < ty), respectively, we want to fin@o, &, wp) such that

CO) everyIr seconds, while the second class continuously
offers such support. These algorithms not only can deal with a
large frequency variation range but also yield rapid acquisition
time and small steady-state jitter. The ensuing section describes

N both classes of algorithms, considers the phase reconstruction

e(N) =Y [B(i) — 6(i)], (5a) problem, and discusses the data modulation issue. Section lI
i=1 presents the mean squared prediction error analysis. Unlike

Y A 1. 9 previous presentations, we do not assume a Gaussian distribu-
0(i) =00+ opAt; + 21 wp(At), tion for the phase reconstruction error. Simulation results that

Aty =t —to (5b) validate our proposals and analysis are shown in Section IV.

o _ o o ~ The last section summarizes our major results.
is minimized,t, being the initial observation time. The solution
is well known
Il. FREQUENCYACQUISITION AND TRACKING ALGORITHMS
N

&p =2an/T2 Z 9~(k) |:k,2 (N4 Dk + ’Y_A} (6) A. Phase Recovery and Data Modulation Issues

k=1 6 To implement our algorithms, the baseband phase informa-

N tion A(t) has to be extracted from the received waveform first.

wp =an/Ts Z o(k) When the only perturbation is additive white Gaussian noise
k=1 (AWGN), the optimal phase estimator is known to be given

. {BN p_ N+ D (N +1),€2} @ (k) = tan '[Q(k)/I(k)], whereI(k) andQ(k) are the
15 10 in-phase and quadrature-phase components of the baseband

signal sampled at, = k7s,fork=1,2, ..., N,i.e,,
whereay = 180/[N(N +1)(N — 1)(N +2)(N — 2)], v =

(2N + 1)(8N + 11), 7y = (N + 1)(N +2).

If a first-order least squares (LS) fit is used, we will obtain an I(k) = A cos[0(tx)] + ns(k) (102)
estimate for the Doppler frequency only. The first-order solution
is given by Q(k) = A sin[f(t2)] 4+ no (k) (10b)
N
7 hereT’s is the sampling period and; (%), ng (k) are indepen-
25" (2N + 1 - 3k)6(k WhereLs 15 fhe ! 9k ™ Q) .
R ;( + O(E) dent and identically distributed (i.i.d.) Gaussian random vari-
bo = — NN —1) (8) ables with the common variane@ . However, such a phase es-
N timator can only render relative phase information (modulg 2
Op = Ax Z(Zk — N — D)é(k) ) To derive the absolute phase that reflects the true phase varia-

tion history, we need a different phase reconstruction method.
This can be accomplished if we keep track of the phase differ-
whereAy = (6/TsN(N + 1)(N — 1)). enceAd(k) between two adjacent samples. The absolute phase

k=1
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can then be obtained by accumulating phase differences sequ&inee the second-order term is not often negligibly small, as

tially, while the latter is to be derived from Fig. 1 has shown, this kind of modeling error alone can thus
. make a first-order estimate unreliable. Moreover, in a dynamic
AB(k) = cos™t environment where the received carrier frequency is not a con-
IRk — 1) + QUR)Q(k — 1) stant, an estlmate for t_he d!fferentlal Doppleris nee_de_d not only
: Th VI E-1) L 1) . for a more reliable estimation but also for the prediction of the
\/ (k) +@ -+ - future frequency variation, as the Taylor series expansion for
(A1) wpe)
The sign of the phase difference (increasing or decreasing) is wp(t+ At) =wp(t) + wp(t)At +--- (13)

determined by the locations of the two consecutive sample pairs )

{I(k — 1), Q(k — 1)} and {I(k), Q(k)}, assuming that the tells us that the estimators,;(t) andwp(t), can be used to
sampling rate is fast enough to ensure that they are less than J@duce an accurate prediction fop(t + At) if At is small.
apart. As long as this assumption is valid, phase differences cab/sing the LS estimation and prediction solutions, we can
be obtained by table lookup using ROM. easily form a batch-processing periodically updated frequency

Although our algorithms are based on an unmodulated carrgquisition/tracking algorithm as follows.
assumption, they can be modified for some digital modulated 1) ReconstrucfV consecutive baseband phases by
signals. Belliniet al. [4] suggested that a fourth-power law de-
vice be used to remove the data modulation of a QPSK signal.
We can also fit the reconstructed pha$gé(k)} of a received
BPSK sequence or, equivalently, let the signal sequence pass
through the concatenation of a square-law device and a low-pass whereAégi) is theith recovered signal phase difference.
filter. Both operations remove BPSK modulation at the expense  The set{#(k), & = 1, 2, ...} will be referred to as the
of incurring a so-called squaring loss, which is an increasing  reconstructed or the compensated phase trajectory.
function of the data bandwidth. The above methods are special) Estimate the Doppler (and Doppler rate) by using (9) or
cases of a general approach for removing PSK data modulation  (6) and (7) to fit the reconstructed phases in the least
via memoryless nonlinear processing [19]. squares sense.

Other approaches include decision-directed processing3) Feed the above estimator(s) to the NCO to update the
algorithms that utilize a detected data sequence [20]-[23] or  frequency of the local signal. The updated frequency (and
data-aided processing algorithms that invoke a known data frequency rate) is used until next estimator(s) is obtained
pattern [23]-[25]. Nevertheless, all these methods assume T seconds later.
that the symbol timing is known and can be categorized &y the first-order algorithm, the updated frequency is equal to
timing-directed approaches. This assumption is not very reghe sum of the current frequency plus the newly estimated fre-
istic during the acquisition mode but is valid for the trackingluency offset. The second-order algorithm uses (13) to update
mode. When symbol timing information is not available and/qpe |ocal frequency everx¢ seconds. The new estimatorgs)
frequency uncertainty is large, one of the other more compli, ) will be used until the next estimation is obtain&g sec-
cated phase recovery (unwrapping) algorithms [3], [26]-[2&hds laterZ} being the update period; see Fig. 2. The second
that require hlgher Sampling rates is needed. Unfortunateé‘{ep can be genera“zed to arth-order LS estimation a|go_
at low carrier-to-noise ratio (CNR), the reliability of thesgithm, i.e., fitting the reconstructed baseband phase trajectory

6(k) = Z AH(3) (14)

algorithms becomes doubtful. by anmth_order polynomia'
Hence, it is safe to say that our algorithms need either an un-
modulated preamble or a memoryless nonlinearity preprocessor é(t) — o+ opt + 1 & pt?
for acquisition purpose. They can be used in conjunction with 2!
one of the timing-directed phase unwrapping methods (data- + 1 Gpt 4+ 1 @g"—l)tm (15)
aided, decision-directed) to deal with the modulated carrier case 3! m!
during the tracking mode. for 0 < t < NTs. Here we are interested in the least squares
solution{@p, @Dy @,(3’"_1)}, instead of the real phase of
B. Batch Form Algorithms received signal. The choice of the orderas will become clear

We first consider a simple extension of the LS approach f8t Section lll, depends on the desired mean squared error (MSE)
use in frequency tracking. We notice that a first-order LS s@erformance, the sampling rate, the channel dynamic, and the
lution (8), (9), even in the absence of noise, still suffers frofhannel noise statistic.
estimation error caused by truncating the higher order (second- _ )
order and up) terms of the Taylor series (3). In general, for &n Recursive Algorithms
(n — 1)th-order approximation over the time perifid, t; = The error associated with the above tracking algorithms
t1 + At], the truncation error (remainder term) is bounded bycomes from three different sources. The first one is the base-

band phase reconstruction process, (11) and (14), the second
d"r(t) (12) one arises from using only finite terms of the Taylor series (4)
dt™ to model the received signal’'s phase, and the third one has to

w |At?

c nloy <<t

|Bn(t, At)] <
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Fig. 2. Block diagram of the proposed LS frequency acquisition and tracking system.

do with the frequency predictor that uses a truncated versigegister, which keeps track of the accumulated compensations
of (13). They are referred to as the phase reconstruction eramgd the restored original uncompensated phase trajectory [see
modeling error, and truncation error, respectively. As will b.4) and (b.6) in Table I(a) and (b), whefeand 6 represent
shown in the next section, the MSE of the above LS algoriththe compensated and uncompensated phases, respectively,
is a function of these three errors and the sample $auged. andf(k) = 6(k) for k = 1, 2, ..., N]. Using this idea, we

For a batch-processing algorithm, the predictors are usedcn then remove the effect of the local frequency variation
control the NCO output frequency before the next set of preditoem the down-converted sample phases. After some algebraic
torsis obtained’» seconds later, the MSE right after a set of newnanipulations, we obtain the first-order and second-order algo-
predictors is obtained is dominated by the phase reconstructidhms listed in Table I(a) and (b), respectively. The first-order
error. As time elapses, the modeling and truncation errors will ialgorithm requires seven additions and five multiplications
crease. The specification®f- depends mainly on the maximumper iteration, while the second-order algorithm requires 15
modeling and truncation errors we can tolerate. Decreasing #ditions and 12 multiplications per iteration. Note that the
update period’» can reduce these two errors at the expense ofecursive algorithm presented in [16] does not update the
perhaps larger estimation (Doppler or Doppler rate) error due teraquency whenever a new sample is obtained. The purpose
smaller sample size. The benefit of using a recursive algorithnas that algorithm is to derive a pair of unknown but fixed
thus obvious: one can reduce the modeling and truncation errsexjuency and frequency rates; therefore it does not have to
to a minimum while keep the sample size fixed. deal with the difficulty we meet here.

To have an efficient implementation of such a real-time algo-
rithm, we would like the estimators be computed recursively. !l: M EAN SQUARED FREQUENCY ERRORANALYSIS

In other words, after using the séf(k), k= 1,2,..., N} wewill denotex, (k) as the difference between the true phase
to derive the estimator(s) and update the NCO frequency, Wg&d the reconstructed phase of ttreorder algorithm at = #,,
input the new phase sampi/N + 1), and then, based on_ (1), ande,,,, the corresponding phase model error, and the
{6(k), k = 2,3, ..., N 4 1}, compute our new estimator(s).truncation error associated with the frequency predictor, respec-
Conceptually, the algorithm works as if we have applied fvely.

sliding window of sizeN to the reconstructed phase trajectory 1o have a prediction of the frequency offset at> tag1),

so that estimators are continuously derived from the memRigg can use eithebrp(t;) = @plto) + wplto)(t; — to)
samples within the window. Like a batch-processing algorithrg, Op(ty) = @pltag1) + @pltngs)(ty — tay). Be-

a basic assumption of such an algorithm is that thecon-  ~5use  both pairs of estimatorsi, (to), @D(to)} and
secutive phase samples within a window are functions of t@g,D(tNH)’ @D(tNH)}, are based on the same set of sam-
received frequency and noise only. This assumption is no longgés, they should have the same phase reconstruction error, but
valid for a recursive implementation since the reconstructgge other two kinds of error can be different. For the first-order
phase trajectory{d(k), k = 1,2, ...}, with Tr = Ts, has | g algorithm, the phase model error and the resulting MS
been “compensated” by th_e local frequency_ source due detimation errors ofsp(te) and@p(ty 1) are the same. But
the feedback by our predictors. More specifically, for thghe consideration of the frequency prediction error favors the

batch-processing algorithm, the phase samples in the samgice of the latter predictor because it results in a smaller
batch result from mixing with the same local NCO frequencynaximum truncation error; see (12). Expressing the true
while for a candidate recursive algorithm, every reconstructgdquency at time = ¢ s as

phase sample is produced by mixing the receilie@ samples

with distinct local frequencies. Therefore, to implement the

recursive algorithm, we have to recover the uncompensated wp(ty) =wp(tnvt) +wp(tngr)At+ -

phase trajectory. This can be realized by using a “bookkeeping” =wp(tni1) + €y s (16)
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TABLE |
(a) SUMMARY OF THE FIRST-ORDER RECURSIVE FREQUENCY ACQUISITION
AND TRACKING ALGORITHM. (b) SUMMARY OF THE SECOND-ORDER
RECURSIVE FREQUENCY ACQUISITION AND TRACKING ALGORITHM

Whererffr1 = E[eZ (k)]. If higher order truncation errors can

be neglected, i.e.,

€try =Wp(EN41)(f — tNg1) + -

Initialization: XWp (tN-i—l ) (tf — tN-i—l) (19a)
ao(1) = 2%1 8(k) (1) emy (k) = L op(tna)(tk — tyg)? + -

1) =35 kO(k) (a.2) ~ L tnr tr — e )? 19b
Op(1) = An[2a1(1) ~ (N + 1)ao(1)] (a-3) T2 “p i)t w+1) ( )
Recursive estimation: at each sampling instant, the MSE can be approximated by
n=2,3,--+ compute 2
8(n+N-1)=8(n+ N -1)+&pln - DTs o2 120—€T1 + o2 (t . )

~0n) (a4) BTN -V 1) P
Ag;(n) = No(n+ N — 1) — ag(n ~ 1) (a.5) (ty —tng1) — Ts(N + 1) /2] (20)
Agg(n) =08n+N-1)-0(n—-1) (a.6)
Adp = An [28a1(n) — (N + 1)Ago(n)] (a.7) Fo_r the second-order algorithm, the true frequency at time
ao(n) = ag(n = 1) + Aag(n) (a8) trls
Sp(n) = dp(n — 1) + Al 9 .
Soln) =oln 2 1)+ Adp(n) @9 wp(ts) = wp(tngr) + op(tngr)(ty — tygr) + €y (21)
@ and the reconstructed phaé(ek) derived from (11) and (14) is
Initialization: ~
ao(1) = xe, 6(k) (b.1) 0(k) =5 wp(tngr)(tr — tng)” + wp(Ens)(tr — tn41)
o1 (1) = £, K00 (o2 ey () + ey () 22)
ag(1) = T3, K26(k) (b3
Op(1) = an/Ts[~(N + 1)Aas(1) Hence the MSE for the Doppler predictor becomes
+82 Aay (1) — ”—N#Aao(l)] (b.4) . y
Gp(1) = 2an/T2[Aax(1) — (N + 1)Aay(1) Ellwn(ts )2_ “p(t))]
+12 Agg(1)] (b.5) _ ONOc, 2
Recursive estimation: at each sampling instant, o 180T2 (122N + 1)(8N +11) + 720/T5
n=123, - compute (tf—tAr+1)2+720(N+1)/T5(tf—tN_|_1)]
9(n+N - 1) = 0(n+N - 1) +L:J[)(n— 1)T5
—6(n) (b.6) Cry — Z {ﬁf\’ (k—N—1)+ @N+ 1w
Aax(n) = N?0(n + N — 1) + ag(n - 1) — 10
—2a;1(n — 1) (v.7) 2
Aay(n) = NO(n+ N — 1) = ag(n — 1) (b.8) + N+1(k-N-1) }
Aag{n) =8(n+ N -1)-6(n—-1) (b.9) N
Adp(n) = an /Ts [~ (N +1)Aay(n) e (k) — 2N g k2 —(N+1)k+vy/6
+82 Aay(n) — ‘—)———ZN*;OI ™ Aao(n)] (b.10) (%) T2 (t5=ten) ;[ ( St/
ag(n) = ap(n — 1) + Aae(n) (b.11) 2
a1(n) = a1(n — 1) + Aay (n) (b.12) “Cmg (k) .
p(n) = 20n [T [Aaz(n) — (N + 1)Aa,(n)
+22 Agg(n)] (6.13) (23)
&p(n) = op(n ~ 1) + Adp(n) + Up(r)NTs (b.14)

(b)

and the reconstructed phaé(dc) in (9) as

Similarly, with the approximations of the truncation and the
model errors

€ty 2 5 Op(En1)(tr — tnga)?

. ~ 1 . )3
(k) = wp (tx11)(t, — tr42) + em, (K) + 6, () s () % 6 Op (b )b = ) @)
we can calculate the MSE for the first-order Doppler predictofe have
El(wn(ts) ~ on(t7)] o o0
— 2 €.
= 0aw o2 0R A 180T; [12(2N+1)(8N+11)+F
a,
= s T20(N+1
TIN(N - D(N 1 1) (w0 1)
N 2
1 6N?+15N+11
+ <Ct1v1 — )\N 2(2/{; - N — ].)(:m1 (k‘)) (18) + @D(tl\f-l—l) |:§(tf—t]\f+1)2+$ Tg
k=1
2
_ This results from the assumption that we always use the normalization N+ .
(0) = 0 or (N +1) = 0. + Ts(tr—tnu)| - (25)
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The MSE for the Doppler rate estimator or predictor can be de-We next extend our investigation to an uncorrelated Rician
rived in an analogous manner and will be omitted here. Tli@ding environment characterized by the following received
above equations indicate that the model and the truncation errsignal model [30]:

can be predicted or bounded if we either know or can reliably

estimate or bound the channel dynamic. To evaluate the phase (k) = (a4 u1)cos(Aby) + uz sin(Aby) + nr(k) (29)
reconstruction error, we need to know the statistic of the recon- Q(k) = (o +uy) sin(Aby) — ua cos(Aby) + ng(k) (30)
structed phases, which can be expressed as

wherewu; andus are independent zero-mean Gaussian random

Bk) = zk: cos-L I()I(i—-1)+Q(1)Q(i—1) variables with a common variang,. It is shown in the Ap-
— V(@) +Q2(60)/I2(i-1)+Q2(i—1) pendix that the pdf of(k) for this case is the same as (27) ex-
k . . cept thaty = /P, Ts/(No + N.).
= Z |:ta111 <_Q('f)> —tant <Q(?_1) )} The third case to be considered is the correlated Rician fading
p 1(i) I(i-1) channel under which the diffuse componeats « of the re-
T Q(k) T Q(0) (26) ceived signal become independent first-order Gauss—Markov
< I(k‘) < I(O) processes
where we have assumed, without loss of generality, that ui(k + 1) = puy (k) +v1(k) (31)
tan"![Q(0)/1(0)] = 0. Note that these three equations are up(k + 1) = pug(k) + va (k) (32)

only mathematically equivalent; the limit range of a single

arctan function forces us to use the first equation for Phaﬁmere{vl( )} and{vy(k)} are independent white Gaussian se-
reconstruction. Nevertheless, the last equation tells us tlgiences with the variande — p?)o2. The resulting MSE can
the phase reconstruction error is equal to the variance ¥ obtained by replacing the first terms on the right-hand side
6 = tan=1(Q(k)/I(k)), whose probability density function of (18) and (23) by

(pdf) is given by [29]

N 2
—;L2/2
£(0) = © LH 608(9 ) E <)\N > 2k = N = 1)e, (k))
27 V2 k=1
(0 — ) N-
P { f} Pl cos(@ =) @7) > Sk N D2 - - N - 1162 1)
l 1-N k=1
where is the true phasey = +/P.1s/Ny, P, is the re- (33)
ceived signal powetN, is one-sided power spectral density of
the thermal noise, and thee function is defined as and
1 r 5 ]\r
_ -y /2
®z) = 5= /_ ey, (28) p { < T ;[/JN(/C N —1)/15+4 (2N +1)7v/10
There are two other effects that must be accounted for in eval- 5 2a
uating the phase reconstruction error if we consider a digital + N+ Dk =N = 1)7er, (k) + 1z (tr = tn1)

implementation, namely, the analog-to-digital (A/D) conversion N 2
error and the quantization error. The_ former resulted from con- .Z[kQ — (N + Dk + v /6]er, (k)
verting the sample§l (%), Q(k)} to finite-bit numbers, and the
latter is due to the fact that only finite-precision arctan values Nl N
can be stored in a ROM. The conversion error depends on the_ o
By(k—N-1

A/D converter used, and the combined MSE analysis is well 72 . ;N kzl A )15
documented [3], assuming that a noncoherent AGC is in place. 2
Hence we will omit further discussion on these two errors. N /104 (N + Dk = N —1)7]

It is clear from the above analysis that the MSE is deter- X [Bn(k—1— N —1)/15+ (2N + 1)yn/10

k=1

+ (2N +1)

mined by the update speéd, the signal-to-noise ratip?, the +N+D(k—-1—-N-— )2]0—2 RO

sample sizeV, the sampling rate AI's, and the channel dy- A N

namic (which _d|rectly affect the mod_el and the truncation er- i\ (tr —tns1)? Z Z (N + 1)k + v /6]
rors). Comparing (20) and (25), we find that the MS Doppler T 1N =1

prediction errors for both the first- and second-order algorithms [(k— )2 — (N + 1)(k _ l) yn /6l (D)
are of the same order. Equation (6), on the other hand, reveals B

that the MSE for the Doppler rate estimator is proportional to 2aN

T5*. Therefore, the optim&ls associated with each algorithm N T3 (tr —tn+1) Z ) Z (k=N —1)/15
is different, but the concern of the Doppler rate estimator’s re- =N k=1

liability often forces us to use a largé for the second-order + (2N + Dyw/10+ (N +1)(k - N = 1)7]

algorithm. x [(k=1)? = (N +1)(k = 1) + x5 /6]0? (1) (34)
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Fig. 3. Doppler frequency and Doppler rate at ground terminal; LEO satellitdg. 5. RMS frequency tracking errors’at and7s, CNR = 40 dB-Hz.
altitude is 7000 km; transmitted signal frequency is 1.5 GHz.

The sampling interval for the first-order algorithm is10s,

6 while that for the second-order algorithm is#0s as the nu-
s merical results presented in Fig. 4 indicate these are the better
_ El— / e . choices for them. Also shown in Fig. 5 is the performance of an-
z | other second-order algorithm, which, instead of a constant for-
5 4 [ | firstorder, 40 dB-Hz, Ts=10° ward-predicting frequency signal, causes the NCO to generate
5 e e gg_gg;'}iﬂ%ﬁw alocal CW signal with linearly increased frequency, i.e., during
% 38 | - second-order, 40 dB-Hz, Tsf310’3 a Ty sinterval, the NCO output signal has a phase that is gov-
3 N ggsg(;‘r’]ﬁz’ra‘;f i‘g'gé’_ o ZS=-|:130=10'3 erned by (5b) where, is the time elapsed since the last update
E2f : : {&p, wp} is given. We did not provide the performance of this
g _ algorithm in Fig. 4 because it is indistinguishable from that of
1 | the other second-order algorithm#at= 77. The latter algo-
o opn0- 0.0 0 0-00000:00-5 100 04000 - 910 0200 rithm becomes inferior to the former algorithm when we com-
0 brosd o sl b od o pare their performance @b andZ; because it has larger model
0 100 200 300 400 500 600 700 and truncation errors.
time (sec) Rician fading is often parameterized by = «?/02, the

ratio of the energy in the specular component to the average
energy in the diffuse component. Fig. 6 compares the perfor-
mance in AWGN and Rician fading channels with various cor-
where 02 (1) is the covariance between two reconstructe@lation coefficientp, whereCNR denotes the average CNR.
phasest,, 6, separated by sampling intervals and can beln all cases, the second-order LS algorithm always outperforms

Fig. 4. RMS frequency tracking error@t; T = 1 s.

computed from their joint pdf derived in the Appendix. the first-order algorithm. The relationship betweeq, andp is
clearly not linear. The MSE of the first-order algorithm, as (33)
IV. NUMERICAL EXAMPLES indicates, can be decomposed into two parts

To investigate the numerical behaviors of the proposed algo-n/2 /2
rithms, computer simulations were conducted. For most of thgz Z(gk —N-1)@2—N-102 (k-1)
simulation results reported here, the channel dynamic of Fig. 3,=; 1=, o

which represents the time span for a satellite at 7000 km alti- N N/2

tude to move from 73to 107 of elevation angle, is assumed. 2 Z Z(zk —N-1)(@2-N-1c% (k=1
The number of samples for each bat®his chosen to be 100 k=(N/2)4+1 I=1 o

and7% = 1 s. The time right after thath update is denoted by (35)

Ti,i.e., 71 = nTr+Ts, forsomen > 1; the time in the middle
of two adjacent updates is denotedfyy and7; = nTr+NTs where the first term is positive and the second term is negative.
is the time right before a new update is to be output. Since the covarianceET (1) increases ap increases of de-

As shown in Fig. 4, the root mean square (rms) frequencyeases, the MSE rate of change at a partiqutigpends on the
prediction error of the second-order LS algorithn?ais supe- covariance’s rate of change with respecptand!. There seems
rior to that of the first-order algorithm if the sampling ratélk:  to be no general rule to predict the MSE behavior as a function
is chosen appropriately. For a fixed sampling rate, the rms fref channel correlation coefficient.
quency error is a decreasing function of the CNR. Fig. 5 showsThe MSE caused by the modeling and the truncation errors
the rms frequency tracking errors &8 and 75, respectively. is deterministic if the transmitter trajectory and the algorithm
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TABLE I
MEAN SQUARED FREQUENCY TRACKING ERROR PREDICTED BY ANALYSIS AND SIMULATION
40 dB-Hz 45 dB-Hz
first-order analysis simulation analysis simulation
AWGN, Ts = 103 1.61x 1072 | 1.5997 x 1072 | 4.886 x 10~° | 4.967 x 103
AWGN, Ts = 1072 1.53x107° | 1535 x 107° 48x107% | 4755 x10°°
Rician, p=0,7=4, Ts = 10~° | 4353 x 1072 | 4.016 x 1072 | 2.716 x 1072 | 2.705 x 102
second-order ]
AWGN, Ts = 1073 0.26254 0.2624 7.968 x 10~2 | 7.93 x 1072
AWGN, Ts = 1072 249 x 1077 | 2.489 x 1071 785 x 107° | 7.817 x 10~°
Rician, p=0, 7y =4, Ts = 102 | 3.677 x 1073 | 3.665 x 10° | 3.4478 x 10~° | 3437 x 10~%
08 ¢ , Bk + 1) =0(k) + Tror(k) (39)
r PITYNEY W NIRRT
07 7,,10.',, Vil Lo, Wkt ""%WWWW%W
. \/first-orde where~y = 1.89By, andTF is the update (sampling) period.
L 06 For B Tr < 1, the rms frequency tracking error is [2)., =
S o5 pE% SRRl BY3T-13(No/S). Fig. 7 also depicts the rms frequency error
<T>> AWGN trajectories in AWGN and uncorrelated Rician channels for the
§ 04 ~p=0 above AFC loop withCNR = 50 dB-Hz, B;, = 10 Hz, and a
= —p=0.3 update period’s = 10~° ss. We can clearly see that the steady-
e 03} second-order - p=0.99 i i
= state rms frequency tracking error for the AFC loop is much
E 02§ S - larger than that of the LS algorithms. The transient behavior
o4 EIom e ;( o0 e 00 0o of the loop is not shown for fear of masking the difference in
[ SRR WS IS )M -0 steady-state performance. It takes the AFC loop about 0.6 s to
LRI SRS LR AL A A reach the steady state (from an initial Doppler offset of 35 kHz).
0 100 200 300 400 500 600 700 In contrast, our algorithms need only 1 ms (100 samples with a
time (sec) sampling rate= 10° samples/s) to produce the initial frequency
6. Perf e LSt racking aldorith Rician fadi estimate whose rms error is negligible when compared with that
1g. 0. errormance o e requency tracking algorithm over Riclan tadl e
channels af’,, - = 4: CNR = 40 dB-Hz. "B the third-order AFC loop. We have to stress that better AFC

performance might still be obtained by exploiting error signals

used are known. Furthermore, this part of MSE is independdtifier than those discussed in [1].
of the other part caused by the phase reconstruction error. There-
fore, the sample mean of, — & derived from simulation rep- V. CONCLUSIONS
resents the frequency error due to the former two errors, andyje have presented MSE analysis of two classes of frequency
the sample variance is the MSE caused by the latter error oid¢quisition and tracking algorithms for use in high dynamic en-
Table Il lists the mean squared frequency tracking error inducgiflonments. Both batch form and recursive form are suitable for
by the phase reconstruction error predicted, respectively, by gg|-time implementation. The class of batch form algorithms
analysis and by simulations. These numbers reveal that our apgly simple extension of existing algorithms, but the recursive
ysis does yield very reliable estimation for the MS frequenclgorithms need major modifications. These algorithms are of
tracking error. low complexity and have fast acquisition time and low tracking
The performance of the recursive form is the same as thigder. They can also be modified to track the frequency of a
of the batch form aff;. The superiority of the second-ordefphase-modulated signal if a nonlinear preprocessor to remove
algorithm is made clearer in Fig. 7, where we compare tigta modulation is added or a timing-directed phase unwrap-
performance of both algorithms listed in Table I(a) and (ing methods is in place.
for a higher dynamic environment as that given by Fig. 1. ynlike previous similar MSE analyses that use Gaussian
Natali [1] presented eight different AFC loop configurationgssumptions, our analysis uses the exact reconstructed phase
and compared their performance. His simulation indicates thftributions. Simulation results showed that our MSE estima-
the cross-product AFC and its analog version yield the bagn is quite accurate. Furthermore, the resulting performance is
performance for CW and differential phase-shift keying signalar superior to that of a third-order cross product AFC loop. The
although their advantage is not too impressive; see [1, Figs. @fects of various design parameters—sampling rate, sample
and 21]. Cahn [2] has suggested the use of a third-order digigal window size, order of signal phase trajectory approxima-
cross-product AFC loop to combat high channel dynamicgen—and system and channel dynamic parameters—CNR,
This digital loop is implemented by discretizing a second-ordeiaximum Doppler, and Doppler rate—can be deduced from
Jaffe—Rechtin filter with bandwidtisy, our MSE analysis. It also enables us to study performance
and design parameter tradeoffs. Although we concentrated our

. o(k) = ?(k)l(k — D= IEQE=1) G6) oot on the first- and second-order algorithms, the concept and
w(k+1) =w(k) + ’Y@(fﬂ) (3B7)  the analysis can easily be extended to higher order algorithms
Ok +1) =0(k) + Tra(k) + V2ve(k) (38) if needed.
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and

/Oo 1 . < u3 )
<p [ —
oo OV 2T P 202
2 -
> [_ u; + 2R ;1112(9 z/))uﬂ duy
O—n
[0u R sin(f — )]
203(o% + 03)

:\/Ognfagexp{ } (A.5)

By substituting (A.4) and (A.5) into (A.3), we obtain
B R
 2n(o? +0})
_R2 +a? — 2aR cos(6 — 1)
2o} +03)

f(R, 6)

exp

} (A.6)

Fig. 7. Recursive least squares (RLS) frequency-tracking algorithms aA@d the marginal pdf of

steady-state behavior of Cahn’s third-order AFC looCAR = 50 dB-Hz.
The transient behavior (8 0.6 s) of the AFC loop is not shown.

APPENDIX
RECONSTRUCTEDPHASE DISTRIBUTIONS IN RICIAN FADING
CHANNELS

The received signal can be decomposed as
I =[ccos v+ uy costp+uy sinp]+ny=1I'+ng

Q =lasin ¢ +uy sinyp —us cos Pl +ng = Q' +ng
(A1)

wheren; andng are independent Gaussian random variables

with varianceo2. Using the change of variables
I=Rcosf, Q=Rsinb

we obtain the conditional joint pdf d® andf givenw; andus

R? + a? — 2aR cos(6 — 1)
R Bl 1) = 570 oxp |- - }
u? — 2R cos(f — )us + 20
cexp |—
202
Cexp _u% + 2R sin(6 — ¢)us (A2)
202

where0 < R < oo and0 < € < 2#. The unconditional joint
pdf of R andé is given by

ﬂR@I[%/%f@ﬁMﬂ@ﬂmmwMMMQ

r6)= [ sr.6)an

B e /2 cos(6 — 1)
- 2r V4

27
TS E0) YA A

+
exp [_

wherep = «/\/o2 + 2. Comparing the above equation with
(A.1), we conclude that an equivalent model for the received
and@ samples is

I'=acos ¥ +n}

Q=asin+ n’Q (A.8)

wheren; andng, are i.i.d. zero-mean Gaussian random vari-
ables with variance? + 2.

Next let us consider the case when the diffuse components
ny, ng at different times are correlated and can be modeled
as independent Gauss—Markov processes. Denote the random
variablesI(k), Q(k), I(k — 1), Q(k — 1) by

X = [I(k), Q(k), I(k — 1), Q(k = D)]".

The corresponding mean veciliis

(A.9)

E[X]=p = [ cos 11, a sin b1, v cos 1ha, o sin o]
(A.10)
and the joint probability density function is given by

F(X) = (2n03) 72| P| /2

(A.3) -1 I p—1
wheref(uy), f(us2) are the density function of;, u,. The fact P 902 (X —p) P (X —p)) (ALD)
thatu; andus arei.i.d. Gaussian random variables with variance
o2 leads to where
a 0 pt 0
_ 0 a 0 p
ex _
/_oo oov2r Y < 252 P=|0 0 o (A.12)
exp {_ u? — 2R COS(Z —2 Plug + 2au1} du, 0 o) 0 a
) on . is the covariance matrix with = 1 + o2 /o2 and
on o oi[ae— R cos(8 — )] (A4) T
= X .
A 20%(02 +02) |P| 2 =(a® = p*) ! (A.13)
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a 0 —pt 0
_ 1 0 a 0 —p
1_
Pr=ac P2 |l—p 0 a 0
0 —p 0 a
1

After the changes of variable$(k) = Ry cos 61, Q(k) =
Ry sin 61, I{k — 1) = Ry cos 8, Q(k — ) = R» sin 6, and
some algebraic manipulation, we obtain

f(R1, Ry, 01, 62)
=c- R R,
-1
P <20—3<a2 — )
{a[R} + R3 — 2aR; cos(6; — 1)
— 204R2 COS(92 — ’(/)2)]
— 2p'[R1 Ry cos(8;—62)—a Ry cos(6y—1)2)

—CYRQ COS(92 — ”(/)1)]}) (A15)

with
c=2roy) *(a® = p?)~!
- exp {02(@2_7;21) o?[a — p' cos(epy — ¢2)]} .(A.16)

u

The integration

F(01, 62) = / / F(Ry, Ro, 01, 6) dRy dRy (A7)
0 0
then leads to

f(b, 62)
=c / Ry exp{—[aR§—2ao¢R2 cos(fa— 1))
0

+ 2aRyp' cos(Ba—p1)—q*/a) /202 (a® = p*)}

L] o9 o —°/(2a07)
2 ou(a”—p™) exp (aZ—p?)
q q/(our/a
+%O—u 27 (a®—p?1)® /(cﬁi—p?? dRy
(A.18)

wherec is defined by (A.16) and is a function ofR;, #,, and
#>; more specifically

q=a cos(f; — 1) — ap’ cos(fy — o)

+ Rop' cos(6; — 6-). (A.19)

REFERENCES

[1] A. F. Natali, “AFC tracking algorithms, IEEE Trans. Communvol.
COM-32, pp. 935-947, Aug. 1984.

[2] C.R.Cahn,D.K.Leimer,andC.L.Marsh, “Software implementation of

a PN spread spectrum receiver to accommodate dynanttsE Trans.
Commun.vol. COM-25, pp. 832-840, Aug. 1977.

[3] Y. T. Suand H. J. Choi, “Noncoherent sampling technique for commu-

nications parameter estimations,”Bnoc. Int. Telemetering ConfOct.
1985, pp. 301-308.

(4]

(5]

(6]

(71

(8]

[9]

(10]

(11]

(12]

(13]
(14]

(18]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

S. Bellini, C. Molinari, and G. Tartara, “Digital frequency estimation in
burst mode QPSK transmissiorlEEE Trans. Communvol. 38, pp.
959-961, July 1990.

S. A. Tretter, “Estimating the frequency of a noisy sinusoid by linear
regression,|EEE Trans. Inform. Theoryol. IT-31, pp. 832—835, Nov.
1985.

S. Aguirre and S. Hinedi, “Two novel automatic frequency tracking
loops,”IEEE Trans. Aerosp. Electron. Systol. 25, pp. 749-760, Sept.
1989.

D. C. Rife and R. R. Boorstyn, “Single-tone parameter estimation from
discrete-time observationdEEE Trans. Inform. Theoryol. IT-20, pp.
591-598, Sept. 1974.

T. J. Abatzoglou, “A fast maximum likelihood algorithm for frequency
estimation of a sinusoid based on Newton’'s methd&EE Trans.
Acoust., Speech, Signal Prpeol. ASSP-33, pp. 77-89, Feb. 1985.
—, “Fast maximum likelihood joint estimation of frequency and fre-
guency rate,”IEEE Trans. Aerosp. Electron. Systol. AES-22, pp.
708-715, Nov. 1986.

W. J. Hurd, J. |. Statman, and V. A. Vilnrotter, “High dynamic GPS re-
ceiver using maximum likelihood estimation and frequency tracking,”
IEEE Trans. Aerosp. Electron. Systol. AES-23, pp. 425-436, July
1987.

J. C.-l. Chuang, “Burst coherent demodulation with combined symbol
timing, frequency offset estimation, and diversity selectiolEEE
Trans. Communyvol. 39, pp. 1157-1164, July 1991.

R. Kumar, “Frequency estimation technigues for high dynamic trajecto-
ries,” IEEE Trans. Aerosp. Electron. Systol. 25, no. 4, pp. 559-577,
July 1989.

—, “Anovel multistage estimation of signal parametet&EE Trans.
Aerosp. Electron. Systvol. 26, pp. 181-194, Jan. 1990.

S. Kay, “A fast and accurate single frequency estimat&EE Trans.
Acoust., Speech, Signal Processimg). 37, pp. 1987-1990, Dec. 1989.
P. M. Djuric and S. M. Kay, “Parameter estimation of chirp signals,”
IEEE Trans. Acoust., Speech, Signal Processialy 38, pp. 2118-2126,
Dec. 1990.

S. W. Lang and B. R. Musicus, “Frequency estimation from phase dif-
ferences,’Proc. Int. Conf. Acoustics, Speech and Signal Processging
2140-2144, 1989.

S. H. Knowles and W. B. Waltman, “Linear least-squares determination
of Doppler time derivative for NAVSPASUR-like signaldEEE Trans.
Instrum. Meas.vol. IM-34, pp. 64—69, Mar. 1985.

M. Mclintyre and A. Ashley, “A simple fixed-lag algorithm for tracking
frequency rate-of-changelEEE Trans. Aerosp. Electron. Systol. 29,

pp. 677—-683, July 1993.

A. J. Viterbiand A. M. Viterbi, “Nonlinear estimation of PSK-modulated
carrier phase with application to burst digital transmissitl&EE Trans.
Info. Theory vol. IT-29, pp. 543-550, July 1983.

M. K. Simon and D. Divsalar, “Doppler-corrected differential detection
of MPSK,” IEEE Trans. Communvol. 37, pp. 99-109, Feb. 1989.

M. P. Fitz and W. C. Lindsey, “Decision-directed burst-mode carrier
synchronization techniques,/EEE Trans. Commun.vol. 40, pp.
1644-1653, Oct. 1992.

M. P. Fitz, “Planar filtered techniques for burst mode carrier synchro-
nization,” inIEEE Global Telecommun. ConPhoenix, AZ, Dec. 1991,
pp. 365-369.

F. Classen, H. Meyr, and P. Sehier, “Maximum likelihood open loop car-
rier synchronizer for digital radio,” ifProc. IEEE Int. Conf. Commup.
vol. 1, Geneva, 1993, pp. 493—-497.

U. Mengali and M. Morelli, “Data-aided frequency estimation for burst
digital transmission,IEEE Trans. Communvol. 45, pp. 23-25, July
1997.

M. Luise and R. Reggiannini, “Carrier frequency recovery in all-digital
modems for burst-mode transmission&EE Trans. Communvol. 43,

pp. 1169-1178, Feb/Mar./Apr. 1995.

J. M. Tribolet,Seismic Applications of Homomorphic Signal Processing
Prentice Hall, 1979.

F. Classen and H. Meyr, “Two frequency estimation schemes oper-
ating independently of timing information,” ifroc. IEEE Global
Telecommun. Conf.Houston, TX, Nov.—Dec. 1993, vol. 3, pp.
1996-2000.

A. N. D'Andrea, A. Ginesi, and U. Mengali, “Digital carrier frequency
estimation for multilevel CPM signal,” inProc. IEEE Int. Conf.
Commun.vol. 2, Seattle, WA, June 1995, pp. 1041-1045.

J. B. Thomas, An Introduction to Statistical Communication
Theory Englewood Cliffs, NJ: Prentice-Hall, 1962.

H. L. Van TreesDetection, Estimation, and Modulation TheoryNew
York: Wiley, 1968, vol. 1, pp. 360-364.



SU AND WU: FREQUENCY ACQUISITION AND TRACKING IN HIGH DYNAMIC ENVIRONMENTS

processing.

Yu T. Sureceived the Ph.D. degree from the Univer-
sity of Southern California, Los Angeles, in 1983.
From 1983 to 1989, he was with LinCom Cor-
poration, Los Angeles, CA, where he was involvec
in the design of digital satellite communication
systems. Since September 1989, he has been wi
the Department of Communication Engineering
and the Microelectronics and Information Systems
Research Center, National Chiao Tung University
Hsinchu, Taiwan. His areas of research intere
are communication theory and statistical signal

2429

Ru-Chwen Wu received the B.S., M.S., and Ph.D.
degrees in electrical engineering from the Depart-
ment of Communication Engineering, National
Chiao Tung University, Hsinchu, Taiwan, in 1991,
1993, and 2000, respectively.

Since 1999, she has been with the Computer
Communication Laboratory, Industrial Technology
Research Institute, Hsinchu, Taiwan. Her main
research interests include spread-spectrum commu-
nications and synchronization theory.



