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Generalization of Gärtner–Ellis Theorem

Po-Ning Chen, Member, IEEE

Abstract—A generalization of the Gärtner–Ellis Theorem for arbitrary
random sequencesis established. It is shown that the conventional formula
of the large deviation rate function, based on the moment generating func-
tion techniques, fails to describe the general (possiblynonconvex) large de-
viation rate for an arbitrary random sequence. An (nonconvex) extension
formula obtained by twisting the conventional large deviation rate function
around a continuous functional is therefore proposed. As a result, a new
Gärtner–Ellis upper bound is proved. It is demonstrated by an example
that a tight upper bound on the large deviation rate of an arbitrary random
sequence can be obtained by choosing the right continuous functional, even
if the true large deviation rate is not convex. Also proved is a parallel exten-
sion of the Gärtner–Ellis lower bound with the introduction of a new notion
of Gärtner–Ellis setwithin which the upper bound coincides with the lower
bound (for countably many points).

Index Terms—Arbitrary random sequence, exponent, Gärtner–Ellis the-
orem, information spectrum, large deviations.

I. INTRODUCTION

A general formula for the capacity of arbitrary single-user channels
without feedback had been established by Verdú and Han in 1994 [2].
In their paper, the channel capacity was shown to be the supremum of
input–outputinf-information ratesover all input processes, where the
inf-information rateis defined as theliminf in probabilityof the normal-
ized information density. This result was based on two key results: Fe-
instein’s lemma [3] for the direct coding theorem and Verdú and Han’s
theorem [2, Theorem 4] for the converse coding theorem. The former
provides a universal upper bound on average channel coding errors for
every input process, and the latter gives a lower bound on the same
quantity for the uniform input process over a reliable code sequence.
While Feinstein’s lemma was used in [2], a standard random coding
argument can also be used for the achievability proof [5].
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Specifically, the upper bound from Feinstein’s lemma takes the form

Pe(n;R) � Pr
1

n
iX W (Xn;Y n) � R+  + e

�n (1.1)

for every > 0 and every input distributionPX on the input alphabet
Xn, wherePe(n; R) represents the attainable average channel coding
error, as a function of code lengthn and code rateR, and

iX W (xn; yn)
4
= log

PW (yn j xn)

PY (yn)

is the information densityfor a given channel transition probability
PW (� j xn) and the output statisticsPY due to the inputPX . The
lower bound given by Verdú and Han has the shape

Pe(n; R) � Pr
1

n
iX W (Xn;Y n) � R�  � e

�n (1.2)

for any  > 0 and every uniform input over a reliable code. These
two bounds are shown to provide agoodapproximation to the max-
imum code rateR under the condition that the limsup ofPe(n;R) in n
equals zero [2]. By definition, this maximum code rate is thechannel
capacityC.

Comparing these two bounds with the result of the Gärtner–Ellis
Theorem [1, p. 15], we see that the exponential rate (with respect to
n) of the first term on the right-hand side of (1.1) or (1.2) can actually
be carried out by letting thesequence of random variables, considered
by Gärtner and Ellis, to be theinformation density. As a result of (1.1),
the exponent ofPe(n; R) in n under fixedR 2 (0; C) is bounded
from below by both the magnitude of thelarge deviation rate func-
tion of the information density aroundR +  and the constant. We,
therefore, pose a question “Whether the large deviation rate function
for information densitystill provides agoodapproximation to the ul-
timate exponential dependence (in block lengthn) of Pe(n; R) under
fixedR 2 (0; C) for arbitrary single-user channels.”

In studying this problem, we first observe that the information den-
sity for an arbitrary channel now becomesarbitrary in its statistics.
Hence, the first step in this investigation is to generalize the large devia-
tion rate function for arbitrary random sequences. Using the limsup and
liminf of the log-moment generating functions, a simple extension of
the Gärtner–Ellis Theorem for an arbitrary random sequence is estab-
lished. However, such an extension, at times, is shown to yield a loose
bound on the large deviation rate of an arbitrary random sequence, es-
pecially when the large deviation rate of the arbitrary random sequence
is notconvex (cf. Example 2.1). Since the large deviation rate function
always leads to a convex function, chances of having a tight bound on
the large deviation rate of an arbitrary random sequence along this line
seem rare. Motivated by this, we then focus on finding anonconvexex-
pression for the large deviation rate.

The proof of the Gärtner–Ellis Theorem is, in fact, based on the
Heine–Borel Theorem, which states that a finite subcover on a com-
pact set exists for (uncountably many) open covers. The open covers
in their proof take the form offx 2 < : �x � �'(�) > ag for � 2 <
anda 2 <. (sup�2<[�x � �'(�)] is thesup-large deviation rate func-
tion, which will be defined in the next section.) These covers remain
“open” when the argumentx is replaced by any continuous function
h(x) over the real line. Such findings lead to a new extension of the
Gärtner–Ellis Theorem. Examples will be given to demonstrate that by
properly choosing a continuous function, a tight bound on the large de-
viation rate of an arbitrary random sequence can be obtained, even if it
is not convex.

This correspondence is organized as follows. The extensions of
Gärtner–Ellis upper and lower bounds are covered in Sections II and
III, respectively. Examples will be given, following the theorems. In
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Section IV, properties of the (twisted) sup- and inf-large deviation rate
functions are examined. Concluding remarks appear in Section V.

Throughout the correspondence,fZng1n=1 denotes an infinite se-
quence ofarbitrary random variables.

II. EXTENSION OFGÄRTNER–ELLIS UPPERBOUNDS

Definition 2.1: Define

'n(�)
4
=

1

n
logE[expf�Zng] and �'(�)

4
= lim sup

n!1
'n(�):

Thesup-large deviation rate functionof an arbitrary random sequence
fZng

1
n=1 is defined as

�I(x)
4
= sup
f�2<:�'(�)>�1g

[�x � �'(�)]: (2.3)

The range of the supremum operation in (2.3) is always nonempty
since �'(0) = 0, i.e.,f� 2 < : �'(�) > �1g 6= ;. Hence,�I(x) is
always defined. With the above definition, the first extension theorem
of Gärtner–Ellis1 can be proposed as follows.

Theorem 2.1:Fora; b 2 < anda � b

lim sup
n!1

1

n
log Pr

Zn
n
2 [a; b] � � inf

x2[a;b]

�I(x):

Proof: The proof follows directly from Theorem 2.2 by taking
h(x) = x, and hence, we omit it.

The bound obtained in the above theorem is not in general tight.
This can be easily seen by noting that for anarbitrary random sequence
fZng

1
n=1, the exponent ofPrfZn=n � bg is not necessarily convex in

b, and therefore, cannot be achieved by aconvex(sup-)large deviation
rate function. The next example further substantiates this argument.

Example 2.1: Suppose thatPrfZn = 0g = 1�e�2n andPrfZn =
�2ng = e�2n. Then, from Definition 2.1, we have

'n(�)
4
=

1

n
logE[e�Z ] =

1

n
log 1� e�2n + e�(�+1)�2�n

and

�'(�)
4
= lim sup

n!1
'n(�) =

0; for � � �1

�2(�+ 1); for � < �1:

Hencef� 2 < : �'(�) > �1g = < and

�I(x) = sup
�2<

[�x � �'(�)]

= sup
�2<

[�x + 2(� + 1)1f� < �1)g]

=
�x; for �2 � x � 0

1; otherwise

1For completeness, the conventional Gärtner–Ellis Theorem in [1, p. 15] is
reproduced below.

Theorem(Gärtner–Ellis): If for all� 2 <; '(�) = lim sup ' (�) =
lim inf ' (�) and[a; b] \ fx 2 < : I(x) < 1g 6= ;, then

lim sup
n!1

1

n
log Pr

Zn
n

2 [a; b] � � inf
x2[a;b]

I(x):

If, in addition,'(�) is differentiable onf� 2 < : '(�) < 1g and(a; b) �
fx 2 < : x = ' (�) and'(�) < 1 for some� 2 <g, then

lim inf
n!1

1

n
log Pr

Zn
n

2 (a; b) � � inf
x2(a;b)

I(x)

whereI(x) = sup [�x � '(�)].

where1f�g represents the indicator function of a set. Consequently, by
Theorem 2.1

lim sup
n!1

1

n
log Pr

Zn
n
2 [a; b] �� inf

x2[a;b]

�I(x)

=

0; for 02 [a; b]

b; for b2 [�2; 0]

�1; otherwise:

The exponent ofPrfZn=n 2 [a; b]g in the above example is indeed
given by

lim
n!1

1

n
log Pr

Zn
n

2 [a; b] = � inf
x2[a;b]

I�(x)

where

I�(x) =

2; for x = �2

0; for x = 0

1; otherwise:
(2.4)

Thus the upper bound obtained in Theorem 2.1 is not tight.
As mentioned earlier, theloosenessof the upper bound in Theorem

2.1 cannot be improved by simply using aconvexsup-large deviation
rate function. Note that the true exponent (cf. (2.4)) of the above ex-
ample is not a convex function. We then observe that the convexity of
the sup-large deviation rate function is simply because it is a pointwise
supremum of a collection ofaffinefunctions (cf. (2.3)). In order to ob-
tain a better bound that achieves anonconvexlarge deviation rate, the
involvement ofnonaffinefunctionals seems necessary. As a result, a
new extension of the Gärtner–Ellis theorem is established along this
line.

Before introducing thenonaffineextension of Gärtner–Ellis upper
bound, we define thetwisted sup-large deviation rate functionas fol-
lows.

Definition 2.2: Define

'n(�;h)
4
=

1

n
logE exp n � � � h

Zn
n

and �'h(�)
4
= lim sup

n!1
'n(�;h)

whereh(�) is a given real-valued continuous function. Thetwisted sup-
large deviation rate functionof an arbitrary random sequencefZng1n=1

with respect to a real-valued continuous functionh(�) is defined as

�Jh(x)
4
= sup
f�2<:�' (�)>�1g

[� � h(x)� �'h(�)]: (2.5)

Similarly to �I(x), the range of the supremum operation in (2.5) is
not empty, and hence,�Jh(�) is always defined.

Theorem 2.2:Suppose thath(�) is a real-valued continuous func-
tion. Then fora; b 2 < anda � b

lim sup
n!1

1

n
log Pr

Zn
n
2 [a; b] � � inf

x2[a;b]

�Jh(x):

Proof: The proof is divided into two parts. Part 1 proves the result
under

[a; b] \ fx 2 < : �Jh(x) <1g 6= ;; (2.6)

and Part 2 verifies it under

[a; b] � fx 2 < : �Jh(x) =1g: (2.7)

Since either (2.6) or (2.7) is true, these two parts, together, complete
the proof of this theorem.

Part 1: Assume[a; b] \ fx 2 < : �Jh(x) < 1g 6= ;.
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DefineJ�
4
= infx2[a;b] �Jh(x). By assumption,J� <1. Therefore,

[a; b] � fx : �Jh(x) > J� � "g
for any" > 0, and

fx 2 < : �Jh(x) > J� � "g

= x 2 < : sup
f�2<:�' (�)>�1g

[�h(x)� �'h(�)] > J� � "

�
f�2<:�' (�)>�1g

fx 2 < : [�h(x)� �'h(�)] > J� � "g:

Observe that

f�2<:�' (�)>�1g

fx 2 < : [�x � �'h(�)] > J� � "g

is a collection of (uncountably infinite) open sets that cover[a; b] which
is closed and bounded (and hence compact). By the Heine–Borel the-
orem, we can find a finite subcover such that

[a; b] �
k

i=1

fx 2 < : [�ix � �'h(�i)] > J� � "g

and(81 � i � k) �'h(�i) < 1 (otherwise, the set

fx : [�ix� �'h(�i)] > J� � "g
is empty, and can be removed). Also note(81� i�k) �'h(�i)>�1:
Consequently,

Pr
Zn

n
2 [a; b]

leqPr
Zn
n
2

k

i=1

fx : �ih(x)� �'h(�i)] > J� � "g

�
k

i=1

Pr h
Zn
n

� �i � �'h(�i) > J� � "

=

k

i=1

Pr n � h Zn
n

� �i > n �'h(�i) + n(J� � ")

�
k

i=1

expfn[ �'n(�i;h)� �'h(�i)]� n(J� � ")g

where the last step follows from Markov’s inequality. Sincek is a con-
stant independent ofn, and for each integeri 2 [1; k]

lim sup
n!1

1

n
log(expfn[ �'n(�i;h)� �'h(�i)]� n(J� � ")g)

= �(J� � ")

we obtain

lim sup
n!1

1

n
log Pr

Zn
n
2 [a; b] � �(J� � "):

Since" is arbitrary, the proof is completed.
Part 2: Assume[a; b] � fx 2 < : �Jh(x) = 1g.
Observe that[a; b] � fx : �Jh(x) > Lg for anyL > 0. Following

the same procedure as used in Part 1, we obtain

lim sup
n!1

1

n
log Pr

Zn
n
2 [a; b] � �L:

SinceL can be taken arbitrarily large

lim sup
n!1

1

n
log Pr

Zn
n
2 [a; b] = �1 = � inf

x2[a;b]

�Jh(x):

The proof of the above theorem has implicitly used the condition
�1 < �'h(�i) < 1 to guarantee that

lim sup
n!1

[ �'n(�i;h)� �'h(�i)] = 0

for each integeri 2 [1; k]. Note that when�'h(�i) = 1 (resp.,�1),
lim supn!1[ �'n(�i;h) � �'h(�i)] = �1 (resp.,1). This explains
why the range of the supremum operation in (2.5) is taken to be
f� 2 < : �'h(�) > �1g, instead of the whole real line.

As indicated in Theorem 2.2, a better upper bound can possibly be
found by twisting the large deviation rate function around an appro-
priate (nonaffine) functional on the real line. Such improvement is sub-
stantiated in the next example.

Example 2.2: Let us, again, investigate thefZng1n=1 defined in Ex-
ample 2.1. Take

h(x) =
1

2
(x+ 2)2 � 1:

Then, from Definition 2.2, we have

'n(�;h)
4
=

1

n
logE[expfn�h(Zn=n)g]

=
1

n
log[expfn�g � expfn(� � 2)g+ expf�n(� + 2)g]

and

�'h(�)
4
= lim sup

n!1
'n(�;h) =

�(� + 2); for � � �1

�; for � > �1:

Hence,f� 2 < : �'h(�) > �1g = < and

�Jh(x)
4
=sup

�2<
[�h(x)� �'h(�)]=

�1

2
(x+2)2+2; for x2 [�4; 0]

1; otherwise:

Consequently, by Theorem 2.2, we get (2.8) at the top of following
page.

For b 2 (�2; 0) anda 2 [�2 � p
2b� 4; b), the upper bound at-

tained in the previous example is strictly less than that given in Example
2.1, and hence, an improvement is obtained. However, forb 2 (�2; 0)
anda < �2�p2b� 4, the upper bound in (2.8) is actually looser. Ac-
cordingly, we combine the two upper bounds from Examples 2.1 and
2.2 to get

lim sup
n!1

1

n
log Pr

Zn
n
2 [a; b] ��max inf

x2[a;b]

�Jh(x); inf
x2[a;b]

�I(x)

=

0; for 02 [a; b]
1

2
(b+2)2 � 2; for b2 [�2; 0]

�1; otherwise:

A betterbound on the exponent ofPrfZn=n 2 [a; b]g is thus obtained.
As a result, Theorem 2.2 can be further generalized as follows.

Theorem 2.3:For a; b 2 < anda � b

lim sup
n!1

1

n
log Pr

Zn
n
2 [a; b] � � inf

x2[a;b]

�J(x)

where �J(x)
4
= suph2H

�Jh(x) andH is the set of all real-valued con-
tinuous functions.

Proof: By redefiningJ�
4
= infx2[a;b] �J(x) in the proof of The-

orem 2.2, and observing that

[a; b] � fx 2 < : �J(x) > J� � "g
�

h2H f�2<:�' (�)>�1g

fx 2 < : [�h(x)� �'h(�)] > J� � "g
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lim sup
n!1

1

n
log Pr

Zn

n
2 [a; b] � � inf

x2[a;b]

�Jh(x)

=

�min �1

2
(a+ 2)2 + 2;�1

2
(b+ 2)2 + 2 ; for �4 � a < b � 0

0; for a > 0 or b < �4

�1; otherwise

(2.8)

the theorem holds under[a; b] \ fx 2 < : �J(x) < 1g 6= ;. Similar
modifications to the proof of Theorem 2.2 can be applied to the case of
[a; b] � fx 2 < : �J(x) =1g.

Example 2.3: Let us again study thefZng1n=1 in Example 2.1 (also
in Example 2.2). Supposec > 1. Takehc(x) = c1(x+c2)

2�c, where

c1
4
=

c+
p
c2 � 1

2
and c2

4
=

2
p
c+ 1p

c+ 1 +
p
c� 1

:

Then from Definition 2.2, we have

'n(�; hc)
4
=

1

n
logE exp n�hc

Zn

n

=
1

n
log[(1� pn) expfn�g+ pn expf�n�g]

=
1

n
log[expfn�g � expfn(� � 2)g+ expf�n(� + 2)g]

and

�'h (�)
4
= lim sup

n!1
'n(�;hc) =

�(� + 2); for � � �1

�; for � > �1:

Hence,f� 2 < : �'h (�) > �1g = < and

�Jh (x) = sup
�2<

[�hc(x)� �'h (�)]

=
�c1(x+ c2)

2 + c+ 1; for x 2 [�2c2; 0]

1; otherwise:

From Theorem 2.3

�J(x) = sup
h2H

�Jh(x) � max lim inf
c!1

�Jh (x); �I(x) = I�(x)

whereI�(x) is defined in (2.4). Consequently,

lim sup
n!1

1

n
log Pr

Zn

n
2 [a; b]

� � inf
x2[a;b]

�J(x)

� � inf
x2[a;b]

I�(x)

=

0; if 0 2 [a; b]

�2; if �2 2 [a; b] and0 62 [a; b]

�1; otherwise

and a tight upper bound is finally obtained!

Theorem 2.2 gives us the upper bound on the limsup of
(1=n) log PrfZn=n 2 [a; b]g. With the same technique, we can
also obtain a parallel theorem for the quantity

lim inf
n!1

1

n
log Pr

Zn

n
2 [a; b] :

Definition 2.3: Define '
h
(�)

4
= lim infn!1 'n(�;h), where

'n(�;h) was defined in Definition 2.2. Thetwisted inf-large deviation
rate functionof an arbitrary random sequencefZng1n=1 with respect
to a real-valued continuous functionh(�) is defined as

Jh(x)
4
= sup
f�2<:' (�)>�1g

[� � h(x)� '
h
(�)]:

Theorem 2.4:For a; b 2 < anda � b;

lim inf
n!1

1

n
log Pr

Zn

n
2 [a; b] � � inf

x2[a;b]
J(x)

whereJ(x)
4
= suph2H Jh(x) andH is the set of all real-valued con-

tinuous functions.

III. EXTENSION OFGÄRTNER–ELLIS LOWER BOUNDS

The tightness of the upper bound given in Theorem 2.2 naturally
relies on the validity of

lim sup
n!1

1

n
log Pr

Zn

n
2 (a; b) � � inf

x2(a;b)

�Jh(x) (3.9)

which is an extension of the Gärtner–Ellis lower bound. The above
inequality, however, is not in general true for all choices ofa andb (cf.
Case A of Example 3.4). It, therefore, becomes significant to find those
(a; b) within which the extended Gärtner–Ellis lower bound holds.

Definition 3.4: Define thesup-Gärtner–Ellis setwith respect to a
real-valued continuous functionh(�) as

�Gh 4
=
f�2<:�' (�)>�1g

�G(�;h)

where

�G(�;h) 4= x 2 < : lim sup
t#0

�'h(� + t)� �'h(�)

t

� h(x) � lim inf
t#0

�'h(�)� �'h(� � t)

t
:

Let us briefly remark on thesup-Gärtner–Ellis setdefined above. It
is self-explanatory in its definition that�Gh is always defined for any
real-valued functionh(�). Furthermore, it can be derived that thesup-
Gärtner–Ellis setis reduced to

�Gh 4
=
f�2<:�' (�)>�1g

fx 2 < : �'0h(�) = h(x)g

if the derivative �'0h(�) exists for all �. Observe that the condition
h(x) = �'0h(�) is exactly the equation for finding the� that achieves
�Jh(x), which is obtained by taking the derivative of[�h(x)� �'h(�)].
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This somehow hints that thesup-Gärtner–Ellis setis a collection of
those points at which the exact sup-large deviation rate is achievable.

We now state the main theorem in this section.

Theorem 3.5: Suppose thath(�) is a real-valued continuous func-
tion. Then if(a; b) � �Gh

lim sup
n!1

1

n
log Pr

Zn

n
2 Jh(a; b) � � inf

x2(a;b)

�Jh(x)

where

Jh(a; b)
4
= fy 2 < : h(y) = h(x) for somex 2 (a; b)g:

Proof: Let Fn(�) denote the distribution function ofZn. Define
its extended twisted distributionaround the real-valued continuous
functionh(�) as

dF (�;h)
n (�)

4
=

expfn � h(x=n)gdFn(�)

E[expfn � h(Zn=n)g]

=
expfn � h(x=n)gdFn(�)

expfn'n(�;h)g
:

Let Z(�:h)
n be the random variable havingF (�;h)

n (�) as its probability
distribution. Let

J�
4
= inf

x2(a;b)

�Jh(x):

Then for any" > 0, there existsv 2 (a; b) with �Jh(v) � J� + ".
Now the continuity ofh(�) implies that

B(v; �)
4
= fx 2 < : jh(x)� h(v)j < �g � Jh(a; b)

for some� > 0. Also,(a; b) � �Gh ensures the existence of� satisfying

lim sup
t#0

�'h(� + t)� �'h(�)

t
� h(v) � lim inf

t#0

�'h(�)� �'h(� � t)

t

which, in turn, guarantees the existence oft = t(�) > 0 satisfying

�'h(� + t)� �'h(�)

t
� h(v) +

�

4

and h(v)�
�

4
�

�'h(�)� �'h(� � t)

t
: (3.10)

We then derive

Pr
Zn

n
2Jh(a; b) �Pr

Zn

n
2B(v; �)

=Pr h
Zn

n
�h(v) <�

=
fx2<:jh(x=n)�h(v)j<�g

dFn(x)

=
fx2<:jh(x=n)�h(v)j<�g

� exp n'n(�;h)�n�h
x

n
dF (�;h)

n (x)

�expfn'n(�;h)�n�h(v)�nj�j�g

�
fx2<:jh(x=n)�h(v)j<�g

dF (�;h)
n (x)

=expfn'n(�;h)�n�h(v)�nj�j�g

� Pr
Z

(�;h)
n

n
2B(v; �)

which implie

lim sup
n!1

1

n
log Pr

Zn

n
2 Jh(a; b)

� �[�h(v)� �'h(�)]� j�j �

+ lim sup
n!1

1

n
log Pr

Z
(�;h)
n

n
2 B(v; �)

= � �Jh(v)� j�j� + lim sup
n!1

1

n
log Pr

Z
(�;h)
n

n
2 B(v; �)

� �J� � "� j�j� + lim sup
n!1

1

n
log Pr

Z
(�;h)
n

n
2 B(v; �) :

Since both� and" can be made arbitrarily small, it remains to show

lim sup
n!1

1

n
log Pr

Z
(�;h)
n

n
2 B(v; �) = 0: (3.11)

To show (3.11), we first note that

Pr h
Z

(�;h)
n

n
� h(v) + �

= Pr e
nth Z n

� enth(v)+nt�

� e�nth(v)�nt�

<

enth(x=n)dF (�;h)
n

= e�nth(v)�nt�

<

enth(x=n)+n�h(x=n)�n' (�;h)dFn(x)

= e�nth(v)�nt��n' (�;h)+n' (�+t;h):

Similarly,

Pr h
Z

(�;h)
n

n
� h(v)� �

= Pr e
�nth Z n

� e�nth(v)+nt�

� enth(v)�nt�

<

e�nth(x=n)dF (�;h)
n

= enth(v)�nt�

<

e�nth(x=n)+n�h(x=n)�n' (�;h)dFn(x)

= enth(v)�nt��n' (�;h)+n' (��t;h):

Now by definition of limsup

'n(� + t;h) � �'h(� + t) +
t�

4

and 'n(� � t; h) � �'h(� � t) +
t�

4
(3.12)

for sufficiently largen; and

'n(�;h) � �'h(�)�
t�

4
(3.13)

for infinitely many n. Hence, there exists a subsequencefn1; n2;
n3; . . .g such that for allnj , (3.12) and (3.13) hold. Consequently, for
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all j

1

nj
log Pr

Z
(�;h)
n

nj
62 B(v; �) � 1

nj
log 2

�max e
�n th(v)�n t��n ' (�;h)+n ' (�+t;h)

;

� e
n th(v)�n t��n ' (�;h)+n ' (��t;h)

=
1

nj
log 2 + max �th(v) + 'n (� + t;h); th(v)

+ 'n (� � t; h) � 'n (�;h)� t�

� 1

nj
log 2 + maxf[�th(v) + �'h(� + t); th(v)

+ �'h(� � t)]g � �'h(�)� t�

2
=

1

nj
log 2

+ t �max
�'h(� + t)� �'h(�)

t
� h(v); h(v)

� �'h(�)� �'h(� � t)

t
� t�

2

� 1

nj
log 2� t�

4
(3.14)

where (3.14) follows from (3.10). The proof is then completed by ob-
taining

lim inf
n!1

1

n
log Pr

Z
(�;h)
n

n
62 B(v; �) � � t�

4

which immediately guarantees the validity of (3.11).

Next, we use an example to demonstrate that by choosing the right
h(�), we can completely characterize the exact (nonconvex) sup-large
deviation rate�I�(x) for all x 2 <.

Example 3.4: SupposeZn = X1 + � � �+Xn, wherefXigni=1 are
independent and identically distributed (i.i.d.) Gaussian random vari-
ables with mean1 and variance1 if n is even, and with mean�1 and
variance1 if n is odd. Then the exact large deviation rate formula�I�(x)
that satisfies for alla < b

� inf
x2[a;b]

�I�(x)� lim sup
n!1

1

n
log Pr

Zn

n
2 [a; b]

� lim sup
n!1

1

n
log Pr

Zn

n
2 (a; b) �� inf

x2(a;b)

�I�(x)

is

�I�(x) =
(jxj � 1)2

2
: (3.15)

Case A: h(x) = x.
For the affineh(�); 'n(�) = �+�2=2 whenn is even, and'n(�) =

�� + �2=2 whenn is odd. Hence,�'(�) = j�j + �2=2, and

�Gh=
�>0

fv2< : v=1+�g
�<0

fv2< : v=�1+�g

fv2< : 1�v��1g
=(1;1) [ (�1;�1):

Therefore, Theorem 3.5 cannot be applied to anya andb with (a; b)\
[�1; 1] 6= ;.
By deriving

�I(x) = sup
�2<

fx� � �'(�)g =
(jxj � 1)2

2
; for jxj > 1

0; for jxj � 1

we obtain for anya 2 (�1; 1) [ (1;1)

lim
"#0

lim sup
n!1

1

n
log Pr

Zn

n
2 (a� "; a+ ")

� � lim
"#0

inf
x2(a�";a+")

�I(x) = � (jaj � 1)2

2

which can be shown tight by Theorem 2.2 (or directly by (3.15)). Note
that the above inequality does not hold for anya 2 (�1; 1). To fill the
gap, a differenth(�) must be employed.

Case B: h(x) = jx� aj for �1 < a < 1.
For n even

E en�h(Z =n)

= E en�jZ =n�aj

=
na

�1

e��x+n�a
1p
2�n

e�(x�n) =(2n) dx

+
1

na

e�x�n�a
1p
2�n

e�(x�n) =(2n) dx

= en�(��2+2a)=2
na

�1

1p
2�n

e�[x�n(1��)] =(2n) dx

+ en�(�+2�2a)=2
1

na

1p
2�n

e�[x�n(1+�)] =(2n) dx

= en�(��2+2a)=2 � �((�+ a� 1)
p
n)

+ en�(�+2�2a)=2 � �((�� a+ 1)
p
n)

where�(�) represents the unit Gaussian cumulative distribution func-
tion (cdf).
Similarly, for n odd

E en�h(Z =n) = en�(�+2+2a)=2 � �((�+ a+ 1)
p
n)

+en�(��2�2a)=2 � �((�� a� 1)
p
n):

Observe that for anyb 2 <

lim
n!1

1

n
log�(b

p
n) =

0; for b � 0

� b2

2
; for b < 0:

Hence

�'h(�) =

� (jaj � 1)2

2
; for � < jaj � 1

�[� + 2(1� jaj)]
2

; for jaj � 1 � � < 0

�[� + 2(1 + jaj)]
2

; for � � 0:

Therefore, we get the expressions at the top of following page. We then
apply Theorem 3.5 to obtain

lim
"#0

lim sup
n!1

1

n
log Pr

Zn

n
2 (a� "; a+ ")

� � lim
"#0

inf
x2(a�";a+")

�Jh(x)

= � lim
"#0

("� 1 + jaj)2
2

= � (jaj � 1)2

2
:

Note that the above lower bound is valid for anya 2 (�1; 1), and can
be shown tight, again, by Theorem 2.2 (or directly by (3.15)).



2758 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

�Gh =
�>0

fx 2 < : jx � aj = � + 1 + jajg
�<0

fx 2 < : jx� aj = � + 1� jajg

= (�1; a� 1� jaj) [ (a� 1 + jaj; a+ 1� jaj) [ (a+ 1 + jaj;1)

and

�Jh(x) =

(jx� aj � 1 + jaj)2

2
; for a� 1 + jaj < x < a+ 1� jaj

(jx� aj � 1� jaj)2

2
; for x > a+ 1 + jaj or x < a� 1� jaj

0; otherwise:

(3.16)

Finally, by combining the results of Cases A and B, the true large de-
viation rate offZngn�1 is completely characterized.

Remarks:
• One of the problems in applying the extended Gärtner–Ellis The-

orems is the difficulty in choosing an appropriate real-valued con-
tinuous function (not to mention the finding of the optimal one in
the sense of Theorem 2.3). From the previous example, we ob-
serve that the resultant�Jh(x) is in fact equal to the lower convex
contour2 (with respect toh(�)) ofminfy2<:h(y)=h(x)g �I

�(x). In-
deed, if the lower convex contour ofminfy2<:h(y)=h(x)g �I�(x)
equals�I�(x) for somex lying in the interior of�Gh, we can apply
Theorems 2.2 and 3.5 to establish the large deviation rate at this
point. From the above example, we somehow sense that taking
h(x) = jx�aj is advantageous in characterizing the large de-
viation rate atx = a. As a consequence of such choice ofh(�),
�Jh(x)will shape like the lower convex contour ofminf�I�(x�a);
�I�(a�x)g in h(x) = jx�aj. Hence, ifa lies in �Gh; �Jh(a) can
surely be used to characterize the large deviation rate atx=a (as
it does in Case B of Example 3.4).

• The assumptions required by the conventional Gärtner-Ellis
lower bound [1, p. 15] are

1) '(�) = �'(�) = '(�) exists;
2) '(�) is differentiable on its domain; and
3) (a; b) � fx 2 < : x = '0(�) for some�g.

The above assumptions are somewhat of limited use for arbi-
trary random sequences, since they do not in general hold. For
example, the condition of�'(�) 6= '(�) is violated in Example
3.4.

• By using the limsup and liminf operators in our extension the-
orem, the sup-Gärtner–Ellis set is always defined without any
requirement on the log-moment generating functions. The sup-
Gärtner–Ellis set also clearly indicates the range in which the
Gärtner–Ellis lower bound holds. In other words,�Gh is a subset
of the union of all(a; b) for which the Gärtner–Ellis lower bound
is valid. This is concluded in the following equation:

�Gh � (a; b) : lim sup
n!1

1

n
log Pr

Zn

n
2 Jh(a; b)

� � inf
x2(a;b)

�Jh(x) :

To verify whether or not the above two sets are equal merits fur-
ther investigation.

2We define that the lower convex contour of a functionf(�) with respect to
h(�) is the largestg(�) satisfying thatg(h(x)) � f(x) for all x, and for every
x; y and for all� 2 [0; 1]; �g(h(x)) + (1� �)g(h(y)) � g(�h(x) + (1�
�)h(y)).

• Modifying the proof of Theorem 3.5, we can also establish a
lower bound for

lim inf
n!1

1

n
log Pr

Zn

n
2 Jh(a; b) :

Definition 3.5: Define theinf-Gärtner–Ellis setwith respect to a
real-valued continuous functionh(�) as

G
h

4
=
f�2<:' (�)>�1g

G(�; h)

where

G(�;h)
4
= x 2 < : lim sup

t#0

'
h
(� + t)� '

h
(�)

t

� h(x) � lim inf
t#0

'
h
(�)� '

h
(� � t)

t
:

Theorem 3.6:Suppose thath(�) is a real-valued continuous func-
tion. Then if(a; b) � G

h

lim inf
n!1

1

n
log Pr

Zn
n
2 Jh(a; b) � � inf

x2(a;b)
Jh(x):

• One of the important usages of the large deviation rate func-
tions is to find the Varadhan’s asymptotic integration formula of
limn!1(1=n) logE[expf�Zng] for a given random sequence
fZng

1
n=1. To be specific, it is equal [4, Theorem 2.1.10] to

lim
n!1

1

n
logE[expf�Zng] = sup

fx2<:I(x)<1g

[�x� I(x)]

if

lim
L!1

lim sup
n!1

1

n
log

[x2<:�x�L]

expf�xg dPZ (x) = �1:

The above result can also be extended using the same idea as
applied to the Gärtner–Ellis theorem.

Theorem 3.7: If

lim
L!1

lim sup
n!1

1

n
log

[x2<:�h(x)�L]

expf�h(x)gdPZ (x) = �1

then

lim sup
n!1

1

n
logE exp n�h

Zn
n

= sup
fx2<:�J (x)<1g

[�h(x)� �Jh(x)]
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and

lim inf
n!1

1

n
log exp n�h

Zn
n

= sup
fx2<:J (x)<1g

[�h(x)� Jh(x)]:

Proof: This can be obtained by modifying the proofs of Lemmas
2.1.7 and 2.1.8 in [4].

We close the section by remarking that the result of the above the-
orem can be reformulated as

�Jh(x) = sup
f�2<:�' (�)>�1g

[�h(x)� �'h(�)]

and �'h(�) = sup
fx2<:�J (x)<1g

[�h(x)� �Jh(x)]

which is an extension of theLegendre–Fenchel Transform pair. A sim-
ilar conclusion applies toJh(x) and'

h
(�).

IV. PROPERTIES OF(TWISTED) SUP- AND INF-LARGE DEVIATION

RATE FUNCTIONS

Property 4.1: Let �I(x) andI(x) be the sup- and inf-large devia-
tion rate functions of an infinite sequence of arbitrary random vari-

ablesfZng1n=1, respectively. Denotemn = (1=n)E[Zn]. Let �m
4
=

lim supn!1mn andm
4
= lim infn!1mn. Then

1) �I(x) andI(x) are both convex;
2) �I(x) is continuous overfx 2 < : �I(x) < 1g. Likewise,I(x)

is continuous overfx 2 < : I(x) < 1g;
3) �I(x) gives its minimum value 0 atm � x � �m;
4) I(x) � 0. But I(x) does not necessary give its minimum value

at bothx = �m andx = m.

Proof:

1) �I(x) is the pointwise supremum of a collection of affine
functions. Therefore, it is convex. Similar argument can be
applied toI(x).
2) A convex function on the real line is continuous every-
where on its domain and hence the property holds.
3) and 4) The proofs follow immediately from Property 4.2
by takingh(x) = x.

Since the twisted sup/inf-large deviation rate functions are not nec-
essarily convex, a few properties of sup/inf-large deviation functions
do not hold for general twisted functions.

Property 4.2: Suppose thath(�) is a real-valued continuous func-
tion. Let �Jh(x) andJh(x) be the corresponding twisted sup- and inf-
large deviation rate functions, respectively. Denote

mn(h)
4
= E[h(Zn=n)]:

Let

�mh
4
= lim sup

n!1
mn(h) and mh

4
= lim inf

n!1
mn(h):

Then

1) �Jh(x) � 0, with equality holds ifmh � h(x) � �mh.
2) Jh(x) � 0, but Jh(x) does not necessary give its minimum

value at bothx = �mh andx = mh.
Proof:

1) For allx 2 <;

�Jh(x)
4
= sup
f�2<:�' (�)>�1g

[� � h(x)� �'h(�)]

� 0 � h(x)� �'h(0) = 0:

By Jensen’s inequality

expfn'n(�; h)g = E[expfn � � � h(Zn=n)g]

� expfn � � � E[h(Zn=n)]g

= expfn � � �mn(h)g

which is equivalent to

� �mn(h) � 'n(�;h):

After taking the limsup and liminf of both sides of the above
inequalities, we obtain

• for � � 0

� �mh � �'h(�) (4.17)

and

� �mh � '
h
(�) � �'h(�); (4.18)

• for � < 0

�mh � �'h(�) (4.19)

and

� � �mh � '
h
(�) � �'h(�): (4.20)

Expressions (4.17) and (4.20) imply�Jh(x) = 0 for those
x satisfyingh(x) = �mh, and (4.18) and (4.19) imply
�Jh(x) = 0 for thosex satisfyingh(x) = mh. For

x 2 fx : mh � h(x) � �mhg

� � h(x)� �'h(�) � � � �mh � �'h(�) � 0; for � � 0

and

� � h(x)� �'h(�) � � �mh � �'h(�) � 0; for � < 0:

Hence, by taking the supremum overf� 2 < : �'h(�) >
�1g, we obtain the desired result.

2) The nonnegativity ofJh(x) can be similarly proved as�Jh(x).

For Case A of Example 3.4, we have�m = 1, m = �1, and'(�) =

�j�j + �2=2. Therefore,

I(x) = sup
�2<

fx� � '(�)g =
(jxj+ 1)2

2

for which I(�1) = I(1) = 2 andminx2< I(x) = I(0) = 1=2.
Consequently,I(x) neither equals zero nor gives its minimum value at
bothx = �m andx = m.

V. CONCLUDING REMARKS

Our study on the large deviation rates for arbitrary random sequences
has yielded new Gärtner–Ellis lower and upper bounds. No assumption
on the statistics of the random sequence is required in these two bounds.
The newly definedGärtner–Ellis sethas been shown to be (a subset of)
the range under which our Gärtner–Ellis bounds are tight (for countably
many points).

Two issues are still open in this study. The first one concerns a sys-
tematic methodology for finding a series of continuous functions for
which the large deviation rates can be completely characterized. Our
example somehow suggest that the convex continuous functions that
bottom at the targeted range could be a proper choice. The second
issue questions whether or not the Gärtner–Ellis set is the largest one
in which the Gärtner–Ellis lower bound holds. It is our conjecture that
the answer is affirmative. In [6], Poor and Verdú have provided an
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upper bound on the channel reliability of arbitrary single-user chan-
nels, which is of the form

� lim sup
n!1

1

n
sup
X

log Pr
1

n
iX W (Xn; Y n) � R : (5.21)

They conjectured that (5.21) is in fact tight. It would also be interesting
to evaluate (5.21) using the twisted large deviation rate function, and
see if any twisted functional can provide improvement on the existing
channel reliability bounds.
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Lower Bounds of the Minimal Eigenvalue of a Hermitian
Positive-Definite Matrix

Weiwei Sun

Abstract—In this correspondence, we present several lower bounds of
the minimal eigenvalue of a class of Hermitian positive-definite matrices,
which improve the previous bounds given by Dembo [1] and Ma and
Zarowski [4].

Index Terms—Eigenvalue bounds, Hermitian positive definite.

I. INTRODUCTION

The study of lower bounds of the minimal eigenvalue of a Hermitian
matrix is of wide interest in many fields [1]–[3]. Here we consider the
n�n Hermitian positive-definite matrixRn defined in a partition form
by

Rn =
Rn�1 b

bH c
(1.1)

whereb 2 CCCn�1 is an(n � 1)-dimensional complex vector,Rn�1
is an (n � 1) � (n � 1) matrix, c > 0 is a scalar value, and the
superscriptH denotes Hermitian transposition. Lower bounds of the
minimal eigenvalue of theRn in (1.1) have been studied by Dembo [1]
and Ma and Zarowski [4] in terms of the minimal eigenvalue ofRn�1.
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The motivation of this correspondence is to present several new
bounds for the minimal eigenvalues. The approach is based on a
matrix series and the local monotonicity of the minimal eigenvalue.
The previous lower bounds can be obtained as special cases. The new
bounds presented here are more accurate than both Dembo’s bound
and Ma and Zarowski’s bound.

II. PREVIOUS RESULTS

Let �j ; j = 1; 2; . . . ; n, be the eigenvalues ofRn and

0 < �1 � �2 � � � � � �n:

Dembo’s result is given below.

Theorem A (Dembo [1]):Let �1 be a lower bound of the minimal
eigenvalue ofRn�1 and�n�1 be an upper bound of the maximal eigen-
value ofRn�1. Then

�A :=
c+ �1

2
�

(c+ �1)2 � 4(c�1 � bHb)

2
� �1 (2.1)

and

��A :=
c+ �n�1

2
�

(c+ �n�1)2 � 4(c�n�1 � bHb)

2
� �1:

The bounds given in the above theorem are easy to calculate. The re-
sult has been extended to positive-semidefinite doubly symmetric ma-
trices and applied for some Toeplitz problems in [1]. It has been noted
in [4] that the lower bound in (2.1) can be negative for some Hermitian
positive-definite matrices. An example of susch a matrix, given in [4],
is

R3 =

1 + � 1 1

1 1 + � 1

1 1 1 + �

which is Hermitian positive-definite for� > 0 and�1 = �. By Theorem
A, we obtain the bound�A = �1 + �.

An improved bound has been given by Ma and Zarowski [4]. Their
main result is summarized in the following theorem.

Theorem B (Ma and Zarowski [4]):

�B :=
c+ �1

2
�

(c+ �1)2 � 4 c� bHR�1n�1b �1

2
� �1: (2.2)

Sincec� bHR�1n�1b = det(Rn)=det(Rn�1) wheredet(�) denotes
the determinant, the bound in (2.2) is positive whenRn is Hermitian
positive-definite.

III. L OWER BOUNDS OF THEMINIMAL EIGENVALUE

We consider the characteristic polynomial of the matrixRn, which
is given by

det(Rn � �I) = det
Rn�1 � �I b

bH c� �
:

SinceRn is Hermitian positive-definite,�1 � �1 � �2. For conve-
nience, first we consider the case

�1 < �1

and denote by�1 the minimal eigenvalue ofRn�1 instead of a lower
bound of the minimal eigenvalue, as in Theorems A and B. Then,
Rn�1 � �I is invertible for� < �1. We have

det(Rn � �I) = det(Rn�1 � �I)(c� �� bH(Rn�1 � �I)�1b):
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