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noting seems to be the formulation of initial values for the general
differential-integro-algebraic representations. As a matter of a fact,
transfer equivalence where initial conditions are not considered, has
been investigated in [20] for rational equations in Rosenbrock’s form.
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Optimal Multistage Kalman Estimators

Fu-Chuang Chen and Chien-Shu Hsieh

Abstract—An optimal multistage Kalman estimator (OMSKE) is pro-
posed as a generalization of the optimal two-stage Kalman estimator for
the reduction of the computational burden of the Kalman estimator (KE)
for discrete-time linear time-varying systems with triangular transition ma-
trices. This new filter is obtained by applying a multistage trans-
formation to decouple the covariances of the KE. It is shown analytically
that the computational complexity of the OMSKE is less than that of the
KE and is minimum when the system transition matrix has the maximum
stage number.

Index Terms—Augmented state Kalman estimator, multistage Kalman
estimator, optimal filter, two-stage Kalman estimator.

I. INTRODUCTION

Consider the problem of estimating the state of a dynamic system
in which the system transition matrix has an upper triangular form. A
special case of this problem is illustrated by the estimation problem of
a dynamical system subject to an unknown bias [1]–[4]. In this spe-
cific problem, the system state is augmented to include the bias state,
and the system is reformulated as an augmented system in which the
system transition matrix is in an upper triangular form. It is common to
use the augmented state Kalman estimator (ASKE) to estimate the aug-
mented state. However, to reduce the computational cost and numerical
errors, a two-stage Kalman estimator (TSKE) proposed by Friedland
[1] can be used to obtain the Kalman estimate. Unfortunately, Fried-
land’s filter is optimal only for constant biases. Ignagni [2] considered
the stochastic case for applying Friedland’s filter. However, the result
he obtained is suboptimal. Alouaniet al.[3] have proposed a sufficient
condition for Friedland’s filter to be optimal when it is applied to sto-
chastic systems. However, this sufficient condition is seldom satisfied
in practical systems. Another illustration of the considering problem is
the state estimation in a maneuvering target tracking application, where
the state is composed of position, velocity, and acceleration.

Recently [4], we have generalized Friedland’s filter by accounting
for the bias noise effect to obtain the optimal two-stage Kalman es-
timator (OTSKE), which is optimal in the sense that it can generate
the minimum-mean-square-error (MMSE) estimate of the system state
without any constraint. The OTSKE is derived by applying a two-stage
U � V transformation to decouple the state and the covariance equa-
tions of the ASKE. The main reason that the OTSKE can reduce the
computational complexity of the ASKE is due to order reduction. It is
more expensive to implement an “n1 + n2”-order Kalman filter than
two Kalman filters with ordersn1 andn2. Hence, it is expected that a
multistage filter, when applicable, can do better than a two-stage filter
in terms of computation.

The objective of this note is to propose a generalization of the
OTSKE for the problem at hand to further simplify the computational
complexity of the OTSKE, and the obtained filter will be denoted as
the optimal multistage Kalman estimator (OMSKE). This new filter is
derived by applying a multistageU � V transformation, which is a
generalization of the conventional two-stageU �V transformation, to
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decouple the covariance matrices of the Kalman estimator (KE), and is
composed of covariance-decoupled subfilters. It is shown analytically
that the computational complexity of the OMSKE is less than that of
the KE and is minimum when the system transition matrix has the
maximum stage number.

This paper is organized as follows. In Section II, we state the problem
of interest. In Section III, the OMSKE is derived, and an algorithm
for implementing it is provided. In Section IV, the computational com-
plexity of the OMSKE is analyzed analytically, and its computational
advantage over the KE is also shown. Section V is the conclusion. De-
tailed proofs are provided in the Appendix.

II. STATEMENT OF THE PROBLEM

Consider the following dynamical system:

Xk+1 =AkXk + wk (1)

Yk =HkXk + �k (2)

whereXk 2 Rn is the system state,Yk 2 Rm is the measurement
vector, Ak is an r-by-r block upper triangular matrix in which
3 � r � n, and the matrixHk has an appropriate dimension. The
vectorswk and�k are zero-mean white noise sequences governed by
Efwkw

0

lg = Qk�kl, Ef�k�0

lg = Rk�kl andEfwk�
0

lg = 0, where0

denotes transpose and�kl denotes the Kronecker delta function. The
initial stateX0 is assumed to be a random variable withEfX0g = X0

and CovfX0g = P 0 and is uncorrelated with the white noise
sequenceswk and�k. Note that the assumption of the upper triangular
block form in the system transition matrix is not a limitation since it
can be obtained by using Householder transformations or using the
modifying equations presented in Remark B of the next section. On
the other hand, the system (1), (2) may stand for an augmented-state
system and is best illustrated by the maneuvering target tracking
application; furthermore, ifr = 2, then the treated problem in this
paper is reduced to the conventional two-stage problem in [1]–[4].

To obtain an optimal state estimate for the system (1), (2), the con-
ventional KE may be used, with the initial estimatesX0j0 = X0 and
P0j0 = P 0. However, the computational cost and the estimation error
of the KE increases drastically with the state dimension. Hence, the KE
model may be impractical to implement. One method for solving the
above-mentioned problems of the KE is to apply covariance decoupled
algorithms. To this end, the approach of the two-stageU �V transfor-
mation in deriving the OTSKE [4] may be used. However, the OTSKE
applies only forr = 2. In the next section, we propose a generaliza-
tion of the two-stage approach to further reduce the complexity of the
OTSKE forr > 2, and the obtained new estimator will be denoted as
the optimal multistage Kalman estimator (OMSKE).

III. OPTIMAL MULTISTAGE KALMAN ESTIMATORS

The derivation of a multistage Kalman estimator is through a
block-diagonalizing of the covariance matrices of the KE, i.e.,Pkjk�1

andPkjk. This can effectively reduce the complexity of calculating
these covariances, and hence the overall Kalman filter algorithm.
The problem is to find out someUk andVk matrices that satisfy the
following: Pkjk�1 = UkP kjk�1U

0
k andPkjk = VkP kjkV

0
k , where

P (�) = diagfP 1
(�); . . . ; P

r
(�)g. We define the structures of theUk

andVk matrices as follows:

Uk =

In U12
k � � � U1r

k

0 In � � � U2r
k

...
...

. . .
...

0 0 � � � In

(3)

Vk =

In V 12
k � � � V 1r

k

0 In � � � V 2r
k

...
...

. . .
...

0 0 � � � In

: (4)

TheseU ij

k , V ij

k andP i
(�) terms are to be determined, where1 � i <

j � r.
To facilitate the derivation, we have used the following notation:M ij

to denote theij element of matrixM . As a first step, we define the
following multistageU � V transformation, which is to be applied to
the KE expressed byfX; K; Pg, as

Xkjk�1 =UkXkjk�1; Pkjk�1 = UkP kjk�1U
0
k (5)

Xkjk =VkXkjk; Kk = VkKk; Pkjk = VkP kjkV
0
k (6)

whereX,K, andP denote the transformed state, gain, and covariance,
respectively. Then, denote the inverse transformations ofUk andVk as

U
�1
k = ~Uk =

In ~U12
k � � � ~U1r

k

0 In � � � ~U2r
k

...
...

. . .
...

0 0 � � � In

(7)

V
�1
k = ~Vk =

In ~V 12
k � � � ~V 1r

k

0 In � � � ~V 2r
k

...
...

. . .
...

0 0 � � � In

: (8)

Thus, (5) and (6) become

Xkjk�1 = ~UkXkjk�1; P kjk�1 = ~UkPkjk�1
~U 0
k (9)

Xkjk = ~VkXkjk; Kk = ~VkKk; P kjk = ~VkPkjk ~V
0
k: (10)

Next, based on (5), (6), (9), and (10), the transformed filter can be cal-
culated recursively via thetwo-step recursive substitutionmethod [4]
as

Xkjk�1 = ~UkAk�1Vk�1Xk�1jk�1 (11)

Xkjk = ~VkUkXkjk�1 +Kk(Yk �HkUkXkjk�1) (12)

P kjk�1 = ~Uk(Ak�1Vk�1P k�1jk�1(Ak�1Vk�1)
0

+Qk�1) ~U
0
k (13)

Kk = ~VkUkP kjk�1(HkUk)
0

� fHkUkP kjk�1(HkUk)
0 +Rkg

�1 (14)

P kjk =(~VkUk �KkHkUk)P kjk�1(~VkUk)
0
: (15)

To express (11)–(15) in subfilters form, we define the following nota-
tions:

Ak�1Vk�1 =

U11
k U12

k � � � U1r
k

0 U22
k � � � U2r

k

...
...

. . .
...

0 0 � � � U rr
k

(16)

HkUk = [S1k � � � Srk ] (17)

where

U
ij

k =A
ij

k�1 + u
(j�i�1)
s

j�1

l=i

A
il
k�1V

lj

k�1 (18)

S
i
k =H

i
k + u

(i�2)
s

i�1

l=1

H
l
kU

li
k (19)
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Fig. 1. Block diagram of the optimal multistage Kalman estimator (r = 3).

in whichu(�)s denotes the unit-step function and1 � i � j � r. Using
(8) and (16)–(19), and expanding (11)–(15), we obtain the following
covariance-decoupled subfilteri (i = 1; . . . ; r):

X
i
kjk�1 =A

ii
k�1X

i
k�1jk�1 + u

i
k�1 (20)

X
i
kjk =X

i
kjk�1 +K

i
k(Y

i
k � S

i
kX

i
kjk�1) (21)

P
i
kjk�1 =A

ii
k�1P

i
k�1jk�1(A

ii
k�1)

0 +Q
i
k�1 (22)

K
i
k =P

i
kjk�1(S

i
k)

0fSi
kP

i
kjk�1(S

i
k)

0 +R
i
kg

�1 (23)

P
i
kjk =(I �K

i
kS

i
k)P

i
kjk�1 (24)

where

u
i
k�1 =u

(r�i�1)
s

r

l=i+1

U
il
kX

l
k�1jk�1 � U

il
k X

l
kjk�1 (25)

Y
i
k =Y

i�1
k � u

(i�2)
s S

i�1
k X

i�1
kjk�1; Y

0
k = Yk (26)

Q
i
k�1 =Q

ii
k�1 + u

(r�i�1)
s �

r

l=i+1

� U
il
k (U

il
kP

l
k�1jk�1)

0 � U
il
k (U

il
k P

l
kjk�1)

0 (27)

R
i
k =R

i�1
k + u

(i�2)
s S

i�1
k P

i�1
kjk�1(S

i�1
k )0; R

0
k = Rk: (28)

The blending matricesUk andVk are then calculated by

U
ij

k = U
ij

k P
j

k�1jk�1(A
jj

k�1)
0 +Q

ij

k�1 (P j

kjk�1)
�1 (29)

V
ij

k =U
ij

k � K
i
k + u

(j�i�2)
s

j�1

l=i+1

V
il
k K

l
k S

j

k (30)

where

Q
ij

k�1 =Q
ij

k�1 + u
(r�j�1)
s �

r

l=j+1

� U
il
k (U

jl

k P
l
k�1jk�1)

0 � U
il
k (U

jl

k P
l
kjk�1)

0 (31)

and1 � i < j � r. Equations (20)–(24), (29), and (30) are derived
in the Appendix. Note that in the above algorithm, the measurement
vector and the measurement noise covariance of subfilteri are replaced
by the innovation vector and the innovation covariance of subfilteri�1.

As a last step, the estimate of the KE can be obtained by the following
OMSKE:

X̂kjk =VkXkjk (32)

P̂kjk =VkP kjkV
0
k (33)

with the following initial conditions:

X
i
0j0 =X

i
0 � u

(r�i�1)
s

r

l=i+1

V
il
0 X

l
0j0 (34)

P
i
0j0 =P

ii
0 � u

(r�i�1)
s

r

l=i+1

V
il
0 P

l
0j0(V

il
0 )0 (35)

V
ji
0 =P

ji
0 (P

i

0j0)
�1 (36)

wherei = r; . . . ; 1 andj = 1; . . . ; i � 1. The structure of the pro-
posed OMSKE withr = 3 is shown in Fig. 1.

Remark A: The OMSKE is mathematically equivalent to the KE.
This is deduced from the inductive reasoning imbedded in the proposed
two-step iterative substitution method [4], and can be verified by using
inductive reasoning as in [3]. In fact, it can be checked that the KE
and the OTSKE can be thought of as special cases of the OMSKE with
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r = 1 andr = 2, respectively. In order for (29) to be applicable, it
is assumed thatP j

kjk�1
is nonsingular. This is the most often encoun-

tered situation in practical applications since the KE is applied mainly
to stochastic systems where the process noise covarianceQk is posi-
tive. However, this restriction can also be removed and is described as
follows. If P j

kjk�1
= 0, then the matricesU ij

k , where1 � i < j, have
no influence on the obtained filter. Thus, one can simply replace (29)
by U ij

k = 0. On the other hand, ifP i
kjk�1

is singular (6= 0), then one
only need to replace (29) by

U ij

k = U ij

k P
j

k�1jk�1
(Ajj

k�1
)0 +Qij

k�1
P j

kjk�1

+

(37)

whereM+ is theMoore–Penrosepseudoinverse ofM [11].
Remark B: As mentioned in the preceding section, the proposed

multistage algorithm can be modified to be applied to general systems.
This is done by modifying (18), (25), (27), and (31) by

U ij

k :=U ij

k + u(i�2)s

i�1

l=1

Ail
k�1V

lj

k�1 (38)

uik�1 := uik�1 + u(i�2)
s

i�1

l=1

U il
kX

l
k�1jk�1 (39)

Qi
k�1 :=Qi

k�1 + u(i�2)
s

i�1

l=1

U il
k (U

il
kP

l
k�1jk�1)

0 (40)

Qij

k�1 :=Qij

k�1 +

j�1

l=1

U il
k (U

jl

k P
l
k�1jk�1)

0 (41)

where the symbol “:=” means “is replaced by.” Basically, in the above
modification, only the time update equations need to be revised.

Remark C: If the system [(1) and (2)] represents a parallelly con-
nected system, i.e.,Aij

k = 0,Qij

k = 0, andHj

k = 0 for 1 � i < j � r,
then the blending matricesUk andVk become identity matrices, and
hence the OMSKE will be equivalent to a decoupled Kalman filter.

Remark D: The OMSKE can be thought of as a general state-decen-
tralized filtering algorithm in which the state space is decoupled while
the output space remains coupled. This is different from conventional
output-decentralized filtering algorithms, e.g., [5]–[8], where the com-
plexity reduction is mainly due to the decoupling of the measurement
space.

Remark E: The filtered error covariance given by (33) is not needed
in the calculation of the recursive algorithm, e.g., (20)–(24). Hence, it
may be calculated only when filtered covariance data are needed. On
the other hand, the proposed algorithm can be thought of as an alterna-
tive to the well-knownU � D covariance factorization algorithm [9]
under the assumption that the system transition matrix is triangular-
ized. It is known [10] that numerical stability of the covariance factor-
ization algorithm was due to their lack of sensitivity to the choice ofa
priori variances and process noise levels. Thus, it is expected that the
proposed OMSKE has the advantage of both numerical accuracy and
computational efficiency. In this paper, we focus our attention on the
computational efficiency of the OMSKE.

Remark F: To implement the OMSKE, (22), (27), and (29) are cal-
culated as follows:

U1i
k P

i
kjk�1

...

U i�1; i
k P i

kjk�1

P i
kjk�1

=

Q1i
k�1

...

Qii
k�1

� [Uk]
1r
i; i+1 �

(U i; i+1
k P i

kjk�1)
0

...

(U ir
k P

r
kjk�1)

0

+ [Uk]
1r
ii

(U ii
k P

i
k�1jk�1)

0

...

(U ir
k P

r
k�1jk�1)

0

(42)

U1i
k

...
U i�1; i
k

=

U1i
k P

i
kjk�1

...

U i�1; i
k P i

kjk�1

(P i
kjk�1)

�1 (43)

where

[M ]ijmn =

M in � � � M ij

...
. . .

...
Mmn � � � Mmj

:

Finally, we give the procedure for implementing the OMSKE in each
cycle as follows.

Step 1) CalculateU ij

k , 1 � i < j � r, by (18).
Step 2) Calculate the time update equations for subfilterj (j =

r; . . . ; 1) through:

2.1) calculateujk�1 andXj

kjk�1 by (25) and (20), re-
spectively.

2.2) calculateP j

kjk�1 andU ij

k , i = 1; . . . ; j � 1, by
(42) and (43), respectively.

Step 3) Calculate the new measurement matrixSi
k, i = 1; . . . ; r,

by (19).
Step 4) Calculate the measurement update equations for subfilteri

(i = 1; . . . ; r), by (21), (23), and (24).
Step 5) Calculate the blending matrixV ij

k , 1 � i < j � r, by (30).
Step 6) Calculate the Kalman estimate by (32) and (33).

IV. COMPUTATION EVALUATIONS

To demonstrate the computational advantage of the OMSKE over the
KE, we use floating-point operations or “flops” in Matlab as a measure
of the computational complexity. Each multiplication and each addition
contributes one flop count. To simplify the discussion of the computa-
tional load, we consider the special case that subfilters have the same
dimensions (ni = n = n=r).

As a first step, we list the flops count of a general KE (KEg), which
has state dimensionn and measurement dimensionm, as follows:

flops(KEg) = 6n3 + (4m+ 3)n2 + (4m2 + 4m+ 2)n

+ 2m3 +m2 +m: (44)

Note that if the symmetric property of the covariance matrices has been
used, then the above flops count is reduced to

flops(KEs) = 4n3 + (4m+ 4:5)n2 + (3m2 + 5m+ 2:5)n

+ 2m3 + 0:5m2 + 1:5m (45)

where we used “KEs” to represent the above simplified KE. Further-
more, if the upper triangular property of the system transition matrix,
which has block numberr, is used, the flops count in (45) is further
reduced to

flops(KEt)

= 2 +
1:5

r
+

0:5

r2
n3 + 4m+ 3 +

1:5

r
� n2

+ (3m2 + 5m+ 2:5)n+ 2m3 + 0:5m2 + 1:5m (46)

and the obtained algorithm is referenced to by the name “KEt.”
Then, the complexity of the OMSKE is evaluated as follows. From

(45), it is clear that the flops count of the covariance-decoupled subfil-
ters is

flops(Subfilters)

=
4

r2
n3 +

4m+ 4:5

r
n2 + (3m2 + 5m+ 2:5)n

+ r(2m3 + 0:5m2 + 1:5m): (47)
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The flops count of the auxiliary calculations specifically needed by the
OMSKE, e.g., the quantities calculated in Steps 1), 2.1), 2.3), 2.5), 3),
5), and 6) of the preceding section, is given as follows:

flops(Auxiliary)

=
4

3
+

4

r
�

10

3r2
�

2

r3
n
3 + (3m+ 6)� n2

�
5m+ 6

r
�

2m

r2
n
2 + 0:5m(r � 1) + 3�

2

r
n: (48)

Using (47) and (48), the flops saving, denoting by4flops, of the
OMSKE as compared to the KEg , the KEs, and the KEt are given,
respectively, by

4flopsOMSKEKE =
14

3
�

4

r
�

2

3r2
+

2

r3
n
3

+ m� 3 +
m+ 1:5

r
�

2m

r2
n
2

+ m
2
� 0:5m(r+ 1)� 3:5 +

2

r
n

� (r � 1)(2m3 + 0:5m2 + 1:5m)

+ 0:5m(m� 1) (49)

4flopsOMSKEKE =
8

3
�

4

r
�

2

3r2
+

2

r3
n
3

+ m� 1:5 +
m+ 1:5

r
�

2m

r2
n
2

� 0:5m(r� 1) + 3�
2

r
n

� (r � 1)(2m3 + 0:5m2 + 1:5m) (50)

4flopsOMSKEKE =
2

3
�

2:5

r
�

1

6r2
+

2

r3
n
3

+ m� 3 +
m+ 3

r
�

2m

r2
n
2

� 0:5m(r� 1) + 3�
2

r
n

� (r � 1)(2m3 + 0:5m2 + 1:5m): (51)

Note that the above performance is satisfied forr < n. However, if
r = n, then the performance in (51) will increase to

4flopsOMSKEKE

= 2
3 n

3 + (m� 3:5)n2 + (0:5m2 + 2:5m+ 35
6 )n

� (n� 1)(2m3 + 0:5m2 + 1:5m): (52)

This additionally gained efficiency is mainly due to the fact that matrix
multiplications are replaced by scalar multiplications.

To show the computational advantage of the OMSKE, we use the
relative improvement ratio (RIR) of the OMSKE, which is defined by

RIROMSKEKE = lim
n!1

4flopsOMSKEKE

flops(KEi)
(53)

as the performance index. The RIR performance is intended for the
situation where the number of the measurements is negligible as com-
pared to the number of the system states. This is assumed for applying
the OMSKE and is usually the case encountered in practical systems.
However, if this is not the case, as can occur in large-scale or mul-
tisensor systems, then it is always possible in practice to process the

measurements sequentially [8] so as to satisfy the above mentioned sit-
uation. Thus, subject ton � m, it is clear from (44)–(46), (49)–(51),
and (53) that the RIRs of the OMSKE as compared to the KEg , the
KEs, and the KEt are given, respectively, by

RIROMSKEKE =
7r3 � 6r2 � r + 3

9r3
(54)

RIROMSKEKE =
4r3 � 6r2 � r + 3

6r3
(55)

RIROMSKEKE =
4r3 � 15r2 � r + 12

12r3 + 9r2 + 3r
: (56)

Note that ifr is sufficiently large, then the above RIR values will ap-
proach 78%, 67%, and 33%, respectively. Seeing from the above re-
sults, although the conventional KE, i.e., KEg , can be simplified by ap-
plying the symmetric and triangular properties of the KE, the proposed
OMSKE can further reduce the complexity of this simplified KE, i.e.,
KEt, for the case that the state number is much larger than the mea-
surement number.

Finally, from the RIR performances [(54)–(56)], we claim the fol-
lowing key concept about the complexity issue of the multistage al-
gorithm: the computational complexity of the multistage Kalman esti-
mator is less if the largerr is chosen and has the minimum value when
the system transition matrix has the maximum stage number.

V. CONCLUSION

In this paper, the OMSKE is proposed. The OMSKE is a general-
ization of the OTSKE [4] and is used instead of the OTSKE when the
upper triangular block number of the system transition matrix is greater
than two. It is shown by analytical results that the computational com-
plexity of the OMSKE is less than that of the simplified KE (KEt),
which can be obtained by applying the symmetric and triangular prop-
erties of the KE, and is minimum when the system transition matrix
has the maximum stage number. Our result suggests that the OMSKE
may serve as an alternative to the KE for estimating the system state
of linear dynamical systems subject to upper triangular system transi-
tion matrices when the number of the system state is large and is much
larger than the number of the measurement.

As inspired by the work of Bierman [10], the numerical reliability
of the OMSKE may be better than that of the conventional KE. The
problem of exploring the numerical stability of the OMSKE is under
investigation.

APPENDIX

1) Using (3) and (5), we have

X
i
kjk�1 = X

i
kjk�1 + u

(r�i�1)
s

r

l=i+1

U
il
k X

l
kjk�1 (57)

where1 � i � r. Comparing (9) with (11) and using (16), we
have

X
i
kjk�1 =A

ii
k�1X

i
k�1jk�1 + u

(r�i�1)
s

r

l=i+1

� U
il
kX

l
k�1jk�1: (58)

Substituting (58) into (57) and using (25), we obtain

u
i
k�1 =X

i
kjk�1 �A

ii
k�1X

i
k�1jk�1

=u
(r�i�1)
s

r

l=i+1

U
il
kX

l
k�1jk�1 � U

il
k X

l
kjk�1 : (59)
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2) Using (3), (5), and the diagonalizing structure ofP kjk�1, we
have

P
ii
kjk�1 = P

i
kjk�1 + u

(r�i�1)
s

r

l=i+1

U
il
k P

l
kjk�1(U

il
k )

0 (60)

where1 � i � r. Comparing (9) with (13) and using (16), we
have

P
ii
kjk�1 =A

ii
k�1P

i
k�1jk�1(A

ii
k�1)

0 +Q
ii
k�1

+ u
(r�i�1)
s

r

l=i+1

U
il
kP

l

k�1jk�1(U
il
k )

0
: (61)

Substituting (61) into (60) and using (27), we obtain

Q
i
k�1 =P

i
kjk�1 �A

ii
k�1P

i
k�1jk�1(A

ii
k�1)

0

=Q
ii
k�1 + u

(r�i�1)
s

r

l=i+1

� fU il
k (U

il
kP

l
k�1jk�1)

0 � U
il
k (U

il
k P

l
kjk�1)

0g: (62)

3) Using (15), (17), and the diagonalizing structure ofP kjk, we
have

P kjk =

f�g112 f�g122 � � � f�g1r2
f�g212 f�g222 � � � f�g2r2

...
...

. . .
...

f�gr12 f�gr22 � � � f�grr2

�

In 0 � � � 0

((~VkUk)
12)0 In � � � 0

...
...

. . .
...

((~VkUk)
1r)0 ((~VkUk)

2r)0 � � � In

with

f�gii2 =(I �K
i
kS

i
k)P

i
kjk�1 = P

i
kjk (63)

f�gij2 =((~VkUk)
ij �K

i
kS

j

k)P
j

kjk�1 = 0 (64)

where1 � i � r andi < j � r. From (64) and the fact that
P

j

kjk�1 is nonsingular, we have

( ~VkUk)
ij = K

i
kS

j

k: (65)

4) Substituting (65) into (12), we have

X
i
kjk =X

i
kjk�1 + u

(r�i�1)
s

r

j=i+1

K
i
kS

j

kX
j

kjk�1

+K
i
k Yk �

r

j=1

S
j

kX
j

kjk�1

=X
i
kjk�1 +K

i
k Yk �

i

j=1

S
j

kX
j

kjk�1 : (66)

5) From (14) and (65), we obtain

K
i
k

r

j=1

S
j

kP
j

kjk�1(S
j

k)
0 +Rk

= P
i
kjk�1(S

i
k)

0 + u
(r�i�1)
s

r

j=i+1

K
i
kS

j

kP
j

kjk�1(S
j

k)
0
: (67)

Canceling the same terms on both sides of (67) and solving for
Ki

k, we obtain

K
i
k = P

i
kjk�1(S

i
k)

0
i

j=1

S
j

kP
j

kjk�1(S
j

k)
0 +Rk

�1

: (68)

6) Using (3), (5), (9), and (13), we have

P
ij

kjk�1 =U
ij

k P
j

kjk�1 + u
(r�j�1)
s

r

l=j+1

U
il
k P

l
kjk�1(U

jl

k )0

=U
ij

k P
j

k�1jk�1(A
jj

k�1)
0 +Q

ij

k�1

+ u
(r�j�1)
s

r

l=j+1

U
il
kP

l
k�1jk�1(U

jl

k )
0 (69)

where1 � i < j � r. Assuming thatP j

kjk�1 > 0 and solving

(69) forU ij

k , we obtain

U
ij

k = U
ij

k P
j

k�1jk�1(A
jj

k�1)
0 +Q

ij

k�1 (P j

kjk�1)
�1 (70)

whereQij

k�1 is defined in (31).
7) Solving (8) for ~V ij

k , we obtain

~V ij

k = �V ij

k � u
(j�i�2)
s

j�1

l=i+1

V
il
k
~V lj

k : (71)

Using (65), (8), (4), and (71), we have

K
i
kS

j

k =(~VkUk)
ij = U

ij

k + u
(j�i�2)
s

j�1

l=i+1

~V il
k U
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=U
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s

j�1

l=i+1

( ~V il
k U
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k � V
il
k
~V lj

k ): (72)

Solving (72) forV ij

k and using (71) and (72), we obtain
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ij
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V
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� V
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where
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V
il
k
~V lt
k U

tj

k �

l�1

t=i+1

V
it
k
~V tl
k U

lj

k

=

j�2

l=i+1

j�1

t=l+1

V
il
k
~V lt
k U

tj

k �

j�1

l=i+2

l�1

t=i+1

V
it
k
~V tl
k U

lj

k

=

j�2

l=i+1

j�1

t=l+1

V
il
k
~V lt
k U

tj

k �

j�2

t=i+1

j�1

l=t+1

V
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From (59), (66), (62), (68), (63), (70), and (73), we obtain
(20)–(24), (29), and (30).
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Reliable Guaranteed Cost Control for Uncertain
Nonlinear Systems

Guang-Hong Yang, Jian Liang Wang, and Yeng Chai Soh

Abstract—This paper is concerned with the reliable control design
problem for uncertain nonlinear systems. A more practical model of
actuator failures than outage is adopted. Based on the Hamilton–Jacobi
inequality (HJI) approach from nonlinear control theory, a method
for designing reliable state feedback controllers is presented. The resulting
control systems are robustly stable and with an performance bound
against plant uncertainty and actuator failures.

Index Terms—Actuator failures, control, Hamilton–Jacobi inequal-
ities, nonlinear systems, reliable control, uncertain systems.

I. INTRODUCTION

In the area of reliable control system design, several design methods
have been developed for the resulting closed-loop systems to tolerate
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the failures of control components and retain the desired control system
properties, see; [3], [5], [7], [8], and [10]–[14]. In [10], Veilletteet
al. presented a methodology for the design of reliable linear control
systems such that the resulting design guaranteed closed-loop stability
andH1 performance not only when all control components are opera-
tional, but also in the case of some admissible control component out-
ages. Veillette [10] developed a procedure for the design ofH2 state
feedback controllers, where the resulting design could tolerate the out-
ages within a selected subset of actuators while retaining the stability
and the known quadratic performance bound. In the nonlinear case,
Yang et al. [13] presented a reliableH1 controller design for non-
linear systems, which is a nonlinear version of the results given in [10].

However, the above reliable controller design methods are all based
on a basic assumption that control component failures are modeled as
outages, which neglects the case of partial degradation. In this paper,
a more general failure model is adopted for actuator failures, which
covers the cases of normal operation, partial degradation and outage.
Specifically, this paper is concerned with the problem of reliable guar-
anteed cost control for uncertain nonlinear systems.

The paper is organized as follows. The model of actuator failures,
problem, and some preliminaries are given in Section II. In Section III,
a design method for reliable guaranteed cost control is presented, the
resulting design guarantees the robust stability and anH2 performance
bound against plant uncertainty and actuator failures. A numerical ex-
ample is given to illustrate the design method in Section IV. Section V
concludes the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a class of uncertain nonlinear systems described by equa-
tions of the form

_x(t) = f(x) + f11(x)�(x; �)f22(x)

+ [g(x) + f11(x)�(x; �)g22(x)]u(t); x(0) = x0

(1)

wherex(t) 2 Rn is the state,u(t) 2 Rm is the control input,f(x),
g(x), f11(x), f22(x), andg22(x) are known smooth mappings with
f(0) = 0, f22(0) = 0, and�(x; �) satisfies

�T (x; �)�(x; �) � I (2)

with � being an uncertain parameter vector. The cost function associ-
ated with this system is

J =
1

0

[Q(x) + u
T (t)R2u(t)]dt (3)

whereQ(x) is a smooth positive definite function withQ(0) = 0,
andR2 > 0 is a symmetric constant matrix. For the control input
ui, i = 1; 2; � � � ; m, let uFi denote the signal from the actuator that
has failed. In this paper the following actuator failure model will be
adopted:

u
F

i = �iui + �i(ui); i = 1; 2; � � � ; m (4)

where�i > 0, and the uncertain function�i(ui) satisfies

�
2

i (ui) � �
2

iu
2

i ; i = 1; 2; � � � ; m (5)

with �i � �i � 0.
Remark 2.1: In the above model of actuator failure, if�i = 1,�i =

0, then it corresponds to the normal caseuFi = ui. When�i = �i, it
covers the outage case. If�i > �i, it corresponds to the partial failure
case and also can be regarded as partial degradation of the actuator.
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