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noting seems to be the formulation of initial values for the general Optimal Multistage Kalman Estimators
differential-integro-algebraic representations. As a matter of a fact, _ _
transfer equivalence where initial conditions are not considered, has Fu-Chuang Chen and Chien-Shu Hsieh

been investigated in [20] for rational equations in Rosenbrock’s form.
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12 1r
decouple the covariance matrices of the Kalman estimator (KE), and is Loy Vo oo VA;Z
J2r

composed of covariance-decoupled subfilters. It is shown analytically i 0 I, -+ W
that the computational complexity of the OMSKE is less than that of Vie = : : " . )
the KE and is minimum when the system transition matrix has the '
maximum stage number.

This paper is organized as follows. In Section Il, we state the prOblemeseU;j, V4 andP’ ., terms are to be determined, wherec i <
of interest. In Section lll, the OMSKE is derived, and an algorithrjﬂ < -
forimplementing itis provided. In Section IV, the computational com- 14 taGilitate the derivation, we have used the following notatii!
plexity of the OMSKE is analyzed analytically, and its computationgl, genote the j element of matrixiZ. As a first step, we define the

advantage over the KE is also shown. Section V is the conclusion. Qgyiowing multistagel” — ¥ transformation, which is to be applied to
tailed proofs are provided in the Appendix. the KE expressed byX, K, P}, as

0 0o - I

zs

[l. STATEMENT OF THE PROBLEM Xihmt =UXkphmts  Popp—t = U P Ug )

v 7 VA R S 5} /r/
Consider the following dynamical system: Xepe =ViXpp, Ke =Vilp,  Pop = ViPriVie  (6)

whereX, K, andP denote the transformed state, gain, and covariance,

X1 = A Xy 4w (@) respectively. Then, denote the inverse transformatiofg.aindV;. as
Y =Hp Xy + i 2 . -
I, U,iz - U,i’“ b
whereX; € R" is the system statd} € R™ is the measurement R 0 In, - U
vector, A; is an r-by+ block upper triangular matrix in which U =Ue=1 . o : 7
3 < r < n, and the matrixH, has an appropriate dimension. The 0 0 I.
vectorsw; andn; are zero-mean white noise sequences governed by ~ s
Elwrw} = Qrérr, E{mini} = Ribpr and E{win;} = 0, where’ I, V2 oo vlmy
denotes transpose ang, denotes the Kronecker delta function. The . 0 I, - v
initial stateX, is assumed to be a random variable WithX,} = X, Vit=Vi=| . . - (8)
and CofX,} = P, and is uncorrelated with the white noise : S
sequences, andny,. Note that the assumption of the upper triangular 0 0 - I |

block form in the system transition matrix is not a limitation since iﬁ'hus (5) and (6) become

can be obtained by using Householder transformations or using the

modifying equations presented in Remark B of the next section. Onywv_1 = ﬁka_n Prjp—t = f’kPL-,|L-,_1 U, ©)
the other hand, the system (1), (2) may stand for an augmented-state —  ~ .. = 1t g = o

system and is best illustrated by the maneuvering target tracking Xeie =ViXppeo Koo = Vil Prgp = VP Viee - (10)
application; furthermore, if = 2, then the treated problem in this Next, based on (5), (6), (9), and (10), the transformed filter can be cal-

paper is reduced to the conventional two-stage problem in [1]-[4]. ¢ated recursively via thewo-step recursive substitutianethod [4]
To obtain an optimal state estimate for the system (1), (2), the cags

ventional KE may be used, with the initial estimafég, = X, and
Pyjo = Po. However, the computational cost and the estimation error Xippot = Uk Akt Vet Xt (11)
of the KE increases drastically with the state dimension. Hence, the KE Xope = VilUe X it + Ka(Ye — HeUkXppmr)  (12)
model may be impractical to implement. One method for solving the

above-mentioned problems of the KE is to apply covariance decoupled ~ L#ik—1 = Uk (44/»"71""/»”71?&:—1 1 (Ap1 Vier)'
algorithms. To this end, the approach of the two-stdge V' transfor- +Qr_1)Us (13)
mation in deriving the OTSKE [4] may be used. However, the OTSKE K. =V, Ukau~_1 (HeUy)'

applies only forr = 2. In the next section, we propose a generaliza- = o 1
tion of the two-stage approach to further reduce the complexity of the - X {{{“Uf“"”*l(HiD") +NR“} / (14)
OTSKE forr > 2, and the obtained new estimator will be denoted as Prp = (ViU = Ky HyUp )P (ViUg)' (15)

the optimal multistage Kalman estimator (OMSKE). ) ] ] )
To express (11)—(15) in subfilters form, we define the following nota-

IIl. OPTIMAL MULTISTAGE KALMAN ESTIMATORS tions: 1 1 L
The derivation of a multistage Kalman estimator is through a Ui 352 E_J;T
block-diagonalizing of the covariance matrices of the KE, i, A Vi, = vy - U (16)
and Py,,. This can effectively reduce the complexity of calculating : : . :
these covariances, and hence the overall Kalman filter algorithm. 0 0 ... T
The problem is to find out somE;,. and13. matrices that satisfy the
following: Pyjx—1 = UiPrjs—iUp and Py = Vi Py Vi, where HUe =[SE -+ 5i] (7)
Py = diag{P'(,. .... P"(,}. We define the structures of ti&,
andV;, matrices as follows: where
7—1
Lo U - U TJ =40+ 03 Al v, (18)
0 I, --- UF (=i

U = . . . . 3 ) ) ) il )
. . ., . S;C — H;C + u(gz—Z) Z H]IC[/T}? (19)
=1

0 0 - I.
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Fig. 1. Block diagram of the optimal multistage Kalman estimato=( 3).
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inwhich«'* denotes the unit-step functionahdl i < j < r.Using where

(8) and (16)—(19), and expanding (11)—(15), we obtain the following

covariance-decoupled subfiltefi = 1, ..., »):

yi‘\k—l :Aiti—1y;;71|k—1 + Wy
Yi:\l« :Yi:\k—1 + K.Y - Si}YiM_ﬂ
F2~\L~—1 = Aﬁ—ipi:q [k—1 (A;j—L)I + @Z—l
Ko =Piyio1 (S0 {SiPije—i (S1) + Ry} ™
?Z\k = (I - F;;S/i)?;;ucﬂ

where

:uE"Tiiil) Z (ﬁi‘lyi‘—‘l‘lw:—] - ['Tlf‘,lyi‘,“ﬂ—])

l=i4+1
—2 1i—1 -0
w2 5~ X;H ., V=Y

i
Ug—1
_Ti—l _

QL 1—Qk 1+UI_L Y% Z

l=i+1
x (ﬁ?"(ﬁi‘ﬂ,nk,l)’ - Uif(cr%’ﬂ‘k,l)')
R =R ' +u{S7' P (8. R =P
The blending matriceE;, andV/, are then calculated by
Ulij = (U”P/i 1h—1! Ay j—l), +Q7 )(Pk\k 1 )~

=1
Vi =Ul - (Kk +ulTTY N V,;’m,) ]
I=i+1

(20)
(1)
(22)
(23)
(24)

(25)

(26)

27)
(28)

(29)

(30)

Pl 1—QA 1+”(r 7 x Z

=5+1
x (TE@Phape ) = VW Py 1)) (32

andl < i < j < r. Equations (20)—(24), (29), and (30) are derived
in the Appendix. Note that in the above algorithm, the measurement
vector and the measurement noise covariance of subféterreplaced
by the innovation vector and the innovation covariance of subfiftdr.

As alast step, the estimate of the KE can be obtained by the following
OMSKE:

Xpp = ViXpi (32)
Pk\k = ‘"’%?k\k"’?@' (33)
with the following initial conditions:

Xop=Xo—ul 7Y > ' X (34)

I=i+1
Pop =P5 -l Y WY @)

l=i+1
Vit =Py (Pop) (36)

wherei = r, ..., 1andj = 1, ..., i — 1. The structure of the pro-
posed OMSKE with- = 3 is shown in Fig. 1.

Remark A: The OMSKE is mathematically equivalent to the KE.
This is deduced from the inductive reasoning imbedded in the proposed
two-step iterative substitution method [4], and can be verified by using
inductive reasoning as in [3]. In fact, it can be checked that the KE
and the OTSKE can be thought of as special cases of the OMSKE with
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r = 1 andr = 2, respectively. In order for (29) to be applicable, it Uy Ulilpi:|k—1

is assumed tha?i‘k_l is nonsingular. This is the most often encoun- : — : (Pip_1) ™" (43)
tered situation in practical applications since the KE is applied mainly ﬂ;l,i i i'_v '

to stochastic systems where the process noise covarigndis posi- Uk U, " Pl

tive. However, this restriction can also be removed and is describedmsere

follows. If f{,‘kﬂ = 0, then the matrice&,’, wherel < i < j, have

no influence on the obtained filter. Thus, one can simply replace (29) .

by U} = 0. On the other hand, iP},,_, is singular ¢ 0), then one (M. = | S
only need to replace (29) by Mmoo MY

M MY

Ui = (D Pl 1\k—1(ALJ—1)/ + QkJ_l> (Piqu) (37) Cysllgilsy,f(\;\llﬁ)\?vl\sle the procedure for implementing the OMSKE in each

whereM ™ is theMoore—Penros@seudoinverse of/ [11]. Step 1) Calculatﬁjj, 1<i<yj<r, by(18).
Remark B: As mentioned in the preceding section, the proposed Step 2) Calculate the time update equations for subfjltéf =
multistage algorithm can be modified to be applied to general systems. r, ..., 1) through:
This is done by modifying (18), (25), (27), and (31) by 2.1) calculater]_, and Xy, _, by (25) and (20), re-
im1 spectively. ‘
U9 =T 4™ Z Al v (38) 2.2) caleulateP;,, | andU}’,i =1,....j — 1, by
=1 (42) and (43), respectively.
) ) ) -1 Step 3) Calculate the new measurement me&ﬁxi =1,...,r,
Ty =Ty +ul ™ Ui (39) by (19).
=1 Step 4) Calculate the measurement update equations for subfilter

1—1 .

D . (i-2) il (Fril : (=1,....7) by (21),(23), and (24).

Qi 3= Qicr + 0" Y UEWiPhoip—)’ (40)  gtep5) Calculate the blending matfi’, 1 < i < j < r, by (30).
(=t Step 6) Calculate the Kalman estimate by (32) and (33).

j—1
oY =09 + THTIP ) 41
k1 K1 ; RO Protji—t (41) IV. COMPUTATION EVALUATIONS

where the symbol::=" means “is replaced by.” Basically, in the above TO demonstrate the computational advantage of the OMSKE over the

modification, only the time update equations need to be revised. ~KE, we use floating-point operations or “flops” in Matlab as a measure
Remark C: If the system [(1) and (2)] represents a parallelly conof the computational complexity. Each multiplication and each addition
nected system, i_eg'jj — OvQZj =0, andH,Z =0for1<i<j<r, contributes one flop count. To simplify the discussion of the computa-
then the blending matricd$;, andV; become identity matrices, andtional load, we consider the special case that subfilters have the same
hence the OMSKE will be equivalent to a decoupled Kalman filter. dimensions#; = 7 = n/r).
Remark D: The OMSKE can be thought of as a general state-decen-As a first step, we list the flops count of a general KE (Ewhich
tralized filtering algorithm in which the state space is decoupled whiltas state dimension and measurement dimension as follows:
the output space remains coupled. This is different from conventional  fiopg(KE?) = 6n° + (4m + 3)n” + (4m? + 4m + 2)n
output-decentralized filtering algorithms, e.g., [5]-[8], where the com-
plexity reduction is mainly due to the decoupling of the measurement
space. Note that if the symmetric property of the covariance matrices has been
Remark E: The filtered error covariance given by (33) is not neededsed, then the above flops count is reduced to
in the calculation of the recursive algorithm, e.g., (20)—(24). Hence, it ' . ) .
may be calculated only when filtered covariance data are needed. On fOPS(KE®) =4n” + (4m + 4.5)n" + (3m” 4+ 5m + 2.5)n
the other hand, the proposed algorithm can be thought of as an alterna- +2m” 4+ 0.5m> + 1.5m (45)
tive to the well-knownl’ — D covariance factorization algorithm [9]
under the assumption that the system transition matrix is triangulsftere we used “KE’ to represent the above simplified KE. Further-
ized. It is known [10] that numerical stability of the covariance factorMore, if the upper triangular property of the system transition matrix,
ization algorithm was due to their lack of sensitivity to the choica of Which has block number, is used, the flops count in (45) is further
priori variances and process noise levels. Thus, it is expected that iduced to

+2m® + m® +m. (44)

proposed OMSKE has the advantage of both numerical accuracy and flops(KE")
computational efficiency. In this paper, we focus our attention on the P 15 _ )
computational efficiency of the OMSKE. = <2 + 24 07:) n® 4+ <4,m +34 j) % n2
Remark F: To implement the OMSKE, (22), (27), and (29) are cal- ” r r
culated as follows: + (3m® + 5m + 2.5)n + 2m” + 0.5m> + 1.5m (46)
rli e
Uk" Piji Li i it ! and the obtained algorithm is referenced to by the namé *KE
k—1 (Ui k|k71)
: ) o . Then, the complexity of the OMSKE is evaluated as follows. From
i i-ﬁi - : — [Ok]iizn % : (45), itis clear that the flops count of the covariance-decoupled subfil-
¥ bl ko k-1 (Uf»,'rfi:\kﬂ)/ ters s
klk—1 i )
(LT;\‘LP271|1971>I flops(iubfllteri) s
+ [ﬁk]}[ : (42) =3 n® + % n® + (37712 +5m +2.5)n

TPy ) +7(2m® + 0.5m> + 1.5m). (47)
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The flops count of the auxiliary calculations specifically needed by tlreeasurements sequentially [8] so as to satisfy the above mentioned sit-
OMSKE, e.g., the quantities calculated in Steps 1), 2.1), 2.3), 2.5), 8gtion. Thus, subject te > m, itis clear from (44)—(46), (49)—(51),
5), and 6) of the preceding section, is given as follows: and (53) that the RIRs of the OMSKE as compared to thé ,Kke

KE?, and the KE are given, respectively, by

flops(Auxiliary) T3 —6r? — 43

OMSKE __
— (4 + 1102 n® + (3m +6) x n” RIRge: ™ = O3 (54)
3o o skp 40 — 607 — 7 43
5 om\ . 2 RIRGRS M = ——— 77 55
- <om +6_ g) n’ + <().5m(r -1)+3- 7) n. (48) e \ 67‘32 (55)
" " " skg 4t — 1517 —r 412
RIRQMSKE - 47— b~ (56)

. . . 1273 4+ 972 + 3r
Using (47) and (48), the flops saving, denoting flops, of the

OMSKE as compared to the REthe KE', and the KE are given, Note that ifr is sufficiently large, then the above RIR values will ap-

respectively, by proach 78%, 67%, and 33%, respectively. Seeing from the above re-
sults, although the conventional KE, i.e., KEEan be simplified by ap-
AflopsOMSKE <E 42 n 3) 3 plying the symmetric and triangular properties of the KE, the proposed
kg “\3 r o 3r2 ' g3 OMSKE can further reduce the complexity of this simplified KE, i.e.,
m+15  2m\ KE', for the case that the state number is much larger than the mea-
+ <m -3t — - 77) n surement number.
N Finally, from the RIR performances [(54)—(56)], we claim the fol-
+ <7712 —0.5m(r+1)—-35+ 1) n lowing key concept about the complexity issue of the multistage al-
) T gorithm: the computational complexity of the multistage Kalman esti-
— (r = 1)(2m® +0.5m” + 1.5m) mator is less if the largeris chosen and has the minimum value when
+0.5m(m — 1) (49) the system transition matrix has the maximum stage number.

3 r 32 93 V. CONCLUSION

Y E . 2
Aflopsgs " = <§ 2y 3) n’

4 <m 5yt 15 ﬁ) n? In this paper, the OMSKE is proposed. The OMSKE is a general-
r r? ization of the OTSKE [4] and is used instead of the OTSKE when the
L2 upper triangular block number of the system transition matrix is greater
- <O‘5m(r —D+3- ,_-) " than two. It is shown by analytical results that the computational com-

— (r = 1)(2m* 4+ 0.5m% + L5m) (50) ple_xity of the OMSKE is less than that of the s_implifie(_:i KE (RE
. which can be obtained by applying the symmetric and triangular prop-

Aflopsops ™ = <E TN % + %) n’ erties of the KE, and is minimum when the system transition matrix
3o O has the maximum stage number. Our result suggests that the OMSKE
4 <m _34 +3_ @) n? may serve as an alternative to the KE for estimating the system state
r r? of linear dynamical systems subject to upper triangular system transi-
_ <0.5m(r ) +3— g) . tion matrices when the number of the system state is large and is much
T larger than the number of the measurement.

— (r = 1)2m® + 0.5m> + 1.5m). (51) As inspired by the work of Bierman [10], the numeri(_:al reliability
of the OMSKE may be better than that of the conventional KE. The

Note that the above performance is satisfiedsfor n. However, if problem of exploring the numerical stability of the OMSKE is under

r = n, then the performance in (51) will increase to nvestigation.
" APPENDIX
Aflopsgpi <P .
0 3 9 Y a5 1) Using (3) and (5), we have
=zn 4+ (m—3.5)n" + (0.5m” + 2.5m + 2)n
—(n—=1)2m* +0.5m> + 1.5m). (52) i — e i
) Xijp—1 = Xgp—1 + ul Y Z Ui X (57)
=141

This additionally gained efficiency is mainly due to the fact that matrix
multiplications are replaced by scalar multiplications. wherel < ¢ < r. Comparing (9) with (11) and using (16), we
To show the computational advantage of the OMSKE, we use the have

relative improvement ratio (RIR) of the OMSKE, which is defined by .
OMSKE Xlilkf1 = ‘42?_1f2,1‘k,1 +uf Y Z

OMSKE . Aflopsgy: i)
RIRKEi = 111’11" W (53) S =

n—oo OpS( L ) X Uz Xk71|k71' (58)

as the performance index. The RIR performance is intended for the Substituting (58) into (57) and using (25), we obtain
situation where the number of the measurements is negligible as com-
pared to the number of the system states. This is assumed for applying
the OMSKE and is usually the case encountered in practical systems. -
However, if this is not the case, as can occur in large-scale or mul- =4 Z (ﬁffyi_uk_l - Lrélyi‘k_l)_ (59)
tisensor systems, then it is always possible in practice to process the 1=

—i ~i T
W1 = Xpjoo1 — Ap1 Xp—1jp—1
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2) Using (3), (5), and the diagonalizing structure 1of_, we Canceling the same terms on both sides of (67) and solving for
have I, we obtain
T ; —1
ii i r—i—1 ril 5t il . . ) : P
Plieos = Pyt 700 B, UiPLeaW €00 T = Py {Z Sy (S]) + R“} . (69)
=1 j 1
wherel < i < r. Comparing (9) with (13) and using (16), we  6) Using (3), (5), (9), and (13), we have
have
g L g g ij ) L (r=i=1) rilpl 7y
Pifis = AaPecit (A1) + Q1 Pifiy =UdPipumy #0705 UiPhm (U0
. JH1
+'u§"_"_” Z ﬁilﬁécfukfl('ﬁil)l- (61) :Uﬁvjﬁifl\kfﬂfll; ) +QL—1
I=it+1 . T —
+al T T TP @ (69)
Substituting (61) into (60) and using (27), we obtain =541
Qi1 =Pijp1 — AL Py (A wherel < i < j <. Assuming tha; , , > 0 and solving

y ) r (69) for U, we obtain
— Q;:—l + ugrfzfl) Z
=il 77l l:iH/ ril pril Bl : v = (U”P’]C Ll AL +QL_‘)( |k~ )7 (70)
XAUR U Pr—qjp—1) = U (Ui Prje—a) ). (62)
whereQ}’ , is defined in (31).

3) Using (15), (17), and the diagonalizing structureldf,., we 7) Solving (8) forﬁ’,jj we obtain

have
« r ~ . . . . I_l . ~
R I T Tl S v el (71)
- {o} {e}3" --- {e}3 I=i+1
klk =
{ 2}1 { }2 K ( } Using (65), (8), (4), and (71), we have
o} o}5” - {e}”
I"l 0 0 7 i 1 1—2 yrly (rij
N K5l = (VU7 = U7 +ul™ )Z viup + v
ALY k k
y (VeUi) ™) L., 0 et
: ; - ; -
~ . N . ) . _rrij riy C(j—1—2) crilyrly oyl
(0O (WU0ZY - I, =U¢ -V +ud 12 (VU =Vievi). (72)
=it1
with . i . .
Solving (72) forV,”” and using (71) and (72), we obtain
{o}5 =(I = KicSi)Pies = Pige (63) I S
(o} = ((ViUn)" — K450 )Pk\k =0 (64) Vi =07 - K8 +ulf Z v
I=i+1
wherel < i < r andi < j < r. From (64) and the fact that el s G—i—2) 17!
?i‘k_l is nonsingular, we have Vil = U tus Z
t=Il+1

Vi) =K S 65 PACHS VAl sut)
(Vi) i (65) (Vv —mfo,?)}Jr{-}

4) Substituting (65) into (12), we have

Jj—1
—U - <I{§C +ul TN VZIKQ )

X’ =X} kk— 1+U.Exr7i71) Z Fz‘sifi\kq

[=i+1
. s where
+K2 (Yk — Z SiYi,lk_l> j—1 =1 o _ I—1 o »
j=1 {o} = Z <Z V/;zvsz,U;J _ Z ‘/rkzt‘/kt/(jl,?)
‘ ; t=i+1 t=i+1

j=1 Z Z ",rlflf/étbr;j . Z Z "’,Zt‘};l[]’lcj

I=i+1 t=I+1 I=i+42 t=:i+1

N - ‘ . I=i+1
=Xhppor + Ki (Y= 30 SI8, 0 ] (66) <.]--2 j=1 -t )

5) From (14) and (65), we obtain

j=2 -l i—2 =1
<Z Z 1,,23'1‘7#@:;’_ Z Z WthUIlcj

<Z S]PHL_] S/Z), + Rk) —o (=141 t={+1 t=14+1 [=t+1

=?Z|k71(5;i)'+uir_’_l) 72 K.S! Plc\k (8. (67) From (59), (66), (62), (68), (63), (70), and (73), we obtain
Pt (20)—(24), (29), and (30).
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+ [g(x) + fri(z) Az, B)goa(@)]u(t),  2(0) = o

1)
Reliable Guaranteed Cost Control for Uncertain ) ) )
Nonlinear Systems wherez(t) € R" is the stateu(t) € R™ is the control inputf(x),

g(x), fu1(x), fa2(x), andgez(2) are known smooth mappings with
Guang-Hong Yang, Jian Liang Wang, and Yeng Chai Soh  f(0) = 0, f22(0) = 0, andA(z, 6) satisfies

AT (e, 0)A(e, 0) < T (2)

Abstract—This paper is concerned with the reliable control design . . . . .
problem for uncertain nonlinear systems. A more practical model of with # being an uncertain parameter vector. The cost function associ-

actuator failures than outage is adopted. Based on the Hamilton—Jacobi ated with this system is

inequality (HJI) approach from nonlinear H . control theory, a method oo

for designing reliable state feedback controllers is presented. The resulting J= / [Q(x) + uT(t)Rgu(t)] dt ©)
control systems are robustly stable and with anf, performance bound 0

against plant uncertainty and actuator failures. . . . . .
) ) B where@Q(z) is a smooth positive definite function wit(0) = 0,
Index Terms—Actuator failures, Hy control, Hamilton—-Jacobi inequal- X

ities, nonlinear systems, reliable control, uncertain systems.

and R, > 0 is a symmetric constant matrix. For the control input

u;,i =1,2,---, m, letul" denote the signal from the actuator that
has failed. In this paper the following actuator failure model will be
|. INTRODUCTION adopted:
In the area of reliable control system design, several design methods ul = au; + @i (us), i=1,2, -, m (4)

have been developed for the resulting closed-loop systems to tolerate ;
wherea; > 0, and the uncertain functiop; («; ) satisfies
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