
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 28 April 2014, At: 00:17
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London
W1T 3JH, UK

Journal of the Chinese Institute of Engineers
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcie20

Enhancing java processor performance with smart dynamic folding
Lung‐Chung Chang a b , Lee‐Ren Ton a , Min‐Fu Kao a & Chung‐Ping Chung a

a Department of Computer Science and Information Engineering , National Chiao Tung University , Hsinchu, Taiwan 300, ROC
b Computer & Communications Research Laboratories , Industrial Technology Research Institute , Hsinchu, Taiwan 310, ROC
Published online: 03 Mar 2011.

To cite this article: Lung‐Chung Chang , Lee‐Ren Ton , Min‐Fu Kao & Chung‐Ping Chung (2000) Enhancing java processor performance with smart dynamic
folding, Journal of the Chinese Institute of Engineers, 23:6, 711-719, DOI: 10.1080/02533839.2000.9670592

To link to this article: http://dx.doi.org/10.1080/02533839.2000.9670592

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform.
However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness,
or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently
verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs,
expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution,
reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and
use can be found at http://www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/tcie20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02533839.2000.9670592
http://dx.doi.org/10.1080/02533839.2000.9670592
http://www.tandfonline.com/page/terms-and-conditions

EJ061200000711

Journal of the Chinese Institute of Engineers, Vol. 23, No. 6, pp. 711-719 (2000) 711

ENHANCING JAVA PROCESSOR PERFORMANCE WITH

SMART DYNAMIC FOLDING

Lung-Chung Chang1,2, Lee-Ren Ton1, Min-Fu Kao1, and Chung-Ping Chung1*

1Department of Computer Science and Information Engineering
National Chiao Tung University

Hsinchu, Taiwan 300, ROC
2Computer & Communications Research Laboratories

Industrial Technology Research Institute
Hsinchu, Taiwan 310, ROC

Key Words: stack machine, stack operations folding, true data
dependence, Java processor.

ABSTRACT

The Java processor is suitable for Internet appliances or embed-
ded controllers due to its speed and low memory requirement. However,
its performance is severely limited by true data dependence. In this
work, we present a smart and dynamic stack operations folding – POC
model-based folding. The stack instructions are classified into P,O,
and C three types. The folding algorithm can automatically determine
the folding relations among all the instructions based on the type and
folding attributes of each instruction. The proposed algorithm has no
requirement to match different patterns. A typical folding mechanism
design based on this model is then introduced. Also, the performance
of various folding methods based on the POC model is evaluated. Simu-
lation data indicate that the 4-foldable method eliminates 84% of all
stack operations. Furthermore, the 2-, 3-, and 4-foldable methods ac-
celerate the overall program by 1.22, 1.32 and 1.34, respectively, as
compared to a Java processor without folding.

I. INTRODUCTION

The Internet has become the most feasible means
of accessing information and performing electronic
transactions. Java (Jame et al., 1996) is the most
popular language used over the Internet owing to its
security, robustness and write-once-run-anywhere
characteristics. Java bytecodes can be executed on
any platform that provides a Java Virtual Machine
(JVM) (Lindholm et al., 1996) environment.

JVM is a stack-based machine (Koopman, 1997)
and its performance is limited by true data
dependence. A means of avoiding such a limitation,

i.e. stack operations folding, was studied by Sun
Microelectronics. Microprocessor Report (Case,
1996; Turley, 1996; Lentczner, 1996) and IEEE Mi-
cro (O'connor et al., 1997) have also published re-
lated information. Specific reports on stack opera-
tions folding were made by Tseng et al. (1997) and
Ton et al. (1997). These works all have one thing in
common: they need to identify the different folding
patterns via comparison with the target foldable in-
structions sequentially. In this study, we present a
systematic folding solution. All bytecode instructions
are classified into POC types with number of
operands, source and destination identifiers. If an

*Correspondence addressee

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

0:
17

 2
8

A
pr

il
20

14

712 Journal of the Chinese Institute of Engineers, Vol. 23, No. 6 (2000)

instruction has the matched source type and number
of operands with the destination type and number of
operands of the preceding instruction, then these two
contiguous instructions can be folded together. This
folding process can be continued recursively.

This paper is organized as follows. Section II
presents the proposed intelligent and dynamic stack
operations folding model, the POC model. Instruc-
tions are scanned and checked sequentially based on
the proposed folding algorithm (5 operation). Sec-
tion III introduces an architecture design based on
the proposed POC model. It includes a Folding
Rule Checker & Address Assigner and Source/Desti-
nation Address Generation Units. Section IV sum-
marizes the performance measurements of different
folding methods. Conclusions are finally made in
Section V.

II. POC MODEL IN STACK OPERATIONS
FOLDING

In this section, the POC model of stack opera-
tions folding, plus a folding example are presented.

Considering the operations related to the oper-
and stack and their characteristics, Java bytecode in-
structions can be classified into three types: Producer,
Operator, and Consumer. Their definitions are as
follows:

Definition: Producer (P) — An instruction that trans-
fers data from Constant Register or Lo-
cal Variable (but not Array or Constant
Pool) to the operand stack.

Definition: Operator (O) — An instruction that re-
trieves data from the operand stack (may
be null), and then performs the different
tasks based on the following four opera-
tor subtypes:
0£ - ALU type operator that writes the

result back to the operand stack.
OB - Branch type operator that uncondi-

tionally or conditionally jumps to
the target address according to the
result of the corresponding branch
decision instruction.

Oc - Complex type operator (e.g. array
accesses, constant pool accesses,
and method invocations) that is
implemented in micro-coded ROM.
(It may or may not store the result
back to the operand stack.)

OT - Termination type operator which is
difficult to fold or impossible (e.g.
iinc, goto, and athrow). Alterna-
tively, it is a complex type opera-
tor that is implemented with trapped

software emulation.
Definition: Consumer (C) - An instruction that con-

sumes data from the operand stack, and
stores data back into the Local Variable
(but not Array or Constant Pool).

The Operator (O) is also called a Primary In-
struction within a folding group. Producer (P) and
Consumer (C) are both called Auxiliary Instruction
(Ton etal., 1997).

1. POC Model

The basic action of the POC model is that it al-
ways checks the foldability of one instruction (folded
or not) N with its next instruction N+l. By examin-
ing their instruction types, data types, operand sources
and number, operand destinations and number, the
POC model determines whether they are foldable or
not. If they are foldable, the resulting folding instruc-
tion then becomes the new instruction N, and it will
be checked with its next instruction N+l for further
foldability. Some notations are defined below:

S : Folding operator of instructions N and N+l.

Psn,wn/Tos,wn''' Producer with source Sn with number
of operands Wn, and destination TOS
with number of operands Wn\

Osn,wn/Dn,wn''- Operator with source Sn with number
of operands Wn, and destination Dn
with number of operands Wn\

Cros,Wn/LV,wn''- Consumer with source TOS with num-
ber of operands Wn, and destination LV
with number of operands Wn\

Two possible relations exist between two consecu-
tive instructions N and N+l. They are:
SI: Serial Instructions, indicating N and N+l are se-

rialized pipelined instructions that are not
foldable.

FI: Foldable Instructions, indicating TV and yV+1 are
foldable.

After folding check, the indicating state for further
folding check can be either of:

con: Continuing state, meaning the folded instruction
(N plus N+l) may be checked for further
foldability.

end: Ending state, meaning the folded instruction (N
plus N+l) can not be folded any further.

Figure 1 shows the foldability checking rules. The
foldability check continues if the current indicating
state is 'con'. The process stops if the indicating state
is 'end'. Detailed state diagram and algorithm were
illustrated by Chang et al. (1998)

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

0:
17

 2
8

A
pr

il
20

14

L.C. Chang et al.: Enhancing Java Processor Performance with Smart Dynamic Folding 713

8

In
s
tr

u
c
ti
o

n
 N

psi.wi/TOS,wr

Osi.WI/Dl .Wl'

OE/SI.WI/DI.WT

OB/SI,WI/-.-

Oc/si.wi/Di.wr

OT/-.-/-.-

CTOS.WI./LV.WT

Instruction N+l

Ps2.W2/TOS.W2'

PS1+S2.WI+W2/TOS.

wr+W2'/S I/con

OE/SI.WI/DI.WI'/SI

/end

OB/S1.WI/ - . -

/end

Oc/Sl.Wl/Dl.Wl'/SI

/end

OT/.,./.,./SI/end

CTOS.WI./LV.WI'^SI

/end

OTOS.W2/TOS.W21

OE/TOS.W2/TOS.W2'

OE/S1.W2/TOS.W21/

FI/con

OE/SI.WI/DI.WI'/SI

/end

OB/S1.WI/ - . -

/end

OC/SI.WI/DI.WI/SI

/end

OT/.../.,./SI/end

CTOS.WI./LV,WI'/SI

/end

OB/TOS.W2/- .-

OB/S1.W2/- .-

Fl/end

OE/SI.WI/DI.WI'/SI

/end

OB/S1.W1/- .-

/end

OC/SI.WI/DI.WI'/SI

/end

OT/.,./.,./S I/end

CTOS.WI./LV.WI'/SI

/end

Oc/TOS.W2/TOS.W2'

OC/S1.W2/TOS.W2'/

FI/con

OE/SI.WI/DI.WI'/SI

/end

OB/SI.WI/-.-

/end

Oc/SI.WI/Dl.WI'/SI

/end

OT/.,./.../S I/end

CTOS.WI./LV,WI'/SI

/end

OT/-.-/,.

PSI.WI/TOS.WI/SI/

end

OE/SI,WI/DI,WI'/SI

/end

OB/SI,WI/-,-

/end

Oc/Sl,Wl/Dl.WI'/SI

/end

OT/.,./.,./SI/end

CTOS.WI./LV.WI'/SI

/end

CTOS.W2/LV,W2'

Csi,W2/LV.W2'/F'/
end

O E / S 1 . W 1 / L V , W 2 ' / F '

/con

OB/SI,wi/-.-

/end

Oc/Sl.Wl/LV.W2'/F'

/con

OT/.../.,./SI/end

CTOS.WI./LV.WT/SI

/end

Note 1: Assume that instructions N and N+l have matched data types and number of operands. Otherwise, they can not be folded, and instruction N will be

assigned "SI/E" state.

Fig. 1 Foldability check for instructions N and N+l

Table 1 Annotated POC types

Instruction
No.

Instruction Annotated
POC types

11
12
13
14

iconst_2
iload indexl

iadd
istore index2

Piconst_2,l/TOS,l

PLV(indexl),l/TOS,l

OE/TOS,2/TOS,I

CTOS,l/LV(index2),l

POC Type Source Dcslination POC Type Source Deslinalion

POC Type Source Destination

o , l | |LV|CR| I I 1 I

Fig. 2 Folding process of step 3

2. Example of POC Model Folding

Assume a sequence of bytecode instructions II
~ 14. Their POC notations are listed in Table 1.

The folding process proceeds as follows, and step 3
is depicted in Fig. 2.

Step 1: Pjconst_2,l/TOS,l folded with PLV(indexl),l/TOS,l

becomes PiCOnst_2+LV(indexl),2/TOS,2/SI/con.

Step 2: Piconst_2+LV(indexi),2/TOs,2 folded with

OE/TOS,2/TOS,I becomes

OE/iconst_2+LV(index 1),2/TOS, 1 /FI/C0n.

Step 3: 0E/iconst_2+LV(indexi),2/TOS,i folded with

C"ros,i/LV(index2),i becomes

OE/iconst_2+LV(indexl),2/LV(index2),l/FI/end.

III. LOGIC DESIGN OF JAVA PROCESSOR
FOLDING

Figure 3 shows the block diagram of the POC
folding mechanism. The Bytecode instructions are
fetched from Instruction Cache into the Instruction
Ring Buffer. The OP Code Checker (Sizer) checks
the instructions simultaneously to identify the

locations of successive opcodes and operands. In ad-
dition to identify the folding group and its primary
instruction based on the POC model, the Folding Rule
Checker & Address Assigner assigns all of its sources
and destinations for the primary instruction.

The Source/Destination Address Generation
Units (AGUs) generate the actual addresses (on-chip
or off-chip) based on the type of data unit (LV,
STACK, and CR), the base address (VAR, TOS), and
index (Operand). The folded instruction is then stored
in the Folded Primary Instruction Buffer. Next, the
Execution Unit fetches operands from on chip regis-
ter or memory, and finally, executes the folded pri-
mary instruction and writes the results back to the
Operand Stack or Local Variable. The Program Con-
troller then starts the next folding cycle based on the
folding result. In addition, it skips over the exact
number of bytes required by the current folding
operation. The Folding Group Bytes Checker gener-
ates this number. Detailed explanations about some
of these function units are given below.

1. OP Code Checker (Sizer)

The instruction lengths of Java bytecodes vary

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

0:
17

 2
8

A
pr

il
20

14

714 Journal of the Chinese Institute of Engineers, Vol. 23, No. 6 (2000)

Instruction Cache

Instruction Ri lg Buffer

OP Code Checker (Sizer)

OP Determined Buffer

Program
Controller

I OPCODE | OPCODE | Operand M O P C O D E | OPCODE | Operand

£ ± 2-Foldablt

Folding Rule Checker & Address Assigner

Primary
Op Cod<

Source
Temp Folded Instruction Buffer 4

Destination Operand

I-Fnlrtabli

N-Fo d Byles

Folding Group
Bytes Checker

Operand

Decoder Source
AC\G\J

Destination
AGU

Folded Primary Instruction^ Buffer

Primary Control Source Address
S R C I A ! S R C 2 A ! SRC3AJ SRC4,I

Destination Address
DST1A PST2A] DST3A j DST4A fc)ST5A i DST6A

Operand

Stack

- * •

Execution

A

Unit
Local

Variable

Constant Register

Fig. 3 Block diagram of POC folding mechanism

Bytecode
Instruction Stream

ByteO

Bytecode
Instruction Stream

Byte 1

Bytecode
Instruction Stream

Byte n

Wide In

0
Enable_In

Sizer
Building Block

1

Enable Out
Wide Out

Enable_Out[4] of Building Block n-5
Enable_Out[3] of Building Block n-4

Enable_Out[2] of Building Block n-3
Enable_Out[1] of Building Block n-2

Enable_Out[0] of Building Block n-1

Wide_Out of Building Block n-1 —i

Wide In

L Enable In

Sizer
Building Block

n

OpCode_Out
0

OpCode_Out
1

OpCode_Out

Fig. 4 Block diagram of the sizer

from one byte to five bytes, not including the lengths
of lookupswitch and tableswitch instructions whose
lengths are not known until run-time. Furthermore,
the n-foldable design requires the simultaneous iden-
tification of at least n bytecode instructions.

As shown in Fig. 4, the Sizer is constructed with
many identical building blocks, each dedicated to
examining one byte in the instruction stream. Note
that, the Sizer constantly treats the first byte of the
instruction stream as an opcode. This opcode denotes

From
Instruction

Stream

Bytecode
Sizer

Lookup Table

Table [0:5]

Wide In

0

0 1
MUX

0 1
MUX

0 1
MUX

0 1
MUX

0 1
MUX

T \ \ J \
Wide Bit Modified Table [1.5]

Fig. 5 Modification circuit for WIDE instruction

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

0:
17

 2
8

A
pr

il
20

14

L.C. Chang et ai: Enhancing Java Processor Performance with Smart Dynamic Folding 715

OP Determined Buffer
OP Code OP Code Operand OP Code OP Code Operand

I
1
1

PRIMN/^DCN/SN/WN/DN/WN' PR MM.,/ POCN,,/SN.,/WN.,/DN.,/

£
Attribute ROMs

Folding Unit

2-foldable
CONTINUE

PRIMN

PRIMN+3

OP OP OP OP N
#N #N #N #N O

W w w W w

Primary

OP Code

Selector

IE
PRIN

'COMBINED'1' "^COMBINE1

N42/POCN.2/SN,,/WN

Folding Unit

3-fOldajle

PRIM,

CONTINUE POCCOMBINED

,/POCN.J/SN.J/WN.)/DNJ1/WM.,'

A r/w COMBINED

Folding Unit

!

WCOMBINED

foldable

I I M U X | > I I wvy
W W Temp Folded Instruction Buffer f

Primary
OP Code

Source Address

2&C1A- SRC2A lsRC3A ISRC4A

Destination Address

DST1A IDST2A DST3A DST4A DST5A DST6A

Fig. 6 Folding rule checker & address assigner

the position of the succeeding opcode.
In JVM (Lindholm et al., 1996), the wide in-

struction is used to double the operand lengths of the
next bytecode. In our design, the wide instruction is
confirmed as an opcode first. It then notifies the next
bytecode to modify its operand lengths information
to maintain the correctness of the size check. Fig. 5
shows that only five 2-to-l multiplexors are required
to implement this modification circuit.

The size of the lookup table is 6x256 bits. Bit 0
denotes whether or not this instruction is a wide
instruction. In addition, Bits 1-5 are used to denote
the position of the next opcode. If a byte is an opcode,
then the corresponding OpCodejOut signal is set to
1; otherwise, it is 0.

The function of the Sizer unit is as follows:

if (Any Enable Jn Bit == 1 'bl) (
OpCodejOut = not (Table [0]);
if(Wide_In==l'bl)

Enable_Out [0:4] = (2'bOO, Table [2], 1'bO,
Table [3]);

else
Enable_Out [0:4] = Table [1:5];

Wide_Out = Table [0]; }
else [

OpCode_Out = 1 'bO;
Enable_Out [0:4] = 5'b00000;
Wide_Out = 1 'bO; }

2. Folding Rule Checker & Address Assigner

Figure 6 illustrates the Folding Rule Checker &
Address Assigner for 4-foldability. The number of
opcodes to be checked are selected to generate the
primary information (PRIMN), POC types (POCN),
source/destination types (5^, DN), and number of op-
erands (WN, WN') through the Attribute ROMs. The
Folding Unit accepts two sets of this information,
operates on it (based on the 8 operation), and gener-
ates a folded instruction with its combined POC type
(POCCOMBINED), source/destination types (SCOMBINED,

DCOMBINED) and number of operands {WCOMBINED*

^COMBINED)- Note that, the next Folding Unit is en-
abled if the current indication state is 'c' (CONTINUE
= 1) and the next opcode is available for checking.
The final results are stored in the Temp Folded In-
struction Buffer.

(i) Attribute ROMs

Several Attribute ROMs provide the necessary
information for the folding units. Each opcode is fed
to an Attribute ROM and generates the following
information:

PR1MN : Primary information that indicates whether
or not this opcode is a primary instruction.

POCN : The POC type of this opcode.
SN : Source type of this opcode.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

0:
17

 2
8

A
pr

il
20

14

716 Journal of the Chinese Institute of Engineers, Vol. 23, No. 6 (2000)

POCN

CONTINUEIN

1IN U.t,

W '

I
POC Operation

0UT I x FOLDABLE

POC N +

(NO-FOLD

PPJ>0,
OC.PC)

w N + WN+I

Source / Destination
Selector

POCC O M B I N E D
I I I

wCOMBINED
DestinationCOMB1NKr

I I I
w,COMBINED

Fig. 7 Folding unit

WN : Number of source operands of this opcode.
DN : Destination type of this opcode.
WV : Number of destination operands of this

opcode.

(ii) Folding Unit

The Folding Unit is sketched in Fig. 7. In this
figure, the POC Operation matches the destination
type (DN) and number of operands (WV) of instruc-
tion TV with the source type (SN+\) and number of op-
erands (WN+\) of instruction N+l. If the types and
number of operands match, then POCN and POCN+]

can be combined (POCCOMBINED)- Continuation in-
formation {CONTINUEQUT), X_FOLDABLE (x=l, 2,
3, ...) and the combination result of POC Operation
(N0_F0LD, PP, PO, OC or PC) are also generated
if the first instruction (P0CN) can be checked for fur-
ther folding (C0NTINUEIN=\). The Source/Destina-
tion Selector assigns the source and destination types
and their number of operands for the folded
instruction.

Four bits were used to represent the instruction
POC type. Table 2 lists the instruction types for Java
stack operations.

The POCCOMBINED equals P0C^+\ if instruction
N is of P type and instruction N+l is not of 0T type.
Otherwise, it equals P0CN. In addition, the FOLD-
ABLE and CONTINUE signals can be generated us-
ing the following formula:

FOLDABLE=(POCN[3](POCN+][l]+POCN+l[2])

+POCN+d0]<POCN[3]+POCN[2]))

•CONTINUEIN (1)

CONTINUEOUT=(POCN[3HPOCN+][3]+POCN+1[2])

+POCN+l[0)-POCN[2])

•C0NTINUEIN

Table 2 Bit representation of instruction types for
the POC model

Type
O

Producer

Operator

Consumer

1I1UU1

p
o E
0 B

Oc
0 T

C

Bit 3

1
0
0
0
0
0

Bit 2

0
1
0
1
0
0

Bit 1

0
0
1
1
0
0

BitO

0
0
0
0
0
1

Based on the combination result (N0_F0LD,
PP, PO, OC, and PC) and the source/ destination /
number of operands information of instructions
POCw and P0C^+\, the Source/Destination Selector
generates the combined source/destination informa-
tion for the folded instruction (POCCOMBINED)- The
combined information including source, destination
and number of operands information, are summarized
below:

N0_F0LD:

SCOMBINEDI 1] ~

PP:

WcOMBINED=WN', WCOMBINED' =

^COMBINED [1] ~ S COMBINEDi W#] -SN[1] ~SN[WN]

SCOMBINED [WN+1] ~ S COMBINED I ̂ N+ WN+ \]=SN+] [1]
~SN+l[WN+l]

DCOMBINED^ 1]~DCOMB1NEDV WN' + WN+i' '] =
STACK[TOS+l]~STACK[TOS+WN'+WN+l']
WcOMBINED= WV+ WN+ i; WCOMBINED' = ^ V + WN+ \'

PO:

(2)

SCOMBINEDV 1] ~SCOMBINED[WN\ -SN[1] ~Spj[WN]

DCOMBINEDI 1] ~DCOMBINEDI WN+ i']=DN+] [1]
~DN+x[WN+l']

cOMBINED= COMBINED=

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

0:
17

 2
8

A
pr

il
20

14

L.C. Chang et al.: Enhancing Java Processor Performance with Smart Dynamic Folding 111

Primary
Source Destination Operand

^ ' Folded Primary Instruction 9 fffer

Primary
Control

Source Address

ndex1

Destination Address

! VAR+
index2

Fig. 8 Source/Destination AGU contents illustrated

Percentage of Eliminated
Stack Operations
100%

80%
80%

60%

60%

40%

20%

0%

84% 85%

60%

2-foldable 3-foldable 4-foldable n-foldable* Sun's**

Fig. 9 Percentage of eliminated stack operations with respect to
all stack operations

OC:
SCOMBINEDI 11 ~SCOMBINEDI WN]

DCOMBINED[1] ~DCOMBINED[

~SN[WN]

W

PC:

cOMBINED

SCOMBINEDV 1]

= Wfij; ^COMBINED =

~SN[WN]

WCOMBINED=WN', WCOMBINED>=Z

(Hi) Primary OP Code Selector

The opcode of the primary instruction after fold-
ing is selected according to the following rules:

Case 1: The first opcode, if there is no folding.
Case 2: NOP, if the folding combination type is PC.
Case 3: The M-th opcode OP#M if the PRIMM=\

exclusively.

3. Source/Destination Address Generation Units
(AGUs)

The Source/Destination AGUs generate the ac-
tual source or destination addresses based on the ad-
dress type (LV, STACK, CR), initial address (VAR,
TOS) and index (Operand). Some addresses are re-
named or mapped onto the stack cache registers based
on the hardware implementation, the others are physi-
cal memory addresses. The generated information is
stored in the Folded Primary Instruction Buffer and
is used by the Execution Unit. Fig. 8 illustrates the
Source/Destination AGUs functions for the example
described in Subsection 2 of Section II.

IV. PERFORMANCE OF POC MODEL

The maximum number of bytecode instructions
that can be folded is timing critical and is predefined
according to the implementation specification. Fig.
9 shows the percentage of eliminated stack operations

•

1

• I—1 .

2.52

4.83

6.32
6.95

2.5

Speedup of
Stack Operations Only

7
6
5
4
3
2
1
0

no 2-foldable 3-foldable 4-foldable n-foldable Sun's
folding

Fig. 10 Speedups of stack operations only due to different scopes
of folding

1.4
1.3
1.2
1.1

1
0.9
0.8

an ispeeu up

1.22

1

•

1.32 1.34 1.35

no folding 2- foldable 3- foldable 4- foldable n- foldable

Fig. 11 Overall speedups due to different scopes of folding

for different scopes of folding.
Figures 10 and 11 depict the speedups of differ-

ent scopes of folding in terms of machine cycles for
stack operations only, or all operations.

V. CONCLUSIONS

This study presents the theorem and operations
of a stack operations folding POC model. The pro-
posed model can automatically generate folding pat-
terns by classifying the Java bytecodes into POC
types. Furthermore, this method is generic for any
stack machine.

Various scopes of folding are evaluated. Simu-
lation results indicate that 2-, 3-, 4-, and n-foldable
methods can eliminate 31%, 41%, 43%, and 44% of
all operations in the Java program trace files,

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

0:
17

 2
8

A
pr

il
20

14

718 Journal of the Chinese Institute of Engineers, Vol. 23, No. 6 (2000)

respectively. Since 52.05% of all operations are stack
oriented, the 2- to 4-foldable methods can eliminate
60%, 80%, and 84% of all stack operations,
respectively. By translating the instruction counts
into clock cycles (Ton et al., 1997), the correspond-
ing speedups are 1.22, 1.32 and 1.34, respectively, as
compared to a conventional Java stack machine with-
out stack operations folding support.

With proper VLSI implementation, it is not dif-
ficult to construct a 200 MHz Java processor using
the POC model for folding check, without using much
silicon area. For the 4-foldable design, Verilog-XL™
simulation indicates that the POC Operation takes
3.62 ns using 0.6 um SPDM standard cells library. If
higher performance is desired for future Java
processors, The POC model should be highly prom-
ising for performance enhancement via folding check.

ACKNOWLEDGEMENTS

This paper presents partial results of research
projects financed by Computer & Communications
Research Laboratories of Industrial Technology Re-
search Institute, ROC, under contract no. G3-86040
and 187001.

NOMENCLATURE

TOS
WN

Source type of instruction TV
Top of Stack
Number of source operands of instruc-
tion TV
Number of destination operands of in-
struction N

AGU
C
con
CR
DN

end
FI
LV
NO_FOLD
O

OB

OC

Oc
OE

Or

P
PC

PO

POCN

pp

PRIMN

SI

Address Generation Unit
Consumer
continuing state
Constant Register
Destination type of instruction TV
ending state
Foldable Instruction
Local Variable
No folding combination
Operator
Operator with Branch subtype
Folding combination of Operator with
Consumer
Operator with Complex subtype
Operator with Execution subtype
Operator that Terminates the folding
check
Producer
Folding combination of Producer with
Consumer
Folding combination of Producer with
Operator
POC type of instruction N
Folding combination of Producer with
Producer
Primary information of instruction N
Serial Instruction

Greek symbol

8 Folding operator of instructions TV and
N+i

REFERENCES

1. Case, B., March 1996, "Implementing the Java
Virtual Machine," Microprocessor Report.

2. Chang, L.C., Ton, L.R., Kao, M.F., and Chung,
C.P., September 1998, "Stack operations folding
in Java processors" IEE Proceedings on Computer
and Digital Techniques, Vol. 145, No. 5.

3. Gosling, J., Joy, B., and Steele, G., August 1996,
The Java™ Language Specification, Addison-
Wesley Publisher Co., Inc.

4. Koopman, P., 1997, "Stack Computers: The New
Wave" http:// www.cs.cmu.edu/~koopman/
stack_computers/.

5. Lentczner, M., March 1996, "Java's Virtual
World" Microprocessor Report.

6. Lindholm, T., and Yellin, F., September 1996,
"The Java™ Virtual Machine Specification,"
Addison-Wesley Publishing Co., Inc.

7. O'Connor, J.M., and Tremblay, M., March/April
1997, "picoJava-I: The Java Virtual Machine in
Hardware," IEEE Micro, Vol. 17, No. 2.

8. Ton, L.R., Chang, L.C., Kao, M.F., Tseng, H.M.,
Shang, S.S., Ma, R.L., Wang, D.C., and Chung,
C.P., December 1997, "Instruction Folding in
Java Processor" International Conference on Par-
allel and Distributed Systems.

9. Tseng, H.M., Chang, L.C., Ton, L.R., Kao, M.F.,
Shang, S.S., and Chung, C.P., April 1997, "Per-
formance Enhancement by Folding Strategies of
a Java Processor" International Conference on
Computer Systems Technology for Industrial Ap-
plications – Internet and Multimedia.

10. Turley, J., October 1996, "Sun Reveals First Java
Processor Core" Microprocessor Report.

Discussions of this paper may appear in the discus-
sion section of a future issue. All discussions should
be submitted to the Editor-in-Chief.

Manuscript Received: Jul. 30, 1999
Revision Received: Mar. 20, 2000

and Accepted: Apr. 12, 2000

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

0:
17

 2
8

A
pr

il
20

14

L.C. Chang et ai: Enhancing Java Processor Performance with Smart Dynamic Folding 719

^pti1 '2 itAiA1 ifim1 mmw

il^JilJItB ' 4- ̂ fi"5JI^* 84% Zffi^&MM ' M 2- ' 3- ' 4- JifiH
^S^fi5l^Ctgit^S!l^l.22 ' 1.32151.34 °

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

0:
17

 2
8

A
pr

il
20

14

